导航:首页 > 解决方法 > 二年级行程问题及解决方法

二年级行程问题及解决方法

发布时间:2022-10-22 22:48:46

A. 小学行程问题应用题及答案

小学行程问题应用题及答案

进程是操作系统结构的基础;是一个正在执行的程序;计算机中正在运行的程序实例;可以分配给处理器并由处理器执行的一个实体;由单一顺序的执行显示,一个当前状态和一组相关的系统资源所描述的活动单元。下面是我为你带来的小学行程问题应用题及答案 ,欢迎阅读。

小学行程问题及答案

1、羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。问:羊再跑多远,马可以追上它?

解:

根据“马跑4步的距离羊跑7步”,可以设马每步长为7x米,则羊每步长为4x米。

根据“羊跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则羊跑5*4x=20米。

可以得出马与羊的速度比是21x:20x=21:20

根据“现在羊已跑出30米”,可以知道羊与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是30÷(21-20)×21=630米

2、甲乙辆车同时从ab两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求ab两地相距多少千米?

答案720千米。

由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

3、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

答案为两人跑一圈各要6分钟和12分钟。

解:

600÷12=50,表示哥哥、弟弟的速度差

600÷4=150,表示哥哥、弟弟的速度和

(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数

(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数

600÷100=6分钟,表示跑的快者用的时间

600/50=12分钟,表示跑得慢者用的时间

小学奥数培优行程问题应用题:

1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?

2、甲乙两辆汽车同时从东站开往西站。甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31.5千米的地方和乙车相遇,甲车每小时行多少千米?

3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?

4、兄妹两人同时离家去上学。哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校多远?

5、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。某一时刻,汽车追上了甲,6秒钟之后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟,汽车离开了乙。问再过多少秒后,甲、乙两人相遇?

6、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。货车速度每小时60千米,客车每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发后几小时两车相遇?

7、车与慢车同时从甲、乙两地相对开出,经过12小时相遇。相遇后快车又行了8小时到达乙地。慢车还要行多少小时到达甲地?

8、两地相距380千米。有两辆汽车从两地同时相向开出。原计划甲汽车每小时行36千米,乙汽车每小时行40千米,但开车时甲汽车改变了速度,以每小时40千米的速度开出,问在相遇时,乙汽车比原计划少行了多少千米?

9、东、西两镇相距240千米,一辆客车在上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在两镇间的中点相遇。如果两车都从上午8时由两镇相向开行,速度不变,到上午10时,两车还相距多少千米?

10、 客车和货车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到乙站后立即返回,货车到甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。求甲乙两站间的路程是多少千米?

11、“八一”节那天,某少先队以每小时4千米的速度从学校往相距17千米的解放军营房去慰问,出发0.5小时后,解放军闻讯前往迎接,每小时比少先队员快2千米,再过几小时,他们在途中相遇?

12、甲、乙两站相距440千米,一辆大车和一辆小车从两站相对开出,大车每小时行35千米,小车每小时行45千米。一只燕子以每小时50千米的速度和大车同时出发,向小车飞去,遇到小车后又折回向大车飞去,遇到大车又往回飞向小车,这样一直飞下去,燕子飞了多少千米,两车才能相遇?

13、两地的'距离是1120千米,有两列火车同时相向开出。第一列火车每小时行60千米,第二列火车每小时行48千米。在第二列火车出发时,从里面飞出一只鸽子,以每小时80千米的速度向第一列火车飞去,在鸽子碰到第一列火车时,第二列火车距目的地多远?

14、两辆汽车上午8点整分别从相距210千米的甲、乙两地相向而行。第一辆在途中修车停了45分钟,第二辆因加油停了半小时,结果在当天上午11点整相遇。如果第一辆汽车以每小时行40千米,那么第二辆汽车每小时行多少千米?

15、小刚和小勇两人骑自行车同时从两地相对出发,小刚跑完全程的5/8时与小勇相遇。小勇继续以每小时10千米的速度前进,用2.5小时跑完余下的路程,求小刚的速度?

16、甲、乙两人在相距90千米的直路上来回跑步,甲的速度是每秒钟跑3米,乙的速度是每秒钟跑2米。如果他们同时分别在直路两端出发,当他们跑了10分钟,那么在这段时间内共相遇了多少次?

