导航:首页 > 解决方法 > 方程组最简单的解决方法

方程组最简单的解决方法

发布时间:2022-05-06 14:37:39

㈠ 方程组怎么

解方程组的方法大致上有画图法、矩阵法、代入法、消元法等等。

1、代入法

如要解决以下方程组︰

(1)方程组最简单的解决方法扩展阅读:

相关注意:

二元一次方程组不一定都是由两个二元一次方程合在一起组成的,不止限制于一种。

也可以由一个或多个二元一次方程单独组成。

重点:一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题),依据—等式性质:

1、a=b←→a+c=b+c

2、a=b←→ac=bc (c>0)。

㈡ 解方程组怎么解

解方程组需要你在多个方程中找出多个变量的解。可以通过叠加、减法、乘法或替代法来解方程。如果想解方程组,按以下步骤来解。

方法1
用相减法来解
1
在一个方程上写另一个方程。如果两个方程整理成:两个方程的一个变量系数相同,符号相同,则最好用相减法来解。比如两个方程都有2x,则相减消掉这个2x,从而解出其他变量。
让x、y位置对应,一个方程式减去另一个,在第二个方程组外标上负号。
比如两个方程2x + 4y = 8 ,2x + 2y = 2,第一个写第二个上面作为被减数,减号标在第二个方程外:
2x + 4y = 8
-(2x + 2y = 2)
2
消去相同的项。两式相减得(可以分别减各项):
2x - 2x = 0
4y - 2y = 2y
8 - 2 = 6
2x + 4y = 8 -(2x + 2y = 2) = 0 + 2y = 6
3
解出剩下的变量。把x消掉后,可以解y了。把0移掉不影响等式。
2y = 6
把 2y、6 除以 2,y = 3
4
把解得的y代入回去,解出x。现在y=3,代回去就可以解得x,选那个先解不重要,答案是一样的。如果一个比较复杂,则先消掉,解出简单的。
y = 3 代入2x + 2y = 2 得到x
2x + 2(3) = 2
2x + 6 = 2
2x = -4
x = - 2
于是得到解: (x, y) = (-2, 3)
5
检查答案。可以将两解代回去,看看是否都符合。以下是步骤:
(-2, 3) 作为(x, y) ,代入2x + 4y = 8.
2(-2) + 4(3) = 8
-4 + 12 = 8
8 = 8
(-2, 3) 作为(x, y),代入2x + 2y = 2.
2(-2) + 2(3) = 2
-4 + 6 = 2
2 = 2

方法2
相加解方程组
1
在一个方程上写另一个方程。如果两个方程整理成:两个方程的一个变量系数相同,符号相反,则最好用相加法来解。比如两个方程一个有-3x,一个有3x,则相加消掉x,从而解出其他变量。
在一个方程上写另一个方程,让x、y位置对应,一个方程式加上另一个,在第二个方程组外标上加号。
比如3x + 6y = 8 和 x - 6y = 4,第一个写第二个上面,加号标在第二个方程外,把两式相加:
3x + 6y = 8
+(x - 6y = 4)
2
消去相同的项。两式相加得(可以分别加各项):
3x + x = 4x
6y + -6y = 0
8 + 4 = 12
合并得到一次方程:
3x + 6y = 8
+(x - 6y = 4)
= 4x + 0 = 12
3
解出剩下的变量。把y消掉后,可以解x了。把0移掉不影响等式。
4x + 0 = 12
4x = 12
把 4x和12除以3 得到x = 3
4
将刚才得到的解代入,得到另一个变量。这里x = 3,代回去得到y。先解哪一个不重要,因为答案一致。不过如果一项比较复杂,则先消掉,解简单的。
x = 3 代入x - 6y = 4 解出y
3 - 6y = 4
-6y = 1
把 -6y和1 除以 -6 得到y = -1/6
这样你解出方程组的解了: (x, y) = (3, -1/6)
5
检查答案。可以将两解代回去,看看是否都符合。以下是步骤:
(3, -1/6)作为(x, y) 代入3x + 6y = 8
3(3) + 6(-1/6) = 8
9 - 1 = 8
8 = 8
(3, -1/6) 作为(x, y) 代入x - 6y = 4.
3 - (6 * -1/6) =4
3 - - 1 = 4
3 + 1 = 4
4 = 4

