㈠ 高炉炼铁如何有效的除硫
主要还是三个途径,提高碱度,提高炉温,和炉外脱硫。
关于提高碱度和提高炉温,结果都会提高炉渣碱度,由此带来的问题,比如难行。如果提高碱度和炉温效果不明显或者导致高炉运行不畅,那就往铁水中添加生石灰或者脱硫剂吧
㈡ 怎么对煤进行脱硫
对煤进行脱硫有如下几种方法:
一、物理法: 通常用重力分离或磁分离法去除煤分中的硫化铁(黄铁矿),以此形式存在的硫约占煤中硫分的2/3。
二、化学法:煤经粉碎后与硫酸铁水溶液混合,在反应器中加热至100~130℃,硫酸铁与黄铁矿反应转化为硫酸亚铁和单体硫,前者氧化后循环使用,后者作为副产品回收。
三、气化法:煤在1000~1300℃高温下,通过气化剂,使之发生不完全氧化,而成为煤气。煤中硫分在气化时大部分成为硫化氢进入煤气,再用液体吸收或固体吸附等方法脱除。
四、液化法: 煤的液化有合成法、直接裂解加氢法和热溶加氢法等。在液化过程中,硫分与氢反应生成硫化氢逸出,因此得到高热值、低硫、低灰分燃料。
(2)高炉煤气脱硫简单方法扩展阅读:
燃煤后烟气脱硫技术
燃媒后烟气脱硫就是媒燃烧后所产生烟气的股值 (FGD),是目前世界上唯一大规模商业化应用的脱硫技术。世界各国研究开发的烟气脱硫技术达200多种,但商业应用的不超过20种。在FGD技术中,按脱破剂的种类划分
可分为以Ca2SO3为基础的钠法、以NH3为基础的氨法和以有机碱为基础的有机碱法5中,目前普遍使用的商业化技术是钙法,所占比例在90%以上,按吸收剂及脱硫产物在脱硫过程中的干湿状态将脱硫技术分为湿法、干法和半干(半湿)法;按脱硫产物的用途,可分为抛弃法和回收法两种。
㈢ 煤气脱硫的原理
发生炉煤气中的硫来源于气化用煤,主要以H2S形式存在,气化用煤中的硫约有80%转化成H2S进入煤气,假如,气化用煤的含硫量为1%,气化后转入煤气中形成H2S大约2-3g/Nm3左右,而陶瓷、高岭土等行业对煤气含硫量要求为20-50 mg/Nm3;假如煤气中的H2S燃烧后全部转化成SO2为2.6g/m3左右,比国家规定的SO2的最高排放浓度指标高出许多。所以,无论从环保达标排放,还是从保证企业最终产品质量而言,煤气中这部分H2S都是必须要脱除的。
煤气的脱硫方法从总体上来分有两种:热煤气脱硫和冷煤气脱硫。在我国,热煤气脱硫现在仍处于试验研究阶段,还有待于进一步完善,而冷煤气脱硫是比较成熟的技术,其脱硫方法也很多。
冷煤气脱硫大体上可分为干法脱硫和湿法脱硫两种方法,干法脱硫以氧化铁法和活性炭法应用较广,而湿法脱硫以砷碱法、ADA、改良ADA和栲胶法颇具代表性。
㈣ 煤气脱硫的方法及原理
发生炉煤气中的硫来源于气化用煤,主要以H2S形式存在,气化用煤中的硫约有80%转化成H2S进入煤气,假如,气化用煤的含硫量为1%,气化后转入煤气中形成H2S大约2-3g/Nm3左右,而陶瓷、高岭土等行业对煤气含硫量要求为20-50mg/Nm3;假如煤气中的H2S燃烧后全部转化成SO2为2.6g/m3左右,比国家规定的SO2的高排放浓度指标高出许多。所以,无论从环保达标排放,还是从确定企业终产品质量而言,煤气中这部分H2S都是必须要脱除的。
一、热煤气脱硫和冷煤气脱硫唐山绿源环保
