Ⅰ 遗传多样性是物种内基因的多样性
A、遗传多样性是指生物的基因的多样性,不是指同一个物种,A错误;
B、黑种人、黄种人、白种人为同一个物种,故其性状差异属于遗传多样性造成的,B正确;
C、检验遗传多样性的方法可用DNA分子杂交等方法,C错误;
D、某物种的遗传多样性越大,变异类型越多,越有利于该物种的进化,D错误.
故选:B.
Ⅱ 遗传多样性的研究方法
PCR特异扩增ITS序列
这是目前鉴定物种和做分子分类研究的最主流的方法.原理是:ITS序列是中度重复序列,广泛分布于基因组并且是同步进化的,而且不同物种间进化差异很大,它的碱基序列同源性的程度决定生物之间的亲源关系远近,并可以以此来作为分类依据划分物种.另外对于未知物种,可以通过与GENEBANK提供的序列比对来确定该物种的分类归属,达到鉴定的目的.ITS序列在核糖体大小亚基的rRNA之间,核糖体大小亚基的rRNA序列非常保守,便于设计PCR过程所需的两端特异性引物,进行典型的锚定PCR.
差异显示PCR
可以用来研究同一个体不同生长时段和不同组织(或分化结构)或者不同个体之间基因表达差异.原理是:根据中心法则,每一个阅读框要表达必须先转录成mRNA.那么在不同细胞内只要存在基因差异表达现象,肯定就会存在不同的mRNA.我们可以提取细胞的mRNA,然后将其反转录为cDNA,并以此来作为PCR模板.由于mRNA的3端具有polyA特殊结构,因此可以这样设计引物:引物1与cDNA的polyT互补,引物2随机合成大约10bp左右.PCR产物用1%的琼脂糖凝胶电泳检测.这样通过PCR就可以显示并放大出mRNA的差异,从而找到差异表达的基因.
RFLP(扩增片段长度多样性)
基于RFLP(限制性酶切片段多样性) 和PCR技术发展起来的一种用来研究分类的技术.原理是:不同物种的DNA序列不同,那么用同种限制性内切酶酶切会得到不同的片段,这些不同的片段中,有很多长度也会有不同.通过同样两种限制性内切酶消化后,根据酶切位点序列设计互补序列并额外添加一段特异性序列,用T4连接酶补平,经过两次PCR扩增(预扩增和二次扩增),产物用聚丙烯酰胺凝胶电泳检测,银染色后用专门的分析软件分析,根据条带分布差异的程度来划分物种间的亲缘关系.
Ⅲ issr技术为什么能检测遗传多样性
ISSR技术在生物学中最主要的应用是分析和评估种群的遗传多样性。由于ISSR技术能提供较大数目的DNA片段,可以扫描基因组内的多态位点,因而也是一种用于分析物种、种群、不同品系、甚至是个体间遗传差异的理想方法。Gupta等用23个SSR单核苷酸引物对5种植物、大马哈鱼、鸡、牛和人共计9种真核生物进行研究,结果表明扩增产物中的多态性条带不仅能够区分物种个体、品系和变种,同时还发现观察到的多态性水平与物种内遗传多样性有关。
Ⅳ 检测遗传多样性最可靠的方法
检测遗传多样性最简单的方法是聚合酶链反应(简称PCR),最可靠的方法是测定不同亚种、不同种群的基因组全序列.
故选:D.
