① 在一个图形中数同位角,同旁内角,内错角时,是按定义来数,还是有什么技巧
是按定义来数,没有什么技巧。
② 小学二年级数角的方法
单个顶点的情况下,假设包括最外面的两条射线共有n条射线,则大大小小共有角的数量为:1+2+3+……+(n-2)+(n-1) 。
注意不是加到n而是加到(n-1)。比如:共有8条射线,则有角:1+2+3+4+5+6+7=28个角。
多个顶点,即多边形(如三角形)的情况下,只需要按照上述方法分别数出多边形每个顶点的角个数,然后将多边形各个顶点角个数相加即可得出总的角个数。
角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。角的个数与角的大小没有关系,与共同定点的射线个数有关系。
在数角的时候只需要数图形内部的内角,包括:
锐角:角度大于0°,小于90°的角。
直角:角度等于90°的角。
钝角:角度大于90°而小于180°的角。不需要数图形外部的外角。
例如:正常三角形数3个角,正常四边形数4个角。正常六边形数6个角。假如多边形内某个顶点不止两条射线,就需要按照公式来计算角个数了。
③ 小学二年级怎样数图形中的 角
要数图形的角:
1、数单独两条 线组 成的角的个数。
2、数两个角组成的角的个数。
3、数三个角组成的角的个数。……以此类推,然后所有的数相加即可。
④ 在图形中数角的最好办法
按照一定顺序去数,这样不会遗漏。同时对已经数过的角做出标记。
⑤ 怎样数角的个数有什么规律
数角的个数的方法就是用公式,角的个数s=(n+1)(n+2)/2,其中n为分开大角的线的条数。
数角的规律为:
1、数角的边的条数是n条时,角的总个数就是从1开始连续加到n-1为止。
2、数所分成的小角的个数是n个时,角的总个数就是从1开始连续加到n为止。
通过以下例子了解数角的规律:
小的角有3个,两个角组成的有2个,还有一个三个角组成的是1个。一共有6个角。
当图形一共有3条边,角的数量就是2+1,当图形一共有4条边,角的数量就是3+2+1。
这样即可发现数角的规律,有三条边,角的数量就是2+1。
有四条边,角的数量就是3+2+1。
有五条边,角的数量就是4+3+2+1。
有六条边,角的数量就是5+4+3+2+1,以此类推。
(5)从同一个图形中数出不同的角简便方法扩展阅读:
角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。
在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
角度之所以采用360这数值,是因为它容易被整除。360除了1和自己,还有21个真因子(2、3、4、5、6、8、9、10、12、15、18、20、24、30、36、45、60、72、90、120、180),所以很多特殊的角的角度都是整数。
在实际应用中,整数的角度已经够精准。当需要更准确的角度值时,如天文学中量度星体或地球的经度和纬度,除了可用小数表示,还可以把角度细分为角分和角秒:1度为60分(60′),1分为60秒(60″)。例如40.1875° = 40°11′15″。要再准确一点的话,便用小数表示角秒,不再加设单位。
⑥ 四年级上册数线段、角、图形的问题,有什么规律方法吗
线段:最长的线段上n个凸起(比如CD上有4个凸起),则它上面总共有1+2+3+……(n-1)条线段(比如2个凸起就有1个线段,3个凸起就有1+2=3条线段,公式是n*(n-1)/2),本题共有两条线段,各有3个,4个凸起,所以共有3*(3-1)/2+6*(6-1)/2=3+15=18条线段
角:围绕着点O的线段有n条,则有1+2+3+……(n-1)个角,同线段,公式是n*(n-1)/2),本题共有一个点O,有6条线段6*(6-1)/2=15个角
之后的也是同理但不同公式,抓住关键是没增加一个点或线段或图形,增加的线段或角或图形的数量是多少,再利用阶加公式(1+2+3+……+n=n(n+1)/2)推导出公式求就是规律,如果比较简单的图形还是数的方便。
⑦ 在复杂图形中,怎样准确的数出同位角,内错角,同旁内角的数量,求方法。
1 寻找到所有的平行线
2 一个角数起一对一对算 不能乱套
⑧ 不规则图形在小学数学中数角应该怎么数才能有快又准有什么公式
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
⑨ 怎样数一个图形内有多少个角
数一个图形内有多少个角的方法如下:
准备材料:铅笔、纸
1、比较复杂、原始的计算方法:即用铅笔将各夹角数出来,从左到右,或从右到左,如图,我们可以组成10个三角形,但这种方法相对比较复杂,容易漏算或多算,容易眼花,
(9)从同一个图形中数出不同的角简便方法扩展阅读:
数图形内角的技巧
1、数角的时候只要数图形里边的内角,不数外边的角,举个例子三角形是三个角救数三个角,六边形就是六个角。
2、如果是多条边的组合角,那么只需要数出相邻的两条边组成的角的个数就可以了。
3、如果能数出相邻的两个、三个、四个等更多得角,那么就要给学生加以肯定和大大鼓励。
4、如果只有一个顶点的话,算上最外边的两条射线,一共有的是n条射线,那么大小总共角的数量就是1+2+3+……+(n-2)+(n-1) 。