17、男、女两名运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B)。两人同时从A点出发,在A、B之间不停地往返奔跑。如果男运动员上坡速度是每秒3米,下坡速度每秒5米;女运动员上坡速度每秒2米,下坡速度每秒3米,那么两人第二次迎面相遇的地点离A点多少米?

;

B. 行程问题的解题技巧和方法

一、行程问题的解题技巧和方法:

二、相遇距离、追及距离、速度和(差)及相遇(追及)时间的确定

第一:相遇时间和追及时间是指甲乙在完成相遇(追及)任务时共同走的时

间。

第二:在甲乙同时走时,它们之间的距离才是相遇距离追及距离)分为:

相遇距离——甲与乙在相同时间内走的距离之和;S=S1+S2

甲|→S1一|-S2-|乙

A B C

追及距离——甲与乙在相同时间内走的距离之差

甲|→S1-|乙-S2

A B C

在相同时间内S甲=AC,S乙=BC距离差AB=S甲-S乙

第三:在甲乙同时走之前,不管是甲乙谁先走,走的方向如何?走的距离是

多少?都不影响相遇时间和追及时间,只是引起相遇距离和追及距离的变化,具体

变化都应视情况从开始相距的距离中加减。

C. 如何用数学结合方法解决小学数学行程问题

数形结合吧?
首先要根据题目画出一条线段,即为两地的距离
然后根据题目所说明的,再在图中画点(打个比方,一辆车在AB两地之间行驶,行驶一段时间后,距离A或B还有多少千米。即此时这辆车距离A或B画作C,再标出C与A或B之间的距离[多少千米])
设其中一段距离为n(车所行驶的时间)x(车行驶的速度,一般不知道,设x),xn+a(已知距离另一个目的地的距离)就是总路程。
一般行程都有两个交通工具,要么是知道两个工具速度比值,要么就是知道它的速度以及行驶全程的时间。
根据比值就可以知道他的速度为b(两个速度的比值)x,乘以行驶时间就等于总路程,即可连立方程式。速度为已知就可以直接求出总路程连立方程式。
有时候还需要画多个图来进行更清晰易懂的比较。
光说是很难说明的,其实一画就非常简单了。

D. 小学数学行程问题的解决思路要领是什么

还真没思路要领 如果实在说有的话 那就是课本上的公式 看题就知道 难一点的题无非就是需要套的公式多一点复杂一点 题的描述不一样 所以很容易被绕进去 我个人认为 在小学做数学作业 就是要会读题 别的再怎么描述 你都要通过你自己能理解的语言简练的表达出来变成一个你自己熟悉的题 行程问题 无非就是 时间 速度 路程 这三个量的变化 无论是相对而行、还是相向而行、还是先行后追、还是一先走来回后一直走 只要找到这三个量的其中两个 这题就简单了 如果这么说你不理解的话 可以给我发任意一道题 我把我的完整思路给你写下来 希望能帮助到你

E. 行程问题一般有什么解题思路

行程应用题
行程问题是研究物体在一定的条件、环境、范围内运动的问题,这类问题主要涉及到路程、速度、时间三个量之间的关系。较复杂的行程问题还要注意理解“速度和”、“速度差”以及行程中两车的出发时间、出发地点、运动方向与运动结果等四大要素,行程问题根据运动方向的不同可分为三类:
一、 相遇问题
两个物体由于相向运动而相遇,这就是相遇问题。解答相遇问题的关键是求出两个运动物体的速度之和,其基本公式有:
相遇时间=两地路程÷速度和
速度和=两地路程÷相遇时间
两地路程=速度和×相遇时间
二、 相离问题
两个运动物体由于背向运动而相离,就是相离问题。解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。
基本公式有:
两地距离=速度和×相离时间
相离时间=两地距离÷速度和
速度和=两地距离÷相离时间
三、 追及问题
两个运动的物体同向而行,一快一慢,快车后,慢车前,经过一定的时间,快的追上慢的就是追及问题。根据所给的条件不同,可分两种:(1)直接给追及距离的(同时不同地的);(2)间接给追及距离的(同地不同时)。
解答追及问题的关键是确定或求出追及距离和速度差,基本公式有:
追及时间=追及距离÷速度差
追及距离=速度差×追及时间
速度差=追及距离÷追及时间
推荐于 2020-03-10
查看全部7个回答
3-6年级写作文没思路?马鞍山专属作文提升课,在家免费学

