1、红细胞吸附试验:将健康猪的白细胞加上非洲猪瘟猪的血液或组织提取物,37℃培养,如见许多红细胞吸附在白细胞上,形成玫瑰花状或桑椹体状,则为阳性。
2、直接免疫荧光试验:荧光显微镜下观察,如见细胞浆内有明亮荧光团,则为阳性。
3、动物接种试验。
4、间接免疫荧光试验:将非洲猪瘟病毒接种在长满Vero细胞的盖玻片上,并准备未接种病毒的Vero细胞对照。试验后,对照正常,待检样品在细胞浆内出现明亮的荧光团核荧光细点可被判定为阳性。
5、酶联免疫吸附试验:对照成立时(阳性血清对照吸收值大于0.3,阴性血清吸收值小于0.1),待检样品的吸收值大于0.3时,判定为阳性。
6、免疫电泳试验:抗原于待检血清间出现白色沉淀线者可判定为阳性。
7、间接酶联免疫蚀斑试验:肉眼观察,或显微镜下观察,蚀斑呈棕色则为阳性,无色则为阴性。
(1)非瘟pcr检测三个片段的方法扩展阅读
非洲猪瘟急性病例临床症状以高热、病程短、死亡率高、内脏器官广泛性出血以及呼吸系统和神经系统功能紊乱为主要特征。
在无本病的国家和地区应防止ASFV的传入,在国际机场和港口,从飞机和船舶来的食物废料均应焚毁。对无本病地区事先建立快速诊断方法和制定一旦发生本病时的扑灭计划。
㈡ pcr的特异性检测和敏感性检测要怎么做
pcr灵敏度检测
1.1 样本准备:以4次方国家一级或者二级标准品为基础样本,用阴性血清进行倍比稀释,稀释后的样本浓度分别为1000IU/ml、500IU/ml、250IU/ml、125IU/ml、100IU/ml、50IU/ml、25IU/ml,每份样本使用1000μl进行检测。1.2 用质检合格核酸检测试剂盒(PCR-荧光探针法)进行检测,每个浓度每批次试剂盒做5个复管,分析各浓度标本的检出率(即阳性率)。以标本浓度值对数为横坐标,对应的检出率为纵坐标描点,用Origin的Sigmoidal Fit 的方法拟合成曲线,根据软件给出的曲线公式计算出当检出率为95%时所对应的浓度,此浓度即为本试剂盒对HBV标本的分析灵敏度。
pcr特异性检测
2.1 参考样本选择:选择与目的片段相近或者感染方式相似的其他病毒或者细菌高载量样本,同时应满足临床或者其他方法确认目的片段为阴性,做5个副管扩增并且全部为阴性。以乙肝为例:选择高载量HCV、CMV、EBV、HSV2的阳性标本各1个(乙肝表面抗原为阴性),分别检测乙肝表面抗原及乙肝核酸量。每个测5次,全部阴性或者在参考范围以下为特异性良好。
希望能够帮到你,有其他需要可以随时交流!
㈢ PCR产物的检测方法有哪些都有什么原理
1.琼脂糖凝胶电泳 同时点分子量marker,根据marker条带判断产物分子量大小,从而大致判断是不是你要的
2.酶切 已知你产物的序列,看上面有什么酶切位点,用一个酶或者两个酶切断,看与理论预测的条带数目和大小是否一致。一般检测有以上两步就行了,如果需要知道确切的需要进行3
3.测序 连接到pMD-18t 载体上,转到大肠杆菌中。拿到公司去测序,测序结果通过gene bank比对看与哪个基因一致,这种方法最准确
4.表达 pcr产物连到真核或者原核表达载体上,适宜条件表达出来以后的蛋白做质谱分析,看与理论产物表达的蛋白是否有一致的片段
㈣ DG55155Tl设置方法
团体标准T/CVMA 5—2018
非洲猪瘟病毒实时荧光PCR检测方法
Real-time PCR assay for detection ofAfrican swine fever virus
中国兽医协会发布
前言
本标准按 GB/T 1.1-2009给出的规则起草。
本标准由中国兽医协会提出并归口。
本标准起草单位: 中国动物疫病预防控制中心、中国兽医药品监察所、中国农业科学院哈尔滨兽医研究所、中国农业科学院兰州兽医研究所、北京海关。
本标准主要起草人: 倪建强、王传彬、王琴、仇华吉、殷宏、杨林、辛盛鹏、刘艳华、刘洋、宋晓晖、赵启祖、罗玉子、刘志杰、张乾义、乔彩霞、夏应菊、杨吉飞、徐璐、顾小雪、亢文华、李硕、毕一鸣。
1、范围
本标准规定了非洲猪瘟病毒实时荧光PCR检测方法的试剂、仪器和耗材、操作步骤、结果判定、实验室生物安全等技术要求。
本标准适用于猪脾脏、淋巴结、血液等组织和血粉中非洲猪瘟病毒核酸的检测。
2、规范性引用文件
下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB 19489 实验室 生物安全通用要求
NY/T 541 兽医诊断样品采集、保存与运输技术规范
3、试剂
3.1 DNA提取试剂
DNA提取试剂的配制见附录A,或选取商品化的病毒DNA提取试剂盒并参照说明书进行DNA提取。
3.2 2 × PCR缓冲液
2 × PCR缓冲液的配制见附录A。
3.3 引物探针
3.3.1 采用针对非洲猪瘟病毒VP72基因(核苷酸序列见附录B)的引物及探针:
上游引物ASF-CADC-rPCRF:5'-1528-ATAGAGATACAGCTCTTCCAG-1548-3'
下游引物ASF-CADC-rPCRR:5'-1660-GTATGTAAGAGCTGCAGAAC-1679-3'
荧光探针ASF-CADC-Probe:5'-1638-FAM-TATCGATAAGATTGAT-MGB--3'
3.3.2 可以使用世界动物卫生组织(OIE)在陆生动物诊断技术和疫苗手册(Manual of Diagnostic Tests andVaccines for Terrestrial Animals)第2.8.1章African Swine Fever中提供的引物和探针,并按照手册中规定的检测程序和判定标准操作:
上游引物ASF-OIE-rPCRF:5'-1627-CTGCTCATGGTATCAATCTTATCGA-1651-3'
下游引物ASF-OIE-rPCRR:
5'-1857-GATACCACAAGATCRGCCGT-1876-3'
荧光探针ASF-OIE-Probe:
5'-1761-FAM-CCACGGGAGGAATACCAACCCAGTG-TAMRA-1785-3'
3.3.3 使用国家农业行政主管部门批准的其他引物、探针,应对检测程序和判定标准作相应调整。
3.4 阴性及阳性对照
阴性及阳性对照的制备方法见附录C。
3.5 其他试剂
消毒液、5U/μLTaq DNA聚合酶、无菌无核酸酶水、0.01mol/L PBS(pH7.2)。
消毒液配制见附录A, 0.01mol/L PBS配制见附录A。
4、仪器和耗材
分析天平(感量0.1mg)、高速台式冷冻离心机(最高离心速度不低于12 000r/min)、冰盒、实时荧光PCR仪及配套反应管(板)、组织研磨器、-20℃冰箱、可调移液器(2 μL,20 μL,200μL,1 000 μL)、1.5mL离心管(无核酸酶)。
5、操作步骤
5.1 样品采集及运输
样品采集及运输按照NY/T541的规定执行,采集猪的脾脏、淋巴结、血液等组织材料或血粉用于检测,样品应在冷藏条件下尽快运输至实验室,避免反复冻融。采样时应穿戴个人生物安全防护装备,实施现场消毒和废弃物处理。
5.2 样品处理
检测前样品应在二级生物安全柜中处理。取0.1g~0.2g组织或血粉,经研磨破碎后加1mL的0.01mol/L PBS(pH7.2)制成匀浆,经12 000 r/min离心2Min取上清;全血、血清样品直接取1mL,置于1.5 mL离心管内盖紧管帽。将上述处理的样品置于60℃条件下灭活30min。
5.3 样品保存
采集或处理好的样品在2℃~8℃条件下保存应不超过24 h;如需长期保存,应放置-70℃冰箱,但应避免反复冻融(冻融不超过3次)。
5.4 病毒DNA提取
5.4.1 DNA提取应在样本制备区内采用以下方法进行,若使用其他等效的病毒DNA提取试剂,则按照试剂说明书操作。
5.4.2 待检样品、阳性对照和阴性对照的份数总和用n表示,取n个灭菌1.5 mL离心管,逐管编号。
5.4.3 每管加入200μL DNA提取液1,然后分别加入待测样品、阴性对照和阳性对照各200μL,1份样品换用1个吸头,混匀器上震荡混匀5s。于4℃~25℃条件下,13 000 r/min离心10 min。DNA提取液1见附录A。
5.4.4 尽可能吸取上清、弃去,吸头不要碰到沉淀,再加入10 μL DNA提取液2,混匀器上震荡混匀5 s。于4℃~25℃条件下,2 000 r/min离心10s。DNA提取液2见附录A。
5.4.5 100℃干浴或沸水浴10 min。
5.4.6 加入90μL无DNA酶的灭菌去离子水,13 000 r/min离心10 min,上清即为提取的DNA,-20℃保存备用。无DNA酶的灭菌去离子水见附录A。
5.5 实时荧光PCR操作
5.5.1 在反应混合物配制区、样品制备区和检测区分别进行5.5.2~5.5.4。
5.5.2 每个检测反应体系需使用20μL实时荧光PCR反应液。根据5.4.2中设定的n值,按附录D配制反应液,充分混匀后分装,每个PCR反应管20μL。转移PCR反应管至 样品制备区 。
5.5.3 在上述5.5.2的反应管中分别加入5.4中提取的DNA溶液5μL,使每管总体积达到25 μL,记录反应管对应的样品编号。盖紧管盖后,瞬时离心。
5.5.4 将5.5.3加样后的反应管放入实时荧光PCR检测仪内,记录反应管摆放顺序。选定5-羧基荧光素(FAM)作为报告基团,小沟结合物(MGB)为淬灭基团,反应参数设置如下: 预变性95℃/3 min;95℃/15 s,52℃/10 s,60℃/35 s,45个循环; 在每次循环的60℃退火延伸时收集荧光。试验结束后,根据收集的Ct值和荧光曲线判定结果。
6、结果判定
6.1 结果分析条件设定
实时荧光PCR检测阈值设定原则:阈值线超过阴性对照扩增曲线的最高点,且相交于阳性对照扩增曲线进入指数增长期的拐点,或根据仪器噪声情况进行调整。每个样品反应管内的荧光信号到达设定的域值时所经历的循环数即为Ct值。
6.2 结果描述及判定
当阳性对照Ct值≤28.0且出现典型扩增曲线,阴性对照无Ct值无扩增曲线时,实验成立,实例参考附录E。 当被检样品出现典型的扩增曲线且Ct值≤38.0时,判为非洲猪瘟病毒核酸阳性 ; 被检样品无Ct值,判为非洲猪瘟病毒核酸阴性;对于Ct值>38.0的样品且出现典型的扩增曲线,应重检,重检仍出现上述结果的判为阳性,否则判为阴性。
7、实验室生物安全要求
7.1 本方法涉及非洲猪瘟感染性样品的实验操作应在(动物)生物安全三级试验室中进行,实验室生物安全管理要求见GB 19489。国家农业行政主管部门另有规定的,按其规定执行。
7.2 使用过的实验器材和液体废弃物应先经过消毒液浸泡处理,再经高温高压处理后废弃。剩余样品等固体废弃物应在生物安全柜中密封包装,经表面消毒后移出,再经高温高压处理后废弃。
一
附录 A (规范性附录) 试剂的配制
A.1 DNA提取液1