煤气的脱硫方法从总体上来分有两种:热煤气脱硫和冷煤气脱硫。在我国,热煤气脱硫现在仍处于试验研究阶段,还有待于进一步完善,而冷煤气脱硫是比较成熟的技术,其脱硫方法也很多。
冷煤气脱硫大体上可分为干法脱硫和湿法脱硫两种方法,干法脱硫以氧化铁法和活性炭法应用较广,而湿法脱硫以砷碱法、ADA、改良ADA和栲胶法颇具代表性。
二、干法脱硫技术
煤气干法脱硫技术应用较早,早应用于煤气的干法脱硫技术是以沼铁矿为脱硫剂的氧化铁脱硫技术,之后,随着煤气脱硫活性炭的研究成功及其生产成本的相对降低,活性炭脱硫技术也开始被广泛应用。
三、氧化铁脱硫技术
早使用的氧化铁脱硫剂为沼铁矿和人工氧化铁,为增加其孔隙率,脱硫剂以木屑为填充料,再喷洒适量的水和少量熟石灰,反复翻晒制成,其PH值一般为8-9左右,该种脱硫剂脱硫效率较低,必须塔外再生,再生困难,不久便被其他脱硫剂所取代。现在TF型脱硫剂应用较广,该种脱硫剂脱硫效率较高,并可以进行塔内再生。
四、活性炭脱硫技术
活性炭脱硫主要是利用活性炭的催化和吸附作用,活性炭的催化活性很强,煤气中的H2S在活性炭的催化作用下,与煤气中少量的O2发生氧化反应,反应生成的单质S吸附于活性炭表面。当活性炭脱硫剂吸附达到饱和时,脱硫效率明显下降,必须进行再生。活性炭的再生根据所吸附的物质而定,S在常压下,190℃时开始熔化,440℃左右便升华变为气态,所以,一般利用450-500℃左右的过热蒸汽对活性炭脱硫剂进行再生,当脱硫剂温度提高到一定程度时,单质硫便从活性炭中析出,析出的硫流入硫回收池,水冷后形成固态硫。
㈤ 高炉炼铁如何脱硫
高炉中硫的来源进入高炉中的硫来自其原燃料,如矿石、烧结矿、球团矿、焦炭、熔剂和喷吹燃料等。通常以焦炭带入硫量最多,约占入炉总硫量的60%~80%。焦炭中的硫主要以有机硫CnSm和灰分中的硫化物和硫酸盐形式存在。在天然矿石和熔剂中,硫以黄铁矿(FeS2)和硫酸盐(CaSO4,BaSO4等)形态存在。烧结矿和球团矿中的硫以FeS和CaS形态存在。冶炼每吨生铁时炉料所带入的总硫量(见硫负荷)一般为4~6kg。
高炉中硫的行为炉料中的硫随着炉料下降和温度升高,一部分逐渐挥发进入煤气。焦炭中的有机硫在炉身下部到炉腹有30%~50%以CS及COS等化合物形态先挥发,其余则在气化反应和风口前燃烧时生成SO2、H2S和其他气态化合物进入煤气。矿石和熔剂中的硫也有一部分经分解或反应生成硫蒸气或SO2进入煤气。进入气相的硫在上升过程中少部分随煤气逸出高炉,大部分又被下降的炉料吸收。在高炉的高温区和低温区之间形成硫的循环。高炉中炉料和铁水、炉渣之间硫的分配见图。在块状带,矿石在200~900℃时吸收硫较少,在1000℃左右时吸收加快。在软熔带,炉料的吸硫条件好,硫含量增大。在滴落带,熔化滴落的渣、铁剧烈地吸收煤气中的硫.同时发生硫由铁向渣中转移。在炉缸中,铁滴穿过渣层具有良好的反应条件,脱硫反应大量进行。在炉缸聚集的渣铁界面,脱硫反应继续进行,直到出铁时,铁口通道内下渣与铁水仍然进行着铁的脱硫。生产实践和研究表明,在高炉冶炼炼钢生铁时,有5%左右的硫是随煤气逸出高炉的,而在冶炼铸造生铁时此值可达到10%~15%。在高炉冶炼锰铁、硅铁等铁合金时,因焦比高,炉顶温度高而使随煤气逸出高炉的硫量增大,但也在50%以下,其余的硫分配在炉渣与生铁之间。因此高炉的脱硫主要是靠炉渣在上述三处脱去铁水中的硫。