Ⅳ 怎样从分子水平上检测遗传多样性
分子生态学是微生物学的一个领域,利用分子生物学方法研究微生物生态学。比如研究某些基因在环境中的存在和分布。 由于很多微生物不能很容易地在实验室中培养(海水中的0.001~0.1%,土壤中的0.3%左右,活性污泥中1~15%可被分离培养),因此不能用传统的鉴别和描述菌株的办法研究它们。另外,随着聚合酶链式反应(PCR)技术的发展,人们可以快速扩增遗传物质DNA。 环境样品中DNA的扩增通常需要一组用于特定微生物的引物,而得到遗传物质的混合物,将其分离,随后进行测序和鉴别。经典的分离办法是通过克隆,将扩增的DNA片段插入到细菌质粒上实现的。较新的方法包括变性梯度凝胶电泳(DGGE),可以更快地得到结果。 分子生态学的发展也和DNA芯片的使用紧密相关,该技术可以高通量检测环境中的特定生物或基因。 分子生态学中可以使用很多基因进行研究,在分类学角度,最常应用的基因是核糖体小亚基RNA(SSU rRNA)。而功能性基因的研究有助于判断微生物在该环境中的活动。 微生物生态学中和分子技术相关的一个重要问题就是,这些生物以主动(进行正常代谢和繁殖)还是被动(静息休眠)的方式存在。这可以用几种方式来解决:
- 利用逆转录酶扩增活跃的基因
- 用荧光原位杂交(FISH)对环境中包含特定基因的细胞进行检测和计数。 Category:微生物学 Category:生态学
分子生态学是应用分子生物学的原理和方法来研究生命系统与环境系统相互作用的生态机理及其分子机制的科学。它是生态学与分子生物学相互渗透的形成的一门新兴交叉学科,其研究内容包括种群在分子水平的遗传多样性及遗传结构,生物器官变异的分子机制,生物体内有机大分子对环境因子变化的响应,生物大分子结构、功能演变与环境长期变化的关系以及其他生命层次生态现象的分子机理等。分子生态学理论和方法对传统学科有巨大促进作用,同时,对解决诸如转基因,克隆技术应用中的生态安全、环境与人类健康等重大问题,产生深刻影响。
随着分子技术和其他传统学科的越来越紧密的联系和渗透,分子生态学在各个学科也越来越成熟。下面就环境微生物方面,谈谈几点看法:就现在看来,微生物在分子生态学方面主要应用DGGE,FISH,PCR等分子技术研究微生物群落的种群组成和他们的空间分布以及对环境物质和能量的流动的影响。DGGE是一种用来分析微生物特别是细菌的生物多样性的新技术。一般是利用甲酰胺和尿素作为变性剂,温度恒定进行变性梯度凝胶电泳。我们都知道,细菌总DNA中的16S rDNA是比较保守的一段约1.5kb长的DNA序列。利用一对16S通用引物进行PCR扩增,再以产物为模板,扩增其中的约210bp的一段序列进行电泳。因为碱基的组成不同,所以同样长度相同的DNA序列在凝胶的位置不同,合适的条件下,该技术能检测出一个碱基的差异。所以利用该技术我们可以知道一个区域内,微生物(特别是细菌)生物组成的变化,哪些优势种群。针对优势种群,我们可以进一步鉴定其种类,确定其理化性质,再进一步转接到需要该菌种的微生物种群中,改变它的组成(例如利用活性污泥发酵等)更好的解决环境污染问题,提高环境的抗污染能力。FISH是一种基因定位技术,利用该技术我们也可以用改变微生物的组成和它们之间的关系,以及同环境之间的关系,更好的为人类服务。
Ⅵ 遗传多样性的检测方法
检测遗传多样性的方法随生物学尤其是遗传学和分子生物学的发展而不断提高和完善。从形态学水平、细胞学(染色体)水平、生理生化水平、逐渐发展到分子水平。然而不管研究是在什么层次上进行,其宗旨都在于揭示遗传物质的变异。任何检测遗传多样性的方法,或在理论上或在实际研究中都有各自的优点和局限,还找不到一种能完全取代其它方法的技术。因此,包括传统的形态学、细胞学以及同工酶和DNA 技术在内,各种方法都能提供有价值的资料,都有助于我们认识遗传多样性及其中的生物学意义。
Ⅶ PCR怎么检测遗传的多样性
遗传多样性可以通过检测基因多态性来获得信息。
检测基因多态性的方法有很多,包括你所说的PCR方法。以下是介绍。
如果有这方面的实验需求的话,可以到我们百替生物来看看哦。我们专业提供生物医学技术服务!