方法3
通过相乘来解
1
把一个方程写在另一个方程上。让x、y位置对应,系数化为整数。用这个方法时,两方程的所有变量系数都还不一样。
3x + 2y = 10
2x - y = 2
2
把一个方程两边同乘一数,使得其中一个变量和另一个方程的同变量系数一致。现在我们让整个第二个方程乘以2,-y 变为 -2y 和第一个方程的y系数一致:
2 (2x - y = 2)
4x - 2y = 4
3
相加或相减两式。现在根据两式对应变量的符号是否相同,选择加法或减法来解。本例子中因为是2y和-2y对应,所以用加法方法,将y项消为0。 如果两个变量都是正数(负数)则用减法方法。以下是解的步骤:
3x + 2y = 10
+ 4x - 2y = 4
7x + 0 = 14
7x = 14
4
解出剩余变量。7x = 14, 得到 x = 2.
5
将解出的变量代回方程,找出之前的变量值,尽量解更容易解的变量,这样解的过程比较轻松一点。
x = 2 ---> 2x - y = 2
4 - y = 2
-y = -2
y = 2
得到解 (x, y) = (2, 2)
6
检查答案。把两个解代入回原方程,验证是否正确。
(2, 2)作为(x, y) 代入3x + 2y = 10
3(2) + 2(2) = 10
6 + 4 = 10
10 = 10
(2, 2) 作为(x, y) 代入2x - y = 2
2(2) - 2 = 2
4 - 2 = 2
2 = 2

方法4
利用替代法解
1
分离一个变量。本方法适用于一个方程中,一个变量的系数为1的情况,这时只要分离此变量,代入另一个方程即可。
例如2x + 3y = 9和 x + 4y = 2,在第二个方程式分离出x。
x + 4y = 2
x = 2 - 4y
2
把这个等式代入另一个方程。把分离的变量用另一个变量替换,这样可以代入方程来解得另一个变量。如下:
x = 2 - 4y --> 2x + 3y = 9
2(2 - 4y) + 3y = 9
4 - 8y + 3y = 9
4 - 5y = 9
-5y = 9 - 4
-5y = 5
-y = 1
y = - 1
3
解出剩余的变量。用y = - 1代回解出x:
y = -1 --> x = 2 - 4y
x = 2 - 4(-1)
x = 2 - -4
x = 2 + 4
x = 6
这样你就解出解了: (x, y) = (6, -1)
4
验证解,要确保解都正确,只要把解代回原方程,看看是否都符合方程组:
(6, -1)作为(x, y)代入2x + 3y = 9
2(6) + 3(-1) = 9
12 - 3 = 9
9 = 9
(6, -1)作为(x, y) 代入x + 4y = 2
6 + 4(-1) = 2
6 - 4 = 2
2 = 2

如何解决简单的三元一次方程组

1.方程组有三个未知数,每个方程的未知项的次数都是
1,并且一共有三个方程,这样的方
程组就是三元一次方程组.
2.三元一次方程组的解法仍是用代入法或加减法消元,即通过消元将三元一次方程组转
化为二元一次方程组,再转化为一元一次方程.
3.如何消元,首先要认真观察方程组中各方程系数的特点,然后选择最好的解法.
4.有些特殊方程组,可用特殊的消元方法,有时一下子可消去两个未知数,直接求出一个未
知数值来.

㈣ 数学初中方程式怎么解

数学初中方程式可以用代入消元法。

将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解。

代入法解二元一次方程组的步骤:

①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数。

②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程。(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的。)

③解这个一元一次方程,求出未知数的值。

④将求得的未知数的值代入①中变形后的方程中。求出另一个未知数的值。

⑤用“{”联立两个未知数的值,就是方程组的解。

⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。

一元二次方程配方法

1、把原方程化为一般形式。

2、方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边。

3、方程两边同时加上一次项系数一半的平方。

4、把左边配成一个完全平方式,右边化为一个常数。

5、进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。

㈤ 二元一次方程组怎么解 要讲解 怎么消元

一、消元方法一般分为:


代入消元法,加减消元法,顺序消元法,整体代入法,换元法。


二、


常用:代入消元法:


步骤:


1、将其中一个方程移项


2、系数化为一,变成 X=(多少)Y+常数 的形式


3、代入到剩余的一个方程中,替换X 这样剩余的方程只有一个未知数,就实现了消元


4、再解一元一次方程。


以下是消元方法的举例:


解:x-y=3①


3x-8y=4②


由①,x=y+3③


把③代入②得


3(y+3)-8y=4


解得y=1


再把y=1代入①得


x-1=3


解得x=4


原方程组的解为x=4,y=1

(2)常用:换元法


举例:


(x+5)+(y-4)=8①


(x+5)-(y-4)=4②


令x+5=m,y-4=n


原方程可写为


m+n=8,m-n=4


解得m=6,n=2


所以x+5=6,y-4=2


所以x=1,y=6

(5)方程组最简单的解决方法扩展阅读:


解二元一次方程的注意点及理解:


(1)二元一次方程组:由两个二元一次方程所组成的一组方程,叫做二元一次方程组


(2)二元一次方程组的解:二元一次方程组中两个方程的公共解,叫做二元一次方程组的解


应注意:


①方程组各方程中,相同的字母必须代表同一数量,否则不能将两个方程合在一起


②怎样检验一组数值是不是某个二元一次方程组的解,常用的方法如下:将这组数值分别代入方程组中的每个方程,只有当这组数值满足其中的所有方程时,才能说这组数值是此方程组的解,否则,如果这组数值不满足其中任一个方程,那么它就不是此方程组的解。

㈥ 解方程组的方法

二元一次方程组中的数学思想,主要是指数学的“消元”思想,即:二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,这样就可以先解出一个未知数,然后再设法求另一个未知数。这种将未知数的个数由多化少,逐一解决的方法,叫做消元。具体转化方法是运用“代入消元法”或“加减消元法”,达到把二元一次方程组中的二个未知数消去一个未知数的目的,得到一元一次方程,从而实现消元,进而解决问题。下面举例说明: 一、利用代入法快速求值: 新人教版7年级下册105页有这样的描述:在二元一次方程组的一个方程中,把一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。借此消元思想,我们可以快速地解决许多求定值的问题。 例1.若3x-4y=0,且xy≠0,则的值等于 。 解. 由3x-4y=0得:3x=4y,把3x=4y代入 得 = = 点评:此题巧妙借助代入法解决求定值问题。例2. 已知x2-2x-5=0,将下列式子先化简再求值:(x-1)2+(x+3)(x-3)+(x-3)(x-1) 解:原式=x2-2x+1+x2-9+x2-x-3x+3=3x2-6x-5=3(x2-2x)-5∵ x2-2x-5=0∴ x2-2x=5∴ 原式=3×5-5=10点评:利用“整体思想”将所给条件x2-2x-5=0变形为x2-2x=5,然后整体代入化简后的式子3(x2-2x)-5中,可收到“事半功倍”的效果。若先解方程x2-2x-5=0,得x=1±√6,再分别代入3x2-6x-5中求值,则没有抓住题目特征进行简便运算。二、利用加减法快速求值:新人教版7年级下册108页有这样的描述:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。合理利用此思想,在求值题中同样可以收到事半功倍的效果。例3. 若4x+5y=10,且5x+4y=8,则 。解:由题意得:由 ① + ② 得:9x+9y=18 即:x + y= 2由 ② - ①得:x - y=-2所以 -1点评:若直接把4x+5y=10和5x+4y=8组成方程组,求出方程组的解,再把解代入求值。这样运算量不仅大,而且容易出错。如果认真分析所求值式,可考虑利用加减法很快求得x+y和x-y的值,于是此题迎刃而解。三、化“未知”为“已知”例4.已知 ,则x:y:z= ;解:将方程组 中由② - ① 得:y-3z=0 ∴ y=3z ③把 ③ 代入 ② 中得: x = 2z ∴ x:y:z=2z:3z:z= 2:3:1点评:此方程组中含有三个未知数,要解决该问题,就需要大胆创新,我们初一学生只学习了解二元一次方程组,根据化“未知”为“已知”的“消元”思想,就创造性地把它看作是关于x、y的二元一次方程组,从而找到解决问题的突破口。总之,教师若能在平时教学中合理展示数学思想和具有代表性的数学方法,既可以让学生明晰数学知识之间的脉络和联系,同时还有利于提高学生的解决问题的能力。

㈦ 怎样解方程组

方程组是二元以上的组合(包括二元)
最明了的解题方法 联立 消元
先说最简单的 一次的 拿二元为例
X+Y=7
X-2Y=2
首先看到方程组要看它的次数 也就是说看未知数是几次幂 我给的例题简单些 是一次幂的
方法一 :要想办法将一个未知数去代替另一个未知数 这道题就是想办法用X表示Y或者反之 Y表示X
我用Y表示X 就有 X=7-Y
X=2+2Y
等号的左边都是X 那么右边必然相等 有:7-Y=2+2Y
现在等号的左右两边只有一个未知数 就能解出Y的值 Y=3 用得到的这个答案带到上边的任意式子中 解出X的值 答案就解出来了