00:56
高途免费课
广告
1条评论
yijia1234560赞
相遇时间是什么
— 你看完啦,以下内容更有趣 —
公务员考试行测题库报名时间_报考条件“中公教育”
“中公教育”公务员考试行测题库职位解读,报名指导,在职备考,零基础备考,封闭实战!“中公教育”公务员考试行测题库,题库资料领取,笔面全程,全程服务
广告2020-08-08
行程问题如何解决
行程问题是反映物体匀速运动的应用题。行程问题涉及的变化较多,有的涉及一个物体的运动,有的涉及两个物体的运动,有的涉及三个物体的运动。涉及两个物体运动的,又有“相向运动”(相遇问题)、“同向运动”(追及问题)和“相背运动”(相离问题)三种情况。但归纳起来,不管是“一个物体的运动”还是“两个物体的运动”,不管是“相向运动”、“同向运动”,还是“相背运动”,他们的特点是一样的,具体地说,就是它们反映出来的数量关系是相同的,都可以归纳为:速度×时间=路程。 编辑本段公式流水问题顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度=船速+水速 逆水速度=船速-水速 静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2 相遇问题(直线)相向而行的公式:相遇时间=距离÷速度和(甲的速度×时间+乙的速度×时间=距离) 相背而行的公式:相背距离=速度和×时间(甲的速度×时间+乙的速度×时间=相背距离) 相遇问题(环形)甲的路程+乙的路程=环形周长 多次相遇 线型路程:甲乙共行全程数=相遇次数×2-1 环型路程:甲乙共行全程数=相遇次数 其中甲共行路程=单在单个全程所行路程×共行全程数 追及问题同向而行的公式:(速度慢的在前,快的在后)追及时间=追及距离÷速度差 若在环形跑道上:(速度快的在前,慢的在后)追及距离=速度差×时间 追及距离÷时间=速度差 甲的路程+ 乙的路程=总路程 追及时间=路程差÷速度差 速度差=路程差÷追及时间 追及时间×速度差=路程差 追及问题(直线)距离差=追者路程-被追者路程=速度差X追及时间 追及问题(环形)快的路程-慢的路程=曲线的周长 编辑本段详述要正确的解答有关"行程问题”的应用题,必须弄清物体运动的具体情况。如运动的方向(相向,相背,同向),出发的时间(同时,不同时),出发的地点(同地,不同地),运动的路线(封闭,不封闭),运动的结果(相遇、相距多少、交错而过、追击)。 两个物体运动时,运动的方向与运动的速度有着很大关系,当两个物体“相向运动”或“相背运动”时,此时的运动速度都是“两个物体运动速度的和”(简称速度和),当两个物体“同向运动”时,此时两个物体的追击的速度就变为了“两个物体运动速度的差”(简称速度差)。 当物体运动有外作用力时,速度也会发生变化。如人在赛跑时顺风跑和逆风跑;船在河中顺水而下和逆水而上。此时人在顺风跑是运动的速度就应该等于人本身运动的速度加上风的速度,人在逆风跑时运动的速度就应该等于人本身的速度减去风的速度;我们再比较一下人顺风的速度和逆风的速度会发现,顺风速度与逆风速度之间相差着两个风的速度;同样比较“顺水而下”与“逆流而上”,两个速度之间也相差着两个“水流的速度”。 编辑本段解法设甲的速度为X千米/时,乙的速度为Y千米/时,甲从A地出发,乙从B地出发,当两人第一次相遇时,离A地4千米,也就是甲走了(4/X)小时,而此时距乙离开B地的距离为 〔Y×(4/X)〕千米,于是我们可以知道,整条路线的全程为S=4+〔Y×(4/X)〕,那么也可以清楚这道题目求的就是第一次相遇时离B地的这个距离,用这个距离与第二次两相遇时而到第二次相遇时离B地的3千米进行比较。因此,为了方便以后的说明,将这个距离[Y×(4/X)〕用J来表示。 第一次相遇后,甲需要走过的距离为3+〔Y×(4/X)〕,这样才能与乙第二次相遇,而在甲用同样的时间,乙则要走过距离为4+S-3的路程才能与甲相遇。于是两人的相同时间可以写成一个等式,如下: {3+〔Y×(4/X)〕}/X=(4+S-3)/Y (其中,S为全程距离,上面已经给出过了,这里为了写起来方便就不全写进去了,但做题目时最好还是全写进去,不然会看不明白的。) 整理上面这个式子,可得, 4Y^2-XY-5X^2=0 将这个式子因式分解为 (Y+X)(4Y-5X)=0 可得X与Y之间的关系式,Y=-X或 Y=5X/4 因为两人的速度不可能为负数,所以第一个关系式否掉,那么就是第二个关系式可用。 于是将这个关系式带入J这个距离式子中,可以得出J=(5X/4 )×4/X=5 于是,我们知道了,当甲与乙第一次相遇时,离B地的距离为5千米,而第二次相遇时,离B地的距离为3千米,所以两次相遇地点间的距离为2千米
61赞·1,813浏览
行程问题不好怎么办?
请问是计算程问题的题目,还是实际的旅行行程问题,前者,请给出具体问题,后者请从以下几方面考虑 第一时间是否紧张,旅程的远近,时间紧,考虑飞机,高铁。 第二旅费是否充足,如祣费没问题,还是选飞机,高铁,舒适度较高,反之,则可选普通火车。价格是便宜好多。 第三住宿如果已有当地人接待,则可不考虑,否则请提前预订,并且选好地点,要交通方便的。
66浏览2019-11-26
行程问题怎么做?
相向而行的公式:相遇时间=距离÷速度和(甲的速度×时间+乙的速度×时间=距离)。 相背而行的公式:相背距离=速度和×时间。(甲的速度×时间+乙的速度×时间=相背距离) 相向而行的公式:(速度慢的在前,快的在后)追击时间=追击距离÷速度差。 若在环形跑道上,(速度快的在前,慢的在后)追击距离=速度差×时间。 追击距离÷时间=速度差