PEG8000晶体20.74g,NaCL17.53g,加去离子水定容到100 mL。
A.2 DNA提取液2
1mol/LTris.Hcl 2 mL,2 mol/L KCL5 mL,0.5 mol/L EDTA 0.5 mL,NP-40 1 mL,加去离子水定容到100 mL。
即KCL14.912g,Tris碱12.114g,1.2068 mL浓HCl,EDTA14.612g,NaOH 6g, 加去离子水定容到100 mL。
A.3 2×PCR缓冲液
灭菌去离子水 70 mL
三羟甲基氨基甲烷(Tri s) 0.79 g
氯化钾 1.865 g
曲拉通X-100 0.5 mL
dATP (100mmol/L) 2.5 mL
dTTP (100mmol/L) 2.5 mL
dGTP (100mmol/L) 2.5 mL
dCTP (100mmol/L) 2.5 mL
六水氯化镁 0.61 g
盐酸 调pH至9.0
灭菌去离子水 加至100 mL
A.4 消毒液
8‰氢氧化钠或3‰福尔马林或3%邻苯基苯酚或碘化合物等其他消毒试剂均可。
A.5 磷酸盐缓冲液(PBS)的配方
A.5.1 A液
0.2mol/L磷酸二氢钠水溶液:NaH2PO4·H2O 27.6 g,溶于蒸馏水中,最后定容至1 000 mL。
A.5.2 B液
0.2mol/L磷酸氢二钠水溶液:Na2HPO4·7H2O 53.6 g(或Na2HPO4·12H2O 71.6 g或Na2HPO4·2H2O 35.6 g),加蒸馏水溶解,最后定容至1 000 mL。
A.5.3 0.01 mol/L、pH 7.2 磷酸盐缓冲液(PBS)的配制
取A液14 mL、B液36 mL,加NaCl 8.5 g,用蒸馏水定容至1 000 mL。经过滤除菌后,无菌条件下分装。
A.6 无DNA酶的灭菌去离子水
无DNA酶的灭菌去离子水是用1 %DEPC处理后的去离子水,电阻应该大于18.2mΩ。
二
附录B (资料性附录)非洲猪瘟病毒VP72基因参考序列
1ATGGCATCAG GAGGAGCTTT TTGTCTTATT GCTAACGATG GGAAGGCCGA CAAGATTATA
61TTGGCCCAAG ACTTGCTGAA TAGCAGGATC TCTAACATTA AAAATGTGAA CAAAAGTTAT
121GGGAAACCCG ATCCCGAACC CACTTTGAGT CAAATCGAAG AAACACATTT GGTGCATTTT
181AATGCGCATT TTAAGCCTTA TGTTCCAGTA GGGTTTGAAT ACAATAAAGT ACGCCCGCAT
241ACGGGTACCC CCACCTTGGG AAACAAGCTT ACCTTTGGTA TTCCCCAGTA CGGAGACTTT
301TTCCATGATA TGGTGGGCCA TCATATATTG GGTGCATGTC ATTCATCCTG GCAGGATGCT
361CCGATTCAGG GCACGTCCCA GATGGGGGCC CATGGGCAGC TTCAAACGTT TCCTCGCAAC
421GGATATGACT GGGACAACCA AACACCCTTA GAGGGCGCCG TTTACACGCT TGTAGATCCT
481TTTGGAAGAC CCATTGTACC CGGCACAAAG AATGCGTACC GAAACTTGGT TTACTACTGC
541GAATACCCCG GAGAACGACT TTATGAAAAC GTAAGATTCG ATGTAAATGG AAATTCCCTA
601GACGAATATA GTTCGGATGT CACAACGCTT GTGCGCAAAT TTTGCATCCC AGGGGATAAA
661ATGACTGGAT ATAAGCACTT GGTTGGCCAG GAGGTATCGG TGGAGGGAAC CAGTGGCCCT
721CTCCTATGCA ACATTCATGA TTTGCACAAG CCGCACCAAA GCAAACCTAT TCTTACCGAT
781GAAAATGATA CGCAGCGAAC GTGTAGCCAT ACCAACCCGA AATTTCTTTC ACAGCATTTT
841CCCGAGAACT CTCACAATAT CCAAACAGCA GGTAAACAAG ATATTACTCC TATCACGGAC
901GCAACGTATC TGGACATAAG ACGTAATGTT CATTACAGCT GTAATGGACC TCAAACCCCT
961AAATACTATC AGCCCCCTCT TGCGCTCTGG ATTAAGTTGC GCTTTTGGTT TAATGAGAAC
1021GTGAACCTTG CTATTCCCTC AGTATCCATT CCCTTCGGCG AGCGCTTTAT CACCATAAAG
1081CTTGCATCGC AAAAGGATTT GGTGAATGAA TTTCCTGGAC TTTTTGTACG CCAGTCACGT
1141TTTATAGCTG GACGCCCCAG TAGACGCAAT ATACGCTTTA AACCATGGTT TATCCCAGGA
1201GTCATTAATG AAATCTCGCT CACGAATAAT GAACTTTACA TCAATAACCT GTTTGTAACC