方法二:找X或Y系数的最小公倍数 然后再将两个式子相加减
我就找Y系数的最小公倍数(因为我比较习惯式子相加 这样不容易出现错误 式子中Y前的符号是一个正一个负 如果系数相同 相加就会消掉Y)
式子中Y系数的最小公倍数是2 那么将 式子1乘以2 有:2X+2Y=14
式子2不变 X-2Y=2
将两个式子相加 (2X+X)+[2Y+(-2Y)]=16 整理出来有:3X=16
解出X的值 然后将X的值代入上面的式子中 就能解出Y的值 这样就解出方程组的答案了

二元一次的方程组是比较简单解出来的
当然还有多元一次的和多元多次的
1.多元一次的解题原理是和上边的如出一辙 一般来说多元的是有几个未知数就会有几个式子
解多元一次的方程组就两个两个联立 消元 重复后 最终会有两个式子 然后再像上面解就好了
2.多元多次的方程组比较复杂 一般大学以前碰到最多的就是一元二次的方程 很少涉及方程组

㈧ 线性代数有几种解线性方程组的方法

1、克莱姆法则

用克莱姆法则求解方程组 有两个前提,一是方程的个数要等于未知量的个数,二是系数矩阵的行列式要不等于零。

用克莱姆法则求解方程组实际上相当于用逆矩阵的方法求解线性方程组,它建立线性方程组的解与其系数和常数间的关系,但由于求解时要计算n+1个n阶行列式,其工作量常常很大,所以克莱姆法则常用于理论证明,很少用于具体求解。

2、矩阵消元法

将线性方程组的增广矩阵通过行的初等变换化为行简化阶梯形矩阵,则以行简化阶梯形矩阵为增广矩阵的线性方程组与原方程组同解。当方程组有解时,将其中单位列向量对应的未知量取为非自由未知量,其余的未知量取为自由未知量,即可找出线性方程组的解。

(8)方程组最简单的解决方法扩展阅读

xj表未知量,aij称系数,bi称常数项。

称为系数矩阵和增广矩阵。若x1=c1,x2=c2,…,xn=cn代入所给方程各式均成立,则称(c1,c2,…,cn)为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非零解。

若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。线性方程组主要讨论的问题是:

一个方程组何时有解。

有解方程组解的个数。

对有解方程组求解,并决定解的结构。这几个问题均得到完满解决:所给方程组有解,则秩(A)=秩(增广矩阵);若秩(A)=秩=r,则r=n时,有唯一解;r<n时,有无穷多解;可用消元法求解。

当非齐次线性方程组有解时,解唯一的充要条件是对应的齐次线性方程组只有零解;解无穷多的充要条件是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有 ,即不一定有解。

克莱姆法则(见行列式)给出了一类特殊线性方程组解的公式。n个未知量的任一齐次方程组的解集均构成n维空间的一个子空间。

㈨ 怎样解方程组有什么方法吗

既然是方程组,必定多元
解方程组的基本原则就是消元
例:x+y=5 和x-y=2构成二元一次方程组
x.y是两个不同的元,所以是二元,本方程组没有二次方,所以是一次方程组,合起来就是二元一次方程组
解的时候要先消x,或者先消去y,这个就叫消元。

解方程组的根本就是消元,
上面两个式子相加可以消去y:得2x=7则x=3.5
相减可以消去x:得2y=3则y=1.5
将得到数值带入其中一个式子可得另一个元的值
还有一种方法是行列式法,此方法在初高中是不教你的。

阅读全文

与方程组最简单的解决方法相关的资料

热点内容
路亚钩绑方法图片 浏览:887
测量水的方法和工具 浏览:33
水带挂钩使用方法 浏览:483
孩子不肯背诵换一种方法就能解决 浏览:847
如何消除设备静电的几个方法 浏览:721
木蝴蝶的食用方法 浏览:688
巴金的阅读方法是什么 浏览:792
福特杯使用方法 浏览:277
摩丝使用方法 浏览:802
移动宽带使用方法 浏览:27
乡土中国研究背景及方法 浏览:730
surf快速记忆方法 浏览:894
男士精油的使用方法 浏览:852
脑血管瘤有什么治疗方法 浏览:920
最简单的刷铁塔方法 浏览:256
吃面包的方法和视频 浏览:848
有没有再简单点的方法 浏览:907
腰椎软骨病的治疗方法 浏览:952
优卓双氧水使用方法 浏览:282
什么方法可以让月经提前 浏览:650