169赞·1,431浏览2018-12-22
怎么解行程问题
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间 关键问题:确定行程过程中的位置 相遇问题:速度和×相遇时间=相遇路程(请写出其他公式) 相遇问题:(直线):甲的路程+乙的路程=总路程 相遇问题:(环形):甲的路程 +乙的路程=环形周长 追及问题:追击时间=路程差÷速度差(写出其他公式) 追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间 追及问题:(环形):快的路程-慢的路程=曲线的周长 流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度:船速+水速 逆水速度=船速-水速 静水速度:(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2 流水问题:关键是确定物体所运动的速度,参照以上公式。 列车过桥问题:关键是确定物体所运动的路程,参照以上公式。 流水问题:流水速度+流水速度÷2 水 速:流水速度-流水速度÷2
2赞·716浏览
解决行程问题和分配问题的方法
问题分析中的第一步其实和问题的定义是完全连贯的,即细化问题的定义。在问题定义阶段我们仅仅给出现状和期望的差距即可,但是究竟是哪里的问题?问题的症状表现究竟分为了哪些方面?这些内容就属于问题定义的细化,由于在整个细化过程中就会设计到调查研究,我们需要调查研究,并根据收集回来的数据分析后才能够得出结论,这个过程其实就已经是问题分析的过程。 如果你不知道你要去哪里?那么你可以选择任何一条路。分析问题的过程就是需要知道具体的目标,同时通过问题细化后给出结构化的问题定义。才能够达到互斥和综合无遗漏的定义目标。问题由几部分组成,一个是问题所作用的对象,一个是问题表象本身。这两者都存在问题分解和细化的过程,通过分解后才能够形成更加细小和容易解决的组件。比如讲我现在很难受,这个问题的作用对象是我,而我这个对象是可以分解的,即是生理上的难受还是心理上的难受,如果是身体上的是外伤还是内部的?内部的可能又涉及到具体哪个部位难受,这就是问题作用的对象的分解。另外问题本身的表象难受也可以进行分解,是焦虑,痛苦还是悲伤,如果是痛苦的是隐痛,阵痛还是酸痛?通过这两方面的分解后就基本清楚了如何对症下药,如何根据经验进行模式匹配。 当我们遇到问题的时候,我们一般会采用鱼骨图进行问题根源分析,但同时对问题本身的分解和分析也同样重要。在这里可以采用思维导图或逻辑树的方法对问题本身进行分解,分解后你才会发现问题的产生是由各种问题要素相互作用后才产生的,问题的表象是由各种小问题的表象共同聚合而成的。有了这个思路就有了动态系统观的思想,知道了问题本身远远比黑白是非要复杂的多,知道了解决问题不能片面的针对表像而忽视了整体。一个问题我们只要能够解决关键的问题要素就能够达到大家都认同的一个满意的结果,而这种分析后我们就容易采用2/8原则确定问题的关键要素,并有针对性的去设计数据收集,分析和调查方案和行动。 对于问题的分解我们期望引入系统思考的思路,即问题不是简单的进行逻辑分解就算完成,而是在问题分解为子问题和问题要素后必须要去考虑问题之间的交互作用。各问题要素之间存在着正负作用,而且作用力大小也不一样,如果去片名追求一个指标的最优而不去考虑对其他要素的影响,那最终结果往往是问题没有解决反而表现的更严重。 问题树的方法主要用在结构化问题分析上,因为有了问题树就清楚了整个问题的构成,就可以对问题展开全面的调查研究和分析。这无疑也增加了我们收集和分析数据的工作量,但由于做了全面分析可以保证不放过任何一个问题症结。而非结构化的方法往往并不需要很细致的进行问题分解,当问题产生后非结构化分析的方法首先是根据个人的经验先假设可能产生问题的分支和要素,再收集数据和通过分析去论证自我假设的正确性,这种方法在我们有较多的经验积累的时候往往更加有效。
2赞·861浏览
【携程APP】广西旅游攻略 介绍_立即下载
值得一看的广西相关信息推荐
携程APP 广西旅游攻略,有哪些好玩的景点,在线攻略,立即下载!
m.ctrip.com广告 
【携程APP】广西旅游攻略 介绍_立即下载
携程APP 广西旅游攻略,有哪些好玩的景点,在线攻略,立即下载!
m.ctrip.com广告 
中国很多中年夫妻,喜欢分床睡,这样做到底好不好?
实际上现在越来越多的中年夫妻喜欢分床睡,但是这也不一定预示着婚姻出现了多大的问题。因为人到中年,可能
8条回答·695人在看
生意不好,是转让还是放弃?
这也是我建议孙老板放弃的原因。一旦人们下意识地不喜欢某事,他们只会变得越来越厌恶。他们
5条回答·122人在看
酿酒工艺:红米酒家庭的酿造方法是什么
红米酒怎么做的?红米酒家庭的酿造方法是什么?喝红米酒有什么好处? 一、自酿红米酒的方法: 1、糯米淘洗后放清水里浸泡12小时。浸泡好的糯米再次淘洗至洗米水变清澈。 2、把淘好的米放蒸格里蒸30-
729人在看
千峰竞秀、万壑奔流,作为道教名山的三清山,都有哪些令人流连忘返的特点呢?
三清山可以说是非常的着名,因为这里有着优美的风景,而且道教文化厚重,可以说是道教教徒的圣地,而且这里
10条回答·340人在看
评论

