导航:首页 > 解决方法 > 七年级数学一元一次方程解决方法

七年级数学一元一次方程解决方法

发布时间:2022-12-11 22:42:44

㈠ 初一数学一元一次方程技巧

初一数学一元一次方程技巧如下:

一、一元一次方程 :

(1)含有未知数的等式是方程。

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

二、等式的性质:

(1)用等号“=”表示相等关系的`式子叫做等式。

(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。 如果a=b,那么a±c=b±c.

(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。 如果a=b,那么ac=bc; 如果a=b且c≠0。

(4)运用等式的性质时要注意三点: ①等式两边都要参加运算,并且是作同一种运算; ②等式两边加或减,乘或除以的数一定是同一个数或同一个式子; ③等式两边不能都除以0,即0不能作除数或分母。

㈡ 七年级数学一元一次方程怎么

一般解法:
1.去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);
2.去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)
3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号
4.合并同类项:把方程化成ax=b(a≠0)的形式;
5.化系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.
做一元一次方程应用题的重要方法:
⒈认真审题(审题)
⒉分析已知和未知量
⒊找一个合适的等量关系
⒋设一个恰当的未知数
⒌列出合理的方程 (列式)
⒍解出方程(解题)
⒎检验
⒏写出答案(作答)

㈢ 七年级下册数学解一元一次方程怎么做

一般解法:
1.去分母:在方程两边都乘以各分母的最小公倍数;
2.去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)
3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号
4.合并同类项:把方程化成ax=b(a≠0)的形式;
5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.
同解方程
如果两个方程的解相同,那么这两个方程叫做同解方程。
方程的同解原理:
⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

㈣ 七年级数学上册一元一次方程怎么解

判断方法

要判断一个方程是否为一元一次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为 ax+b=0(a≠0)的形式,则这个方程就为一元一次方程。里面要有等号,且分母里不含未知数。
变形公式
ax=-b(a,b为常数,x为未知数,且a≠0)
求根公式

通常解法

去分母→去括号→移项→合并同类项→系数化为1。
两种类型

(1)总量等于各分量之和。将未知数放在等号左边,常数放在右边。如:x+2x+3x=6。
(2)等式两边都含未知数。如:300x+400=400x,40x+20=60x[1]。
方程举例

2a=4a-6
3b=-1
x=1
都是一元一次方程。

㈤ 初一数学一元一次方程怎么解

含字母系数的一元一次方程

教学目标

1.使学生理解和掌握含有字母系数的一元一次方程及其解法;

2.理解公式变形的意义并掌握公式变形的方法;

3.提高学生的运算和推理能力.

教育重点和难点

重点:含有字母系数的一元一次方程和解法.

难点:字母系数的条件的运用和公式变形.

教学过程设计

一、导入新课

问:什么叫方程?什么叫一元一次方程?

答:含有未知数的等式叫做方程,含有一个未知数,并且未知数的次数是1的方程叫做一元一次方程.

例 解方程2x-1 3-10x+1 6=2x+1 4-1

解 去分母,方程两边都乘以12,得

4(2x-1)-2(10x+1)=3(2x+1)-12,

去括号,得

8x-4-20x-2=6x+3-12

移项,得

8x-20x-6x=3-12+4+2,

合并同类项,得

-18x=-3,

方程两边都除以-18,得

x=3 18 ,即 x=1 6.

二、新课

1.含字母系数的一元一次方程的解法.

我们把一元一次方程用一般的形式表示为

ax=b (a≠0),

其中x表示未知数,a和b是用字母表示的已知数,对未知数x来说,字母a是x的系数,叫做字母系数,字母b是常数项.

如果一元一次方程中的系数用字母来表示,那么这个方程就叫做含有字母系数的一元一

次方程.

以后如果没有特别说明,在含有字母系数的方程中,一般用a,b,c等表示已知数,用x,y,z等表示未知数.

含字母系数的一元一次方程的解法与只含有数字系数的一元一次方程的解法相同.按照解

一元一次方程的步骤,最后转化为ax=b(a≠0)的形式.这里应注意的是,用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零.如(m-2)x=3,必须当m-2≠0时,即m≠2时,才有x=3 m-2 .这是含有字母系数的方程和只含有数字系数的方程的重要区别.

例1 解方程ax+b2=bx+a2(a≠b).

分析:这个方程中的字母a,b都是已知数,x是未知数,是一个含有字母系数的一元一次方程.这里给出的条件a≠b,是使方程有解的关键,在解方程的过程中要运用这个条件.

解 移项,得

ax-bx=a2-b2,

合并同类项,得

(a-b)x=a2-b2.

因为a≠b,所以a-b≠0.方程两边都除以a-b,得

x=a2-b2 a-b=(a+b)(a-b) a-b,

所以 x=a+b.