1261CCTGAAATAC ACAACCTTTT TGTAAAACGC GTTCGCTTTT CGCTGATACG TGTCCATAAA
1321ACGCAGGTGA CCCACACCAA CAATAACCAC CACGATGAAA AACTAATGTC TGCTCTTAAA
1381TGGCCCATTG AATATATGTT TATAGGATTA AAACCTACCT GGAACATCTC CGATCAAAAT
1441CCTCATCAAC ACCGAGATTG GCACAAGTTC GGACATGTTG TTAACGCCAT TATGCAGCCC
1501ACTCACCACG CAGAGATAAG CTTTCAGGAT AGAGATACAG CTCTTCCAGA CGCATGTTCA
1561TCTATATCTG ATATTAGCCC CGTTACGTAT CCGATCACAT TACCTATTAT TAAAAACATT
1621TCCGTAACTG CTCATGGTAT CAATCTTATC GATAAATTTC CATCAAAGTT CTGCAGCTCT
1681TACATACCCT TCCACTACGG AGGCAATGCG ATTAAAACCC CCGATGATCC GGGTGCGATG
1741ATGATTACCT TTGCTTTGAA GCCACGGGAG GAATACCAAC CCAGTGGTCA TATTAACGTA
1801TCCAGAGCAA GAGAATTTTA TATTAGTTGG GACACGGATT ACGTGGGGTC TATCACTACG
1861GCTGATCTTG TGGTATCGGC ATCTGCT
三
附录C (规范性附录)非洲猪瘟病毒核酸阳性及阴性对照
C.1阳性对照
阳性对照制备方法:人工合成非洲猪瘟病毒VP72基因片段,序列参见附录B,将VP72基因连接于pMD20-T载体制成阳性质粒pMD20-T-VP72,使用非洲猪瘟病毒阴性猪的组织研磨液将质粒稀释至浓度为10 000copies/L,保存于-20℃备用。
C.2 阴性对照
阴性对照为非洲猪瘟病毒阴性猪的组织研磨液。
四
附录D (规范性附录)实时荧光PCR反应液配方
实时荧光PCR反应液配方见表D.1。
表D.1 实时荧光PCR反应液配方
组 分
1个检测体系的加入量
2×PCR 缓冲液a
12.5μL
dNTP(2.5 mmol/L)
1.0 μL
上游引物(10 μmol/L)
1.0 μL
下游引物(10 μmol/L)
1.0μL
探针(10 μmol/L)
1.0 μL
Taq 酶b(5U/μL)
0.5μL
去离子水
3μL
总体积
20μL
2×PCR 缓冲液a: 参见附录A.1配方。
Taq 酶b:具有5’→3’外切活性。
五
附录 E (资料性附录)非洲猪瘟病毒实时荧光PCR扩增实例参考
图D.1给出了非洲猪瘟病毒实时荧光PCR扩增实例。
图E.1 非洲猪瘟病毒核酸实时荧光PCR典型扩增曲线示意图
(资料来源:中国兽医协会)
㈤ 各位高手谁能给我详细的讲解一下PCR技术的过程
聚合酶链式反应(英文全称:Polymerase Chain Reaction),聚合酶链式反应
简称PCR.聚合酶链式反应(PCR)是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火(复性)及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点.它不仅可用于基因分离、克隆和核酸序列分析等基础研究,还可用于疾病的诊断或任何有DNA,RNA的地方.聚合酶链式反应(Polymerase Chain Reaction,简称PCR)又称无细胞分子克隆或特异性DNA序列体外引物定向酶促扩增技术.
编辑本段发展简史
人类对于核酸的研究已经有100多年的历史.20世纪60年代末70年代初,人们致力于研究基因的体外分离技术.但是,由于核酸的含量较少,一定程度上限制了DNA的体外操作.Khorana于1971年最早提出核酸体外扩增的设想.但是,当时的基因序列分析方法尚未成熟,对热具有较强稳定性的DNA聚合酶还未发现,寡核苷酸引物的合成仍处在手工、半自动合成阶段,这种想法似乎没有任何实际意义. 1985年,美国科学家Kary Mullis在高速公路的启发下,经过两年的努力,发明了PCR技术,并在Science杂志上发表了关于PCR技术的第一篇学术论文.从此,PCR技术得到了生命科学界的普遍认同,Kary Mullis也因此而获得1993年的诺贝尔化学奖. 但是,最初的PCR技术相当不成熟,在当时是一种操作复杂、成本高昂、“中看不中用”的实验室技术.1988年初,Keohanog通过对所使用的酶的改进,提高了扩增的真实性.而后,Saiki等人又在黄石公园从生活在温泉中的水生嗜热杆菌内提取到一种耐热的DNA聚合酶,使得PCR技术的扩增效率大大提高.也正是由于此酶的发现使得PCR技术得到了广泛地应用,使该技术成为遗传与分子生物学 分析的根本性基石.在以后的几十年里,PCR方法被不断改进:它从一种定性的分析方法发展到定量测定;从原先只能扩增几个kb的基因到目前已能扩增长达几十个kb的DNA片段.到目前为止,PCR技术已有十几种之多,例如,将PCR与反转录酶结合,成为反转录PCR,将PCR与抗体等相结合就成为免疫PCR等.