1.限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP):由DNA 的多态性,致使DNA 分子的限制酶切位点及数目发生改变,用限制酶切割基因组时,所产生的片段数目和每个片段的长度就不同,即所谓的限制性片段长度多态性,导致限制片段长度发生改变的酶切位点,又称为多态性位点。最早是用Southern Blot/RFLP方法检测,后来采用聚合酶链反应(PCR)与限制酶酶切相结合的方法。现在多采用PCR-RFLP法进行研究基因的限制性片段长度多态性。
2.单链构象多态性(SSCP):是一种基于单链DNA构象差别的点突变检测方法。相同长度的单链DNA如果顺序不同,甚至单个碱基不同,就会形成不同的构象。在电泳时泳动的速度不同。将PCR产物经变性后,进行单链DNA凝胶电泳时,靶DNA中若发生单个碱基替换等改变时,就会出现泳动变位(mobility shift),多用于鉴定是否存在突变及诊断未知突变。
3.PCR-ASO探针法(PCR-allele specific oligonucleotide, ASO):即等位基因特异性寡核苷酸探针法。在PCR扩增DNA片段后,直接与相应的寡核苷酸探杂交,即可明确诊断是否有突变及突变是纯合子还是杂合子。其原理是:用PCR扩增后,产物进行斑点杂交或狭缝杂交,针对每种突变分别合成一对寡核苷酸片段作为探针,其中一个具有正常序列,另一个则具有突变碱基。突变碱基及对应的正常碱 基匀位于寡核苷酸片段的中央,严格控制杂交及洗脱条件,使只有与探针序列完全互补的等位基因片段才显示杂交信号,而与探针中央碱基不同的等位基因片段不显示杂交信号,如果正常和突变探针都可杂交,说明突变基因是杂合子,如只有突变探针可以杂交,说明突变基因为纯合子,若不能与含有突变序列的寡核苷探针杂交,但能与相应的正常的寡核苷探针杂交,则表示受检者不存在这种突变基因。若与已知的突变基因的寡核苷探针匀不能杂交,提示可能为一种新的突变类型。
4. PCR-SSO法:SSO技术即是顺序特异寡核苷酸法(Sequence Specific Oligonucleotide, SSO)。原理是PCR基因片段扩增后利用序列特异性寡核苷酸探针,通过杂交的方法进行扩增片段的分析鉴定。探针与PCR产物在一定条件下杂交具有高度的特异性,严格遵循碱基互补的原则。探针可用放射性同位素标记,通过放射自显影的方法检测,也可以用非放射性标记如地高辛、生物素、过氧化物酶等进行相应的标记物检测。
5. PCR-SSP法:序列特异性引物分析即根据各等位基因的核苷酸序列,设计出一套针对每一等位基因特异性的(allele-specific)、或组特异性 (group-specific)的引物,此即为序列特异性引物(SSP)。SSP只能与某一等位基因特异性片段的碱基序列互补性结合,通过PCR特异性地扩增该基因片段,从而达到分析基因多态性的目的。
6. PCR-荧光法:用荧光标记PCR引物的5’端,荧光染料FAM和JOE呈绿色荧光,TAMRA呈红色荧光,COUM 呈兰色荧光,不同荧光标记的多种引物同时参加反应,PCR扩增待检测的DNA,合成的产物分别带有引物5’端的染料,很容易发现目的基因存在与否。
7. PCR-DNA测序:是诊断未知突变基因最直接的方法,由于PCR技术的应用,使得DNA 测序技术从过去的分子克隆后测序进入PCR直接测序。PCR产物在自动测序仪上电泳后测序。常用方法有:Sanger双脱氧末端终止法;Maxam-Gilbert化学裂解法;DNA测序的自动化。目前DNA顺序全自动激光测定法是最先进的方法。