指出:

(1)题中给出a≠b,在解方程过程中,保证了用不等于零的式子a-b去除方程的两边后所得的方程的解是原方程的解;

(2)如果方程的解是分式形式时,一般要化成最简分式或整式.

例2 x-b a=2-x-a b(a+b≠0).

观察方程结构的特点,请说出解方程的思路.

答:这个方程中含有分式,可先去分母,把方程转化成含有字母系数的一元一次方程

的一般形式.在方程变形中,要应用已知条件a+b≠0.

解 去分母,方程两边都乘以ab得

b(x-b)=2ab-a(x-a),

去括号,得

bx-b2=2ab-ax+a2,

移项,得

ax+bx=a2+2ab+b2

合并同类项,得

(a+b)x=(a+b)2.

因为a+b≠0,所以x=a+b.

指出:ab≠0是一个隐含条件,这是因为字母a,b分别是方程中的两个分式的分母,因此a≠0,b≠0,所以ab≠0.

例3 解关于x的方程

a2+(x-1)ax+3a=6x+2(a≠2,a≠-3).

解 把方程变形为,得

a2x-a2+ax+3a=6x+2,

移项,合并同类项,得

a2x+ax-6x=a2-3a+2,

(a2+a-6)x=a2-3a+2,

(a+3)(a-2)x=(a-1)(a-2).

因为a≠2,a=-3,所以a+3≠0,a-2≠0.方程两边都除以(a+3)(a-2),得

x=a-1 a+3.

2.公式变形.

在物理课中我们学习了很多物理公式,如果q表示燃烧值,m表示燃料的质量,那么完全燃烧这些燃料产生的热量W,三者之间的关系为W=qm,又如,用Q表示通过异体横截面的电量,用t表示时间,用I表示通过导体电流的大小,三者之间的关系为I=Qt.在这个公式中,如果用I和t来表示Q,也就是已知I和t,求Q,就得到Q=It;如果用I和Q来表示t,也就是已知I和Q,,求t,就得到t=QI.

像上面这样,把一个公式从一种形式变换成另一种形式,叫做公式变形.

把公式中的某一个字母作为未知量,其它的字母作为已知量,求未知量,就是解含字母

系数数的方程.也就是说,公式变形实际就是解含有字母系数的方程.公式变形不但在数学,而且在物理和化学等学科中非常重要,我们要熟练掌握公式变形的技能.

例4 在公式υ=υo+at中,已知υ,υo,a,且a≠0,求t.

分析:已知υ,υo和a,求t,也就是把υ,υo和a作为已知量,解关于未知量t的字母系数的方程.

解 移项,得

υ-υ0=at.

因为a≠0,方程两边都除以a,得

t=υ-υo a.

例5 在梯形面积公式s=12(a+b)h中,已知a,b,h为正数.

(1)用s,a,b表示h;(2)用S,b,h表示a.

问:(1)和(2)中哪些是已知量?哪些是未知量;

答:(1)中S,a,b是已知量,h是未知量;(2)中s,b,h都是知已量,a是未知量.

解 (1)方程两边都乘以2,得

2s=(a+b)h.

因为a与b都是正数,所以a≠0,b≠0,即a+b≠0,方程两边都除以a+b,得

h=2sa+b.

(2)方程两边都乘以2,得

2s=(a+b)h,

整理,得

ah=2s-bh.

因为h为正数,所以h≠0,方程两边都除以h,得

a=2s-bh h.

指出:题是解关于h的方程,(a+b)可看作是未知量h的系数,在运算中(a+b)h不要展开.

三、课堂练习

1.解下列关于x的方程:

(1)3a+4x=7x-5b; (2)xa-b=xb-a(a≠b);

(3)m2(x-n)=n2(x-m)(m2≠n2);

(4)ab+xa=xb-ba(a≠b);

(5)a2x+2=a(x+2)(a≠0,a≠1).

2.填空:

(1)已知y=rx+b r≠0,则x=_______;

(2)已知F=ma,a≠0,则m=_________;

(3)已知ax+by=c,a≠0,则x=_______.

3.以下公式中的字母都不等于零.

(1)求出公式m=pn+2中的n;

(2)已知xa+1b=1m,求x;

(3)在公式S=a+b2h中,求a;

(4)在公式S=υot+12t2x中,求x.

答案:

1.(1)x=3a+5b 3; (2)x=ab; (3)x=mn m+n; (4)x=a2+b2 a-b (5)x=2a.

2.(1)x=y-b r; (2)m=Fa; (3)x=c-by a.

3.(1)n=p-2m m; (2)x=ab-am bm; (3)a=2s-bh h;

(4)x=2s-2υott2.

四、小结

1.含字母系数的一元一次方程与只含有数字系数的一元一次方程的解法相同,但应特别注意,用含有字母的式子去乘或除方程的两边时,这个式子的值不能为零.我们所举的例题及课堂练习的题目中所给出的条件,都保证了这一点.

