Ⅰ 6.5×3.5×28有没有简便方法
递等式计算6.5×3.5×28
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
6.5×3.5×28
=22.75×28
=637
(1)28的56倍有没简便方法扩展阅读-计算过程:先将两乘数末位对齐,然后分别使用第二个乘数,由末位起对每一位数依次乘上一个乘数,最后将所计算结果累加即为乘积,如果乘数为小数可先将其扩大相应的倍数,最后乘积在缩小相应的倍数;
解题过程:
步骤一:8×2275=18200
步骤二:2×2275=45500
根据以上计算步骤组合结果向左移动2位小数点积为637
存疑请追问,满意请采纳
Ⅱ 5 .28×3. 2÷3 .2 有没有简便方法
5.28×3.2÷3.2简便计算:
=5.28*(3.2÷3.2)
=5.28*1
=5.28
(2)28的56倍有没简便方法扩展阅读
简便计算方法:
1、补数凑整法
对于算式中接近整十、整百……的数,通过转化使其变成整十、整百……的数,加或减一个数的形式,可使计算简便。
例如:536-198=536_(200_2)=536_200+2=338
44x101=44x(100+1)=44x100+44=4444
2、分解法。
在某些乘除法算式中,可以把其中的某个数进行分解,使计算简便。
例如:25x1.25x32=25x1.25x(4x8)=(25x4)x(1.25x8)=100x10=1000
560÷35=560÷7÷5=80÷5=16
Ⅲ 两数相乘积是一个数28倍是第二数的56倍这两个数是多少
这两个数是:56和28
56x28=1568
1568÷56=28倍
1568÷28=56倍
Ⅳ 28.5➗(28.5✖️5)简便方法算是
简便方法算过程如下,望采纳:
28.5➗(28.5✖️5)
=28.5÷28.5÷5
=1÷5
=0.2
Ⅳ 28+56 × 5用简便方法计算
28+56 × 5
=28+28×2×5
=28+280
=308
Ⅵ (55_28)✘19的简便方法
(55-28)×19
=27×19
=27×(20-1)
=27×20-27×1
=540-27
=513
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b
方法二:结合律法
(一)加括号法
1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法
1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。
方法三:乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例:8×(3+7)
=8×3+8×7
=24+56
=80
2.提取公因式
注意相同因数的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意构造,让算式满足乘法分配律的条件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
方法五:拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例:32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
方法六:巧变除为乘
除以一个数等于乘以这个数的倒数
方法七:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
Ⅶ 560÷28的简便计算
简便计算过程方法如下
解:560÷28
=560÷(7×4)
=560÷7÷4
=80÷4
=20
(7)28的56倍有没简便方法扩展阅读:
被除数扩大(缩小)n倍,除数不变,商也相应的扩大(缩小)n倍。除数扩大(缩小)n倍,被除数不变,商相应的缩小(扩大)n倍。
被除数连续除以两个除数,等于除以这两个除数之积。有时可以根据除法的性质来进行简便运算。
例如:300÷25÷4=300÷(25×4)=300÷100=3。