编辑本段技术原理
DNA的半保留复制是生物进化和传代的重要途径.双链DNA在多种酶的作用下可以变性解链成单链,在DNA聚合酶与启动子的参与下,根据碱基互补配对原则复制成同样的两分子挎贝.在聚合酶链式反应
实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链.因此,通过温度变化控制DNA的变性和复性,并设计引物做启动子,加入DNA聚合酶、dNTP就可以完成特定基因的体外复制. 但是,DNA聚合酶在高温时会失活,因此,每次循环都得加入新的DNA聚合酶,不仅操作烦琐,而且价格昂贵,制约了PCR技术的应用和发展.发现耐热DNA聚合同酶--Taq酶对于PCR的应用有里程碑的意义,该酶可以耐受90℃以上的高温而不失活,不需要每个循环加酶,使PCR技术变得非常简捷、同时也大大降低了成本,PCR技术得以大量应用,并逐步应用于临床.
编辑本段工作原理
类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物.PCR由变性--退火(复性)--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至94℃左右一定时聚合酶链式反应
间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至40~60℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在DNA聚合酶的作用下,于72℃左右,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板.每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍.
编辑本段反应特点
特异性强 PCR反应的特异性决定因素为: ①引物与模板DNA特异正确的结合; ②碱基配对原则; ③Taq DNA聚合酶合成反应的忠实性; ④靶基因的特异性与保守性. 其中引物与模板的正确结合是关键.引物与模板的结合及引物链的延伸是遵循碱基配对原则的.聚合酶合成反应的忠实性及Taq DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度.再通过选择特异性和保守性高的靶基因区,其特异性程度就更高. 灵敏度高 PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12)量级的起始待测模板扩增到微克(μg=10-6)水平.能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌. 简便、快速 PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应.扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广. 对标本的纯度要求低 不需要分离病毒或细菌及培养细胞,DNA 粗制品及RNA均可作为扩增模板.可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等DNA扩增检测.
编辑本段反应五要素
参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+ 引物:引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度.理论上,只要知道任何一段模板DNA序列, 就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增. 设计引物应遵循以下原则: ①引物长度:15-30bp,常用为20bp左右. ②引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb的片段. ③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带.ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列. ④避免引物内部出现二级结构,避免两条引物间互补,特别是3'端的互补,否则会形成引物二聚体,产生非特异的扩增条带. ⑤引物3'端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败. ⑥引物中有或能加上合适的酶切位点, 被扩增的靶序列最好有适宜的酶切位点, 这对酶切分析或分子克隆很有好处. ⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性.引物量:每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会.
编辑本段反应体系与反应条件
标准的PCR反应体系: 10×扩增缓冲液10ul 4种dNTP混合物各200umol/L 引物各10~100pmol 模板DNA0.1~2ug TaqDNA聚合酶2.5u Mg2+1.5mmol/L 加双或三蒸水至100ul PCR反应五要素:参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和缓冲液(其中需要Mg2+)
编辑本段PCR反应条件的选择
PCR反应条件为温度、时间和循环次数. 温度与时间的设置:基于PCR原理三步骤而设置变性-退火-延伸三个温度点.在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸.对于较短靶基因(长度为100~300bp时)可采用二温度点法, 除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq DNA酶仍有较高的催化活性). ①变性温度与时间:变性温度低,解链不完全是导致PCR失败的最主要原因.一般情况下,93℃~94℃min足以使模板DNA变性,若低于93℃则需延长时间,但温度不能过高,因为高温环境对酶的活性有影响.此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败. ②退火(复性)温度与时间:退火温度是影响PCR特异性的较重要因素.变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合.由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞.退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长度.对于20个核苷酸,G+C含量约50%的引物,55℃为选择最适退火温度的起点较为理想.引物的复性温度可通过以下公式帮助选择合适的温度: Tm值(解链温度)=4(G+C)+2(A+T) 复性温度=Tm值-(5~10℃) 在Tm值允许范围内, 选择较高的复性温度可大大减少引物和模板间的非特异性结合, 提高PCR反应的特异性.复性时间一般为30~60sec,足以使引物与模板之间完全结合. ③延伸温度与时间:Taq DNA聚合酶的生物学活性: 70~80℃ 150核苷酸/S/酶分子 70℃ 60核苷酸/S/酶分子 55℃ 24核苷酸/S/酶分子 高于90℃时, DNA合成几乎不能进行. PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合.PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够 的.3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min.延伸进间过长会导致非特异性扩增带的出现.对低浓度模板的扩增,延伸时间要稍长些.