渣脱硫的化学反应硫在熔渣中以多种硫化物形态存在,几种主要的硫化物按其稳定性由小到大的排列是FeS、MnS、MgS、CaS,其中FeS还能溶于铁水。炉渣的脱硫反应就是渣中的CaO、MgO等碱性氧化物与铁水中的硫反应生成不溶于铁水而溶于渣的稳定化合物CaS,MgS等,从而使铁水中的硫转移到渣中而被脱除的。在高炉还原性气氛的情况下,炽热焦炭中的硫和溶于铁水中的C发生脱硫反应:
(CaO)+[S]+[C]一(CaS)+CO(1)
或(CaO)+[FeS]+[C]一(CaO)+[Fe]+CO
或可写作(O2— )+[S]+[C]一(S2— )+CO(2)
式(1)可以用分子理论来说明反应机理,即铁水中的FeS通过渣铁界面扩散溶到熔渣中,与熔渣中的CaO反应生成CaS和FeO,反应生成的FeO再被C还原成Fe,生成的C0离开反应界面进入煤气。式(2)可以用离子理论来说明反应机理,在液态渣铁界面处进行着离子迁移过程,铁水中呈中性的原子硫,在渣铁界面处吸收熔渣中的电子变为硫负离子S2—进入熔渣中,而熔渣中的氧负离子O2—一在界面处失去电子变成中性原子进入铁水中并与铁水中C化合生成CO,从铁水中排出。由于铁水中有Si,Mn等其他元素存在,这些元素也与铁水中的S相互作用以耦合反应形式脱硫:
2[S]+ [Si] +2(CaC))一2(CaS)+(Si02)(3)
[S]+[Mn]+(CaO)一(CaS)+(MnO)(4)
或可写作2[S]+[Si]+2O2—一2S2—+(SiO2)(5)
[S]+[Mn]+O2——S2—+(MnO)(6)
硫在高炉渣和铁水之间的分配在高炉中脱硫反应(1)达到平衡时,硫在炉渣和铁水之间质量百分浓度的比值称为硫的分配比,是衡量炉渣脱硫的极限能力,生产和研究中把它简化为并称之为硫的分配系数。从高炉渣脱硫的热力学分析得出Ls是反应平衡常数Ks、硫在铁水中的活度系数、炉渣氧势和以碱度为代表的炉渣成分的函数。在高炉冶炼的炉缸温度1500oC条件下,铁水中硫的活度系数在4~6之间,渣中氧化铁含量0.5%左右,炉渣碱度1.0左右。反应达到平衡时的Ls可达到200以上。但实际生产中,受条件的限制,脱硫反应达不到平衡,Ls值只能达到20~50,最高也不超过80。因此在高炉炼铁中要努力改善脱硫的热力学和动力学条件,使Ls值提高,铁水中[S降得更低。
㈥ 高炉煤气脱硫有什么好的技术吗
高炉煤气的特点是气量大、终端用户分散,煤气中含有硫化氢并有一定含量的有机硫、氰化氢、氯、氟、尘等杂质。
而运用东狮公司的成熟的湿法脱硫工艺完成前置脱硫化氢技术配置,在硫化氢脱除这个环节是成熟可靠的;高硫容抑盐技术的应用,解决了湿式氧化法脱硫工艺副盐的问题,高硫容的设计大大降低设备投资并简化了流程,可做到湿法脱硫占地小,操作简单,无人值守。此外,对于燃烧后SO₂要求达到超低排放标准以下的钢铁企业,需要在TRT将有机硫转化为硫化氢,并和高炉煤气中含有的硫化氢一起在湿式氧化法脱硫的装置中进行脱除,高炉煤气清洁利用脱硫后生成物是硫磺,这也是环保治理倡导的生成物资源化利用的工艺。同时也是目前不错的脱硫技术应用组合。