8. PCR指纹图法(PCR-fingerprints):实用于快速的同种异型DR/Dw配型。在DR/DW纯合子及杂合子个体中,每种DR单倍型及每种单倍型组合所产生的单链环状结构的大小、数目和位置各异,由于同质双链和异质双链之间的分子构象不同。因此,在非变性聚丙烯酰胺凝胶电泳时,它们的迁移率各不相同,从而获得单倍型特异的电泳带格局即PCR指纹。也有人用人工合成的短寡核苷酸片段作为探针,同经过酶切的人体DNA作Southern blot,可以得出长度不等的杂交带,杂交带的数目和分子量的大小具有个体特异性,除非同卵双生,几乎没有两个人是完全相同的,就象人的 指纹一样,人们把这种杂交带图形称为基因指纹(gene finger-printing)。
9. 基因芯片法:又称为DNA 微探针阵列(Micro array)。它是集成了大量的密集排列的大量已知的序列探针,通过与被标记的若干靶核酸序列互补匹配,与芯片特定位点上的探针杂交,利用基因芯片杂交图象,确定杂交探针的位置,便可根据碱基互补匹配的原理确定靶基因的序列。这一技术已用于基因多态性的检测。对多态性和突变检测型基因芯片采用多色荧光探针杂交技术可以大大提高芯片的准确性、定量及检测范围。应用高密度基因芯片检测单碱基多态性,为分析SNPs提供了便捷的方法。
10. AFLP(Amplication Fragment Length Polymorphism)法
AFLP技术是一项新的分子标记技术,是基于PCR技术扩增基因组DNA限制性片段,基因组DNA先用限制性内切酶切割,然后将双链接头连接到DNA片段的末端,接头序列和相邻的限制性位点序列,作为引物结合位点。限制性片段用二种酶切割产生,一种是罕见切割酶,一种是常用切割酶。它结合了RFLP和PCR技术特点,具有RFLP技术的可靠性和PCR技术的高效性。由于AFLP扩增可使某一品种出现特定的DNA谱带,而在另一品种中可能无此谱带产生,因此,这种通过引物诱导及DNA扩增后得到的DNA多态性可做为一种分子标记。AFLP可在一次单个反应中检测到大量的片段。以说AFLP技术是一种新的而且有很大功能的DNA指纹技术。
11. DGGE(denaturing gradinent electrophoresis,DGGE)法
变性梯度凝胶电泳法 DGGE法分析PCR产物,如果突变发生在最先解链的DNA区域,检出率可达100%,检测片段可达1kb,最适围为100bp-500bp。基本原理基于当双链DNA在变性梯度凝胶中进行到与DNA变性湿度一致的凝胶位置时,DNA发生部分解链,电泳适移率下降,当解链的DNA链中有一个碱基改变时,会在不同的时间发生解链,因影响电泳速度变化的程度而被分离。由于本法是利用温度和梯度凝胶迁移率来检测,需要一套专用的电泳装置,合成的PCR引物最好在5`末端加一段40bp-50bp的GC夹,以利于检测发生于高熔点区的突变。在DGGE的基础上,又发展了用湿度梯度代替化学变性剂的TGGE法(温度梯度凝胶电泳temperature gradient gelelectrophoresis,TGGE)。DGGE和TGGE均有商品化的电泳装置,该法一经建立,操作也较简便,适合于大样本的检测筛选。
12. RAPD(Random amplified polymorphic DNA)法
运用随机引物扩增寻找多态性DNA片段可作为分子标记。这种方法即为RAPD( Random amplified polymorphic DNA,随机扩增的多态性DNA)。尽管RAPD技术诞生的时间很短, 但由于其独特的检测DNA多态性的方式以及快速、简便的特点,使这个技术已渗透于基因组研究的各个方面。该RAPD技术建立于PCR技术基础上,它是利用一系列(通常数百个)不同的随机排列碱基顺序的寡聚核苷酸单链(通常为10聚体)为引物,对所研究基因组DNA进行PCR扩增.