编辑本段酶及其浓度
目前有两种Taq DNA聚合酶供应, 一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶.催化一典型的PCR反应约需酶量2.5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少. dNTP的质量与浓度dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性.dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris.HCL的缓冲液将其PH调节到7.0~7.5,小量分装, -20℃冰冻保存.多次冻融会使dNTP降解.在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配.浓度过低又会降低PCR产物的产量.dNTP能与Mg2+结合,使游离的Mg2+浓度降低. 模板(靶基因)核酸模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本.SDS的主要功能是:溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀; 蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀核酸.提取的核酸即可作为模板用于PCR反应.一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接用于PCR扩增.RNA模板提取一般采用异硫氰酸胍或蛋白酶K法,要防止RNase降解RNA. Mg2+浓度Mg2+对PCR扩增的特异性和产量有显着的影响,在一般的PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.5~2.0mmol/L为宜.Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少.
编辑本段工作步骤
PCR反应的基本过程
标准的PCR过程分为三步(如图所示): 1.DNA变性(90℃-96℃):双链DNA模板在热作用下, 氢键断裂,形成单链DNA 2.退火(复性)(40℃-65℃):系统温度降低,引物与 DNA模板结合,形成局部双链. 3.延伸(68℃-75℃):在Taq酶(在72℃左右最佳的活 性)的作用下,以dNTP为原料,从引物的5′端→3′ 端延 伸,合成与模板互补的DNA链. 每一循环经过变性、退火和延伸,DNA含量既增加一倍. 现在有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,提高了反应速度.
编辑本段循环参数
1、预变性(Initial denaturation). 模板DNA完全变性对PCR能否成功至关重要,一般95℃加热3-5分钟. 2、引物退火(Primer annealing) 退火温度一般需要凭实验(经验)决定. 退火温度对PCR的特异性有较大影响. 3、引物延伸 引物延伸一般在72℃进行(Taq酶最适温度). 延伸时间随扩增片段长短及所使用Taq酶的扩增效率而定. 4、循环中的变性步骤 循环中一般95℃,30秒足以使各种靶DNA序列完全变性: 变性时间过长损害酶活性,过短靶序列变性不彻底,易造成扩增失败. 5、循环数 大多数PCR含25-35循环,过多易产生非特异扩增. 6、最后延伸 在最后一个循环后,反应在72℃维持5-15分钟.使引物延伸完全,并使单链产物退火成双链. PCR-PCR常见问题
编辑本段电泳检测时间
一般为48h以内,有些最好于当日电泳检测,大于48h后带型不规则甚至消失. 假阴性,不出现扩增条带 PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及, ④PCR循环条件.寻找原因亦应针对上述环节进行分析研究. 模板:①模板中含有杂蛋白质,②模板中含有Taq酶抑制剂,③模板中蛋白质没有消 化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚.⑤模 板核酸变性不彻底.在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处 理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应 固定不宜随意更改. 酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而 导致假阴性.需注意的是有时忘加Taq酶或溴乙锭. 引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不 理想、容易弥散的常见原因.有些批号的引物合成质量有问题,两条引物一条浓度 高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单 位.②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR有可能失败,应和引物合成单位协商解决.如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度.③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效.④引物设计不合理,如引物长度不够,引物之间形成二聚体等. Mg2+浓度:Mg2+离子浓度对PCR扩增效率影响很大,浓度过高可降低PCR扩增的特 异性,浓度过低则影响PCR扩增产量甚至使PCR扩增失败而不出扩增条带. 反应体积的改变:通常进行PCR扩增采用的体积为20ul、30ul、50ul.或100ul,应用多 大体积进行PCR扩增,是根据科研和临床检测不同目的而设定,在做小体积如20ul 后,再做大体积时,一定要模索条件,否则容易失败.
编辑本段物理原因
变性对PCR扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率.有时还有必要用标准的温度计,检测一下扩增仪或水溶锅内的变性、退火和延伸温度,这也是PCR失败的原因之一. 靶序列变异:如靶序列发生突变或缺失,影响引物与模板特异性结合,或因靶序列某 段缺失使引物与模板失去互补序列,其PCR扩增是不会成功的.假阳性出现的PCR扩增条带与目的靶序列条带一致,有时其条带更整齐,亮度更高.引物设计不合适:选择的扩增序列与非目的扩增序列有同源性,因而在进行PCR扩增时,扩增出的PCR产物为非目的性的序列.靶序列太短或引物太短,容易出现假阳性.需重新设计引物. 靶序列或扩增产物的交叉污染:这种污染有两种原因:一是整个基因组或大片段的交叉污染,导致假阳性.这种假阳性可用以下方法解决:操作时应小心轻柔,防止将靶序列吸入加样枪内或溅出离心管外.除酶及不能耐高温的物质外,所有试剂或器材均应高压消毒.所用离心管及样进枪头等均应一次性使用.必要时,在加标本前,反应管和试剂用紫外线照射,以破坏存在的核酸.二是空气中的小片段核酸污染,这些小片段比靶序列短,但有一定的同源性.可互相拼接,与引物互补后,可扩增出PCR产物,而导致假阳性的产生,可用巢式PCR方法来减轻或消除. 出现非特异性扩增带 PCR扩增后出现的条带与预计的大小不一致,或大或小,或者同时出现特异性扩增带 与非特异性扩增带.非特异性条带的出现,其原因:一是引物与靶序列不完全互补、 或引物聚合形成二聚体.二是Mg2+离子浓度过高、退火温度过低,及PCR循环次数 过多有关.其次是酶的质和量,往往一些来源的酶易出现非特异条带而另一来源的酶 则不出现,酶量过多有时也会出现非特异性扩增.其对策有:必要时重新设计引 物.减低酶量或调换另一来源的酶.降低引物量,适当增加模板量,减少循环次 数.适当提高退火温度或采用二温度点法(93℃变性,65℃左右退火与延伸). 出现片状拖带或涂抹带 PCR扩增有时出现涂抹带或片状带或地毯样带.其原因往往由于酶量过多或酶的质量 差,dNTP浓度过高,Mg2+浓度过高,退火温度过低,循环次数过多引起.其对策有:减少酶量,或调换另一来源的酶.②减少dNTP的浓度.适当降低Mg2+浓 度.增加模板量,减少循环次数.