2.对于公式变形,首先要弄清公式中哪些是已知量,哪个是未知量.把已知量作为字

母系数,求未知量的过程就是解关于字母系数的方程的过程.

如果想提高解题熟练度。看参考资料的五

㈥ 初一的数学一元一次公式怎么解

一元一次方程吧!
解方程最后的目的是要达到:X=a(a是一般是常数,即数值)
如:3X+5=11这个方程,你想办法通过"合法"的手段将它变至X=a.
那么,第一步必须使左边的+5"消失",这样的"合法"手段之一是移项,即把+5移到等号的右边,这需要改变+5的符号,即变为-5,这时方程可化为:3X=11-5,化简后为:3X=6.第二步:将3X前面的"3"(系数)化为"1",这时的"合法"手段是两边同时除以3(或乘以1/3),得X=2

又如:
解方程: -5X-2=3X-10
解:-5X-3X=-10+2 (第一步将含X的项移到左边,将不含X的项移到右边)
-8X=-8 (在上一步的基础上,合并同类项)
X=1 (在上一步的基础上,将X前面的-8化为1,手段是:两边同时除以-8)

㈦ 七年级一元一次方程应用题解题技巧是什么

七年级一元一次方程应用题解题技巧:

1、找出已知条件,写在演草纸上。

2、找出隐含条件,写在演草纸上。

3、把未知数设定,视为已知数,写在演草纸上。

4、画出图形(这是最常用的,也是最直观的分析方法),分析量与量之间的关系。

5、根据图形分析,列出量与量之间的关系等式,就得出方程式。

6、解方程,求出未知数(必要时根据数与数之间的关系求出问题中要求的结果)。

7、答。

解方程依据

1、移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘。

2、等式的基本性质:

(1)等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。

(2)等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式(不为0)。

㈧ 七年级数学《一元一次方程详解》知识点

1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

3.条件:一元一次方程必须同时满足4个条件:

(1)它是等式;

(2)分母中不含有未知数;

(3)未知数最高次项为1;

(4)含未知数的项的系数不为0.

4.等式的性质:

等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

5.合并同类项

(1)依据:乘法分配律

(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项

(3)合并时次数不变,只是系数相加减。

6.移项

(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

(2)依据:等式的性质

(3)把方程一边某项移到另一边时,一定要变号。

7.一元一次方程解法的一般步骤:

使方程左右两边相等的'未知数的值叫做方程的解。

一般解法:

(1)去分母:在方程两边都乘以各分母的最小公倍数;

(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

(4)合并同类项:把方程化成ax=b(a0)的形式;

(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.

8.同解方程

如果两个方程的解相同,那么这两个方程叫做同解方程。

9.方程的同解原理:

(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

10.列一元一次方程解应用题:

(1)读题分析法: 多用于和,差,倍,分问题

仔细读题,找出表示相等关系的关键字,例如:大,小,多,少,是,共,合,为,完成,增加,减少,配套-----,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

(2)画图分析法: 多用于行程问题

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

11.列方程解应用题的常用公式:

12.做一元一次方程应用题的重要方法:

(1)认真审题 (审题)

(2)分析已知和未知量

(3)找一个合适的等量关系

(4)设一个恰当的未知数

(5)列出合理的方程(列式)

(6)解出方程(解题)

(7)检验

(8)写出答案(作答)

一元一次方程牵涉到许多的实际问题,例如工程问题、种植面积问题、比赛比分问题、路程问题,相遇问题、逆流顺流问题、相向问题分段收费问题、盈亏、利润问题。

以上内容由数学网独家专供,希望这篇七年级数学知识点:一元一次方程详解能够帮助到大家。

㈨ 七年级数学一元一次方程怎么解

1、有分母的先去分母
2、去括号
3、移项(把含有未知数的移到方程等号的左边,不含未知数的移到右边)
4、合并同类项
5、未知数系数化1

阅读全文

与七年级数学一元一次方程解决方法相关的资料

热点内容
用手机设置路由器wifi密码方法 浏览:101
按键冲突解决方法 浏览:98
清扫手机孔的方法 浏览:304
五猖会教学方法 浏览:738
乙酸红外光谱分析方法 浏览:192
鉴别化合物的化学方法 浏览:431
砂锅如何选有哪些方法 浏览:726
戚继光平倭用的是什么方法 浏览:524
液态成形工艺中常用的成形方法有 浏览:838
泻速停颗粒的解决方法 浏览:298
卖衣服如何培育万级顾客方法 浏览:351
充电口解决方法 浏览:748
黄鹤楼烟鉴别方法软包 浏览:377
中年男人深蹲锻炼方法 浏览:246
如何确定膀胱癌手术方法 浏览:656
快速进入商场的方法 浏览:963
生发最好方法吃些什么 浏览:404
电马桶的四根线连接方法 浏览:396
小米蓝牙手柄使用方法 浏览:869
成本性态分析方法包括高低点法 浏览:239