聚丙烯酰胺或琼脂糖电泳分离,经EB染色或放射性自显影来检测扩增产物DNA片段的多态性,这些扩增产物DNA片段的多态性反映了基因组相应区域的DNA多态性。RAPD所用的一系列引物DNA序列各不相同,但对于任一特异的引物,它同基因组DNA序列有其特异的结合位点.这些特异的结合位点在基因组某些区域内的分布如符合PCR扩增反应的条件,即引物在模板的两条链上有互补位置,且引物3'端相距在一定的长度范围之内,就可扩增出DNA片段.因此如果基因组在这些区域发生DNA片段插入、缺失或碱基突变就可能导致这些特定结合位点分布发生相应的变化,而使PCR产物增加、缺少或发生分子量的改变。通过对PCR产物检测即可检出基因组DNA的多态性。分析时可用的引物数很大,虽然对每一个引物而言其检测基因组DNA多态性的区域是有限的,但是利用一系列引物则可以使检测区域几乎覆盖整个基因组。因此RAPD可以对整个基因组DNA进行多态性检测。另外,RAPD片段克隆后可作为RFLP的分子标记进行作图分析。
Ⅷ 度量作物遗传多样性有哪些指标
1.形态学标记
有多态性的、高度遗传的形态学性状是最早用于多样性研究的遗传标记类型。这些性状的多样性也称为表型多样性。形态学性状的鉴定一般不需要复杂的设备和技术,少数基因控制的形态学性状记录简单、快速和经济,因此长期以来表型多样性是研究作物起源和进化的重要度量指标。尤其是在把数量化分析技术如多变量分析和多样性指数等引入之后,表型多样性分析成为了作物起源和进化研究的重要手段。例如,Jain等(1975)对3000多份硬粒小麦材料进行了表型多样性分析,发现来自埃塞俄比亚和葡萄牙的材料多样性最丰富,次之是来自意大利、匈牙利、希腊、波兰、塞浦路斯、印度、突尼斯和埃及的材料,总的来看,硬粒小麦在地中海地区和埃塞俄比亚的多样性最高,这与其起源中心相一致。Tolbert等(1979)对17000多份大麦材料进行了多样性分析,发现埃塞俄比亚并不是多样性中心,大麦也没有明显的多样性中心。但是,表型多样性分析存在一些缺点,如少数基因控制的形态学标记少,而多基因控制的形态学标记常常遗传力低、存在基因型与环境互作,这些缺点限制了形态学标记的广泛利用。
2.次生代谢产物标记
色素和其他次生代谢产物也是最早利用的遗传标记类型之一。色素是花青素和类黄酮化合物,一般是高度遗传的,在种内和种间水平上具有多态性,在20世纪60年代和70年代作为遗传标记被广泛利用。例如,Frost等(1975)研究了大麦材料中的类黄酮类型的多样性,发现类型A和B分布广泛,而类型C只分布于埃塞俄比亚,其多样性分布与同工酶研究的结果非常一致。然而,与很多其他性状一样,色素在不同组织和器官上存在差异,基因型与环境互作也会影响到其数量上的表达,在选择上不是中性的,不能用位点/等位基因模型来解释,这些都限制了它的广泛利用。在20世纪70至80年代,同工酶技术代替了这类标记,被广泛用于研究作物的遗传多样性和起源问题。
3.蛋白质和同工酶标记
蛋白质标记和同工酶标记比前两种标记数目多得多,可以认为它是分子标记的一种。蛋白质标记中主要有两种类型:血清学标记和种子蛋白标记。同工酶标记有的也被认为是一种蛋白质标记。
血清学标记一般来说是高度遗传的,基因型与环境互作小,但迄今还不太清楚其遗传特点,难以确定同源性,或用位点/等位基因模型来解释。由于动物试验难度较大,这些年来利用血清学标记的例子越来越少,不过与此有关的酶联免疫检测技术(ELISA)在系统发育研究(Esen and Hilu,1989)、玉米种族多样性研究(Yakoleff et al.,1982)和玉米自交系多样性研究(Esen et al.,1989)中得到了很好的应用。