编辑本段克隆PCR产物
1)克隆PCR产物的最优条件是什么? 最佳插入片段:载体比需实验确定.1:1(插入片段:载体)常为最佳比,摩尔数比1:8或8:1也行.应测定比值范围.连接用5ul 2X连接液,50ng质粒DNA,1Weiss单位的T4连接酶,插入片段共10ul.室温保温1小时,或4℃过夜.在这2种温度下,缺T-凸出端的载体会自连,产生蓝斑.室温保温1小时能满足大多数克隆要求,为提高连接效率,需4℃过夜. 2)PCR产物是否需要用凝胶纯化? 如凝胶分析扩增产物只有一条带,不需要用凝胶纯化.如可见其他杂带,可能是积累了大量引物的二聚体.少量的引物二聚体的摩尔数也很高,这会产生高比例的带有引物二聚体的克隆,而非目的插入片段.为此需在克隆前做凝胶纯化. 3)如果没有回收到目的片段,还需要作什么对照实验? A)涂布未转化的感受态细胞. 如有菌落,表明氨苄失效,或污染上带有氨苄抗型的质粒,或产生氨苄抗型的菌落. B)转化完整质粒,计算菌落生长数,测定转化效率. 例如,将1ug/ul质粒1:100稀释,1ul用于100ul感受态细胞转化.用SOC稀释到1000ul后,用100ul铺板.培养过夜,产生1000个菌落.转化率为:产生菌落的总数/铺板DNA的总量. 铺板DNA的总量是转化反应所用的量除以稀释倍数.具体而言转化用10ng DNA,用SOC稀释到1000u后含10 ng DNA,用1/10铺板,共用1 ng DNA.转化率为: 1000克隆X10(3次方) ng /铺板1 ng DNA ug=10(6次方)cfu/ ug 转化pGEM-T应用10(8次方)cfu/ ug感受态细胞 如没有菌落或少有菌落,感受态细胞的转化率太低. C)如用pGEM-T正对照,或PCR产物,产生>20-40蓝斑(用指定步骤10(8次方)cfu/ ug感受态细胞),表明载体失去T.可能是连接酶污染了核酸酶.T4 DNA连接酶(M1801,M1804,M1794)质量标准好无核酸酶污染,不应用其它来源的T4 DNA连接酶替换. D)用pGEM-T或pGEM-T Easy载体,连接pGEM-T正对照,转化高频率感受态细胞(10(8次方)cfu/ug),按照指定的实验步骤,可得100个菌落,其中60%应为白斑,如产生>20-40蓝斑,没有菌落或少有菌落,连接有问题. 4)对照实验结果好,却没有回收到目的片段,实验出了什么问题? A)连接用室温保温1小时,能满足大多数克隆,为提高效率,需4℃过夜. B)插入片段带有污染,使3`-T缺失,或抑制连接,抑制转化.为此,将插入片段和pGEM-T正对照混合,再连接.如降低了对照的菌落数,插入片段需纯化,或重新制备.如产生大量的蓝斑,插入片段污染有核酸酶,使pGEM-T或pGEM-T Easy载体3`-T缺失. C)插入片段不适于连接.用凝胶纯化的插入片段,因受UV过度照射,时有发生.UV过度照射会产生嘧啶二聚体,不利于连接,DNA必需重新纯化. D)带有修复功能的耐热DNA聚合酶的扩增产物末端无A,后者是pGEM-T或pGEM-T Easy载体克隆所需.加Taq DNA聚合酶和核苷酸可在末端加A.详情查pGEM-T pGEM-T Easy载体技术资料(TM042). E)高度重复序列可能会不稳定,在扩增中产生缺失和重排,如发现插入片段高频率地产生缺失和重排,需用重组缺陷大肠杆菌菌株,如SURE细胞.
编辑本段PCR反应的分类
SOEing-PCR(重叠PCR)
重叠区扩增基因拼接法,是基于普通PCR 技术衍生出的一种基因融合和定点突变的有效方法.众所周知,由于引物只需要与模板有效结合,尤其是5’端序列不必与模板完全配对,因此扩增引物的5’端可以添加一种甚至是两种酶切位点,以便于后期克隆.SOEing 法正是利用这一特点,向两个独立基因掺入一段新的序列以达到两个基因出现一个重叠区的目的,3’端的结合使基因融合或定点突变得以实现.
RT-PCR(逆转录PCR)
RT-PCR 为反转录RCR(reverse transcription PCR)和实时PCR(real time PCR)共同的缩写.逆转录PCR,或者称反转录PCR(reverse transcription-PCR,RT-PCR),是聚合酶链式反应(PCR)的一种广泛应用的变形.在RT-PCR中,一条RNA链被逆转录成为互补DNA,再以此为模板通过PCR进行DNA扩增.