F. 小学生行程问题的解决方法

首先要根据题目画出一条线段,即为两地的距离
然后根据题目所说明的,再在图中画点(打个比方,一辆车在AB两地之间行驶,行驶一段时间后,距离A或B还有多少千米。即此时这辆车距离A或B画作C,再标出C与A或B之间的距离[多少千米])
设其中一段距离为n(车所行驶的时间)x(车行驶的速度,一般不知道,设x),xn+a(已知距离另一个目的地的距离)就是总路程。
一般行程都有两个交通工具,要么是知道两个工具速度比值,要么就是知道它的速度以及行驶全程的时间。
根据比值就可以知道他的速度为b(两个速度的比值)x,乘以行驶时间就等于总路程,即可连立方程式。速度为已知就可以直接求出总路程连立方程式。
有时候还需要画多个图来进行更清晰易懂的比较。
光说是很难说明的,其实一画就非常简单了

G. 怎么解决行程问题

行程应用题

行程问题是研究物体在一定的条件、环境、范围内运动的问题,这类问题主要涉及到路程、速度、时间三个量之间的关系。较复杂的行程问题还要注意理解“速度和”、“速度差”以及行程中两车的出发时间、出发地点、运动方向与运动结果等四大要素,行程问题根据运动方向的不同可分为三类:

一、 相遇问题

两个物体由于相向运动而相遇,这就是相遇问题。解答相遇问题的关键是求出两个运动物体的速度之和,其基本公式有:

相遇时间=两地路程÷速度和

速度和=两地路程÷相遇时间

两地路程=速度和×相遇时间

二、 相离问题

两个运动物体由于背向运动而相离,就是相离问题。解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。

基本公式有:

两地距离=速度和×相离时间

相离时间=两地距离÷速度和

速度和=两地距离÷相离时间

三、 追及问题

两个运动的物体同向而行,一快一慢,快车后,慢车前,经过一定的时间,快的追上慢的就是追及问题。根据所给的条件不同,可分两种:(1)直接给追及距离的(同时不同地的);(2)间接给追及距离的(同地不同时)。

解答追及问题的关键是确定或求出追及距离和速度差,基本公式有:

追及时间=追及距离÷速度差

追及距离=速度差×追及时间

速度差=追及距离÷追及时间

H. 行程问题的技巧和解题过程

行程问题公式
基本概念
行程问题是研究物体运动的。
基本公式
路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题
确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇时间×速度和=相遇路程
相遇问题(直线)
甲的路程+乙的路程=总路程
相遇问题(环形)
甲的路程 +乙的路程=环形周长
追及问题
追及时间=路程差÷速度差
速度差=路程差÷追及时间
追及时间×速度差=路程差
追及问题(直线)
距离差=追者路程-被追者路程=速度差X追及时间
追及问题(环形)
快的路程-慢的路程=曲线的周长
流水问题
顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速
逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2
水速:(顺水速度-逆水速度)÷2
船速:(顺水速度+逆水速度)÷2
解题关键
船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:
顺水速度=船速+水速,(1)
逆水速度=船速-水速.(2)
这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
根据加减法互为逆运算的关系,由公式(l)可以得到:
水速=顺水速度-船速,
船速=顺水速度-水速。
由公式(2)可以得到:
水速=船速-逆水速度,
船速=逆水速度+水速。
这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:
船速=(顺水速度+逆水速度)÷2,
水速=(顺水速度-逆水速度)÷2。
1)一般公式: 静水速度(船速)+水流速度(水速)=顺水速度; 船速-水速=逆水速度; (顺水速度+逆水速度)÷2=船速; (顺水速度-逆水速度)÷2=水速。 (2)两船相向航行的公式: 甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度 (3)两船同向航行的公式: 后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。

I. 行程问题的解题技巧和方法

行程问题的解题技巧

一般来说,在这三个量当中,由于往往涉及不同东西或者个体,因此速度大多时候是个变量,所以不变量基本上隐藏在路程和时间这两个量里面。

行程问题的解题方法

首先,我们来看行程问题的核心公式S=VT。

这种等号一边是一个量,另一边是两个量乘积的公式,可以称之为正反比关系的存在这种公式有一个潜在的规律就是,不管题目怎么设置,路程、速度、时间这三个量总有一个是确定不变的,而另外两个量都是变的,只要找到行测公式当中的不变量,正反比的等量关系就找出来了。

所以关键是找这个不变的量。

阅读全文

与二年级行程问题及解决方法相关的资料

热点内容
创造与魔法快速让作物生长的方法 浏览:492
打包的方法和步骤视频 浏览:762
茅台泡白酒的鉴别方法 浏览:925
锻炼体能的方法视频 浏览:125
什么是实验分析方法 浏览:307
茎木类药材栽培年龄鉴别方法 浏览:106
苹果平板里的录音在哪里设置方法 浏览:366
除了暖气还有什么保温方法 浏览:502
胆囊多发结石最佳处理方法 浏览:195
户外气氛灯安装方法接线 浏览:223
西方法律史论文摘要怎么写 浏览:680
巨龙的正确养殖方法 浏览:655
如何变成名词性物主代词的方法 浏览:934
调漂找底最简单方法图片 浏览:927
成年人增高方法有哪些办法 浏览:860
导数教学方法总览 浏览:887
透明板墙面安装方法 浏览:288
最简单的负荷方法 浏览:810
女生阴道炎的治疗方法 浏览:399
物理滑板问题解决方法 浏览:203