种子蛋白(如醇溶蛋白、谷蛋白、球蛋白等)标记多态性较高,并且高度遗传,是一种良好的标记类型。所用的检测技术包括高效液相色谱、SDS-PAGE、双向电泳等。种子蛋白的多态性可以用位点/等位基因(共显性)来解释,但与同工酶标记相比,种子蛋白检测速度较慢,并且种子蛋白基因往往是一些紧密连锁的基因,因此难以在进化角度对其进行诠释(Stegemann and Pietsch,1983)。
同工酶标记是DNA分子标记出现前应用最为广泛的遗传标记类型。其优点包括:多态性高、共显性、单基因遗传特点、基因型与环境互作非常小、检测快速简单、分布广泛等,因此在多样性研究中得到了广泛应用(Soltis and Soltis,1989)。例如,Nevo等(1979)用等位酶研究了来自以色列不同生态区的28个野生大麦居群的1179个个体,发现野生大麦具有丰富的等位酶变异,其变异类型与气候和土壤密切相关,说明自然选择在野生大麦的进化中非常重要。Nakagahra等(1978)用酯酶同工酶研究了776份亚洲稻材料,发现不同国家的材料每种同工酶的发生频率不同,存在地理类型,越往北或越往南类型越简单,而在包括尼泊尔、不丹、印度Assam、缅甸、越南和中国云南等地区的材料酶谱类型十分丰富,这个区域也被认定为水稻的起源中心。然而,也需要注意到存在一些特点上的例外,如在番茄、小麦和玉米上发现过无效同工酶、在玉米和高粱上发现过显性同工酶、在玉米和番茄上发现过上位性同工酶,在某些情况下也存在基因型与环境互作。
然而,蛋白质标记也存在一些缺点,这包括:①蛋白质表型受到基因型、取样组织类型、生育期、环境和翻译后修饰等共同作用;②标记数目少,覆盖的基因组区域很小,因为蛋白质标记只涉及到编码区域,同时也并不是所有蛋白质都能检测到;③在很多情况下,蛋白质标记在选择上都不是中性的;④有些蛋白质具有物种特异性;⑤用标准的蛋白质分析技术可能检测不到有些基因突变。这些缺点使蛋白质标记在20世纪80年代后慢慢让位于DNA分子标记。
4.细胞学标记
细胞学标记需要特殊的显微镜设备来检测,但相对来说检测程序简单、经济。在研究多样性时,主要利用的两种细胞遗传学标记是染色体数目和染色体形态特征,除此之外,DNA含量也有利用价值(Price,1988)。染色体数目是高度遗传的,但在一些特殊组织中会发生变化;染色体形态特征包括染色体大小、着丝粒位置、减数分裂构型、随体、次缢痕和B染色体等都是体现多样性的良好标记(Dyer,1979)。在特殊的染色技术(如C带和G带技术等)和DNA探针的原位杂交技术得到广泛应用后,细胞遗传学标记比原先更为稳定和可靠。但由于染色体数目和形态特征的变化有时有随机性,并且这种变异也不能用位点/等位基因模型来解释,在多样性研究中实际应用不多。迄今为止,细胞学标记在变异研究中,最多的例子是在检测离体培养后出现的染色体数目和结构变化。
5.DNA分子标记
20世纪80年代以来,DNA分子标记技术被广泛用于植物的遗传多样性和遗传关系研究。相对其他标记类型来说,DNA分子标记是一种较为理想的遗传标记类型,其原因包括:①核苷酸序列变异一般在选择上是中性的,至少对非编码区域是这样;②由于直接检测的是DNA序列,标记本身不存在基因型与环境互作;③植物细胞中存在3种基因组类型(核基因组、叶绿体基因组和线粒体基因组),用DNA分子标记可以分别对它们进行分析。目前,DNA分子标记主要可以分为以下几大类,即限制性片段长度多态性(RFLP)、随机扩增多态性DNA(RAPD)、扩增片段长度多态性(AFLP)、微卫星或称为简单序列重复(SSR)、单核苷酸多态性(SNP)。每种DNA分子标记均有其内在的优缺点,它们的应用随不同的具体情形而异。在遗传多样性研究方面,应用DNA分子标记技术的报道已不胜枚举。
Ⅸ 遗传多样性的来源有哪些其常见的检查方法有哪几类各有何有特点
非同源染色体的自由组合;同源染色体非姐妹染色单体交叉互换;精子与卵细胞结合的随机性;基因突变和染色体变异