㈥ PCR的两步法和三步法有什么区别
1、步骤不同:两步法退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,而三步法则分两次完成。
2、用时不同:两步法减少一次升降温过程,提高了反应速度,用时较短。而三步法则比两步法用时更长。
3、适用条件不同:两步法中,PCR扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成。三步法的PCR扩增区则较长,需要降低系统温度,引物与DNA模板结合,形成局部双链。
(6)非瘟pcr检测三个片段的方法扩展阅读
三步法的标准步骤与检测:
1、DNA变性:(90℃-96℃):双链DNA模板在热作用下,氢键断裂,形成单链DNA
2、退火:(60℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。
3、延伸:(70℃-75℃):在Taq酶(在72℃左右,活性最佳)的作用下,以dNTP为原料,从引物的3′端开始以从5′→3′端的方向延伸,合成与模板互补的DNA链。
4、检测:PCR反应扩增出了高的拷贝数,下一步检测就成了关键。荧光素(溴化乙锭,EB)染色凝胶电泳是最常用的检测手段。电泳法检测特异性是不太高的,因此引物两聚体等非特异性的杂交体很容易引起误判。但因为其简捷易行,成为了主流检测方法。近年来以荧光探针为代表的检测方法,有逐渐取代电泳法的趋势。
㈦ PCR方法
聚合酶链式反应,简称PCR,是一种分子生物学技术,用于放大特定的DNA片段。可看作生物体外的特殊DNA复制。
原理是DNA的半保留复制以及可以通过温度变化控制DNA的变性和复性。
参加PCR反应的物质主要有五种:
引物(PCR引物为DNA片段,细胞内DNA复制的引物为一段RNA链)、酶、Taq DNA聚合酶、模板和缓冲液(其中需要Mg2+)。
标准的PCR过程分为三步:
1.DNA变性
(90℃-96℃):双链DNA模板在热作用下, 氢键断裂,形成单链DNA
2.退火
(25℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。
3.延伸
(70℃-75℃):在Taq酶(在72℃左右,活性最佳)的作用下,以dNTP为原料,从引物的5′端→3′端延伸,合成与模板互补的DNA链。
每一循环经过变性、退火和延伸,DNA含量即增加一倍。如图所示:
现在有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,提高了反应速度。
㈧ 非洲猪瘟的检测方法有哪些非洲猪瘟疫情防控方法是什么
荧光定量 PCR 方法,该方法是将光谱技术引入到PCR 反应中,通过荧光信号的强弱变化定量测定特异性扩增产物的量,解决了常规 PCR 方法敏感性低和电泳检测中溴化乙锭对环境的污染问题。
等温扩增法,该方法是一种新兴的分子生物学检测方法,等温扩增方法不需要 PCR 中的变性、退火步骤,即可完成对靶序列的循环扩增,大幅缩短了时间,整个扩增反应时间一般少于 60 min,而常规PCR 方法的反应时间一般需要 2 h 以上。等温扩增试剂盒适合现场检测,灵敏度高,能够大幅提高猪瘟防控的可行性。
要减少场外人员和车辆进入猪场,要对人员和车辆入场前彻底消毒,要对猪群实施全进全出饲养管理,要对新引进生猪实施隔离,要按规定申报检疫。
非洲猪瘟防控注意事项
养殖场应该坚持全进全出,自繁自育的养殖模式,构建完善的封锁隔离措施,避免猪和野猪直接接触。养殖场在生猪调运过程中,尽量不要跨省引进种猪,必须引种时,一定要进行严格的产地检疫、疫情检测,严格执行落地报告制度和隔离观察制度。
殖场内部如果发现非洲猪瘟可疑疫情,严格按照《非洲猪瘟疫情应急预案》进行处置,迅速采取应急措施,预防疫情传播和蔓延。
㈨ 简述PCR技术操作步骤
PCR即聚合酶链式反应(Polymerase chain reaction)的缩写,它是体外酶促合成特异DNA片段的方法。这一方法的要点是合成两个分别互补于待扩增DNA片段两端的小片段引物,在含有引物、待扩增DNA模板核苷酸底物和DNA多聚酶的反应体系中DNA复制反复进行,在短时间内可以取得大量扩增产物。其原理是寡聚核苷酸链引物在DNA聚合酶的作用下沿模板延伸,合成两个与靶DNA两侧序列互补的引物,在体外进行靶DNA的重复合成。
主要的技术步骤是:
(1)DNA变性 加热使靶DNA序列双链解离成单链DNA。
(2)引物与靶DNA退火 适当降低温度,使两个引物分别结合成靶DNA两条的3′末端向5′末端延伸。
(3)引物延伸 在DNA聚合酶的催化下,引物沿着靶DNA3′末端向5′末端延伸。新合成的DNA链在变性解离后,又可作为模板与引物杂交,并且在DNA聚合酶的催化下,引导合成新的靶DNA链。如此反复进行以上3个步骤,即可使靶DNA片段指数性扩增。
㈩ PCR产物的检测方法有哪些都有什么原理
1.琼脂糖凝胶电泳
同时点分子量marker,根据marker条带判断产物分子量大小,从而大致判断是不是你要的
2.酶切
已知你产物的序列,看上面有什么酶切位点,用一个酶或者两个酶切断,看与理论预测的条带数目和大小是否一致。一般检测有以上两步就行了,如果需要知道确切的需要进行3
3.测序
连接到pMD-18t
载体上,转到大肠杆菌中。拿到公司去测序,测序结果通过gene
bank比对看与哪个基因一致,这种方法最准确
4.表达
pcr产物连到真核或者原核表达载体上,适宜条件表达出来以后的蛋白做质谱分析,看与理论产物表达的蛋白是否有一致的片段