1. 气相色谱质谱仪能检测DNA吗
不能,气质基础是气相色谱+质谱检测器,DNA是相对大分子的有机物,不宜用气相做,且生化分析多数要保证生物活性,气质是不会有生物活性的,所以
2. 23andme DNA测序
http://www.bio88.cn/download/list.php?fid-4-page-1.htm
这里有很多DNA分析的软件,而且很多是免费的
大规模DNA测序的趋势——自动化�
DNA测序实现规模化的重要条件是自动化和机械化。目前,DNA制备、克隆文库 组建及筛选、DNA测序分析、数据的分析获得、碱基序列阅读、重叠克隆群顺序排定等过程 均已平行发展,自动化操作紧随其后。随着DNA测序不断由半自动化向自动化过渡,原始数据积累将不成问题,关键是把全基因的散测序组装起来,以实现DNA测序的完整性。目前,在亚克隆筛选、模板制备、测序反应、碱基阅读等方面均在一定程度上实现了自动化。
1、 克隆筛选
从亚克隆文库中寻找并筛选单一克隆已逐步实现了自动化。
2、模板制备 现有的机器人被用来自动分离DNA并制备适于传统操作程度的测序模板 。特定用途的DNA分离仪也已采用。�
3、 测序反应
由于手工测序不能保证所需的再生产能力、高通量和准确的重复性,所以 ,DNA 测序反应的自动化对大规模测序是至关重要的。
4、自动放射性自显影阅读机�
近几年来,自动化放射性自显影阅读机纷纷 上市,并不断向商业化及科研应用方向发展。
�
5、自动测序仪�
DNA自动测序仪的应用实现了凝胶电泳、初始数据获取、碱基阅读等步骤自动化 。自动测序仪
第三节 未来的测序技术�
一、质谱法(mass spectrometry)�
新型的电离技术如电喷雾离子化和基质辅助激光吸收技术使利用质谱法 分析大片段DNA 成为可能。其中四极离子捕获效果更好。Fourier转型质谱或飞行时间质谱可进行极 为敏感的DNA测序。
二、杂交测序法(seguencing by hybridization,SBH)�
杂交测序法是一种创新性的DNA测序技术,主要是采用一系列n-mer长的所有可能的寡核苷酸与未知DNA靶序列进行杂交,记录下最适的杂交 片段,然后组装便可获得未知片段的碱基序列。
三、单分子测序法(single-molecule seguencing)�
单分子测序法是美国Los Alames国家实验室(LANL )发展的一种通过检测标记在单个 分子上的荧光进行DNA快速测序的方法。模板DNA分子首先通过酶法修饰或合成,使不同的荧 光素标记不同的碱基,然后,用两个激光束(或称激光镊子lasertweezer)夹住标记的DN A分 子,将其置于液流系统,从被固定的核苷酸上游端开始用外切酶逐一切下被标记的核苷酸, 通过单分子荧光探测器检测液流中切下的标记核苷酸,再根据检测到的信号顺序确定DNA顺 序。�
四、原子探针显微镜测序法(atomic probe micros)�
80年代发展的原子探针显微镜技术如扫描遂道显微镜(scanning tunneling micro scopes,STM)和原子力显微镜(atomic force microscopes,ATM)使直接检测DNA分子结构成为 可能。STM是由IBM Zurich研究所的科学家发明的用来直接观察单分子、单原子结构的技术 ,最近有人将其应用于阅读DNA序列。
五、超薄水平凝胶电泳技术(Horizontal Ultrathin Gel Electropho resis,HUGE)�
1990年,Swerdlow H首次采用HUGE技术进行DNA测序研究。该技术是在单一超薄凝 胶平板 上放入多道平行样品,在超高压电场作用下,通过HUGE检测系统进行测序。
3. DNA质量检测相关方法,及效果
对于基因组DNA质量检测主要包括:基因组DNA片段大小的确定,基因组DNA浓度的测定,基因组DNA纯度的测定三方面。
用到的技术方法有:琼脂糖凝胶电泳(确定片段大小),使用紫外分光光度计测定基因组DNA溶液的OD值(浓度和纯度的测定,OD260/OD280应该在1.8左右,高了表明有RNA污染,低了表明有蛋白质污染)
再看看别人怎么说的。
基因突变检测方法:
(1)
pcr-sscp法是在非这性聚丙烯酰胺凝胶上,短的单链dna和rna分子依其大街基序列不同而形成不同构象,一个碱基的改变将影响其构象而导致其在凝胶上的移动速度改变。其基本原理为单链dna在中性条件下会形成二级结构,这种二级结构依赖于其碱基组成,即使一个碱基的不同,也会形成不同的二级结构而出刺同的迁移率。由于该法简单快速,因而被广泛用于未知基因突变的检测。
(2)异源双链分析法(ha)
ha法直接在变性凝胶上分离杂交的突变型一野生型dna双链。由于突变和野生型dna形成的异源杂合双链dna在其错配处会形成一突起,在非变性凝胶中电泳时,会产生与相应的同源双dna不同的迁移率。该法与sscp相似,所不同的是sscp分离的是单链dna,ha法分离的是双链dna,也只适合于小片段的分析。
(3)突变体富集pcr法(mutant-enriched
pcr)本法的基本原理是利用ras基因家族某个密码子部位存在已知的限制性内切酶位点,如k-ras基因第12密码子的bstni位点,第13密古巴子有bgⅰⅱ位点。用链续二次的巢式pcr来扩增包括k-ras第12、13密码子的dna片段,在两次扩增反应之间用相应的内切酶消化扩增的dna片段,野生型因被酶切而不能进入第二次pcr扩增,而突变型则能完整进入第二次pcr扩增并得到产物的富集。
5. DNA质量检测相关方法,及效果
对于基因组DNA质量检测主要包括:基因组DNA片段大小的确定,基因组DNA浓度的测定,基因组DNA纯度的测定三方面。
用到的技术方法有:琼脂糖凝胶电泳(确定片段大小),使用紫外分光光度计测定基因组DNA溶液的OD值(浓度和纯度的测定,OD260/OD280应该在1.8左右,高了表明有RNA污染,低了表明有蛋白质污染)
6. 常用的基因突变检测方法有哪些
1、焦磷酸测序法
测序法的基本原理是双脱氧终止法,是进行基因突变检测的可靠方法,也是使用最多的方法。但其过程繁琐、耗时长,灵敏度不高,对环境和操作者有危害,故在临床应用中存在一定的限制。
焦磷酸测序法适于对已知的短序列的测序分析,其可重复性和精确性能与SangerDNA测序法相媲美,而速度却大大的提高。
焦磷酸测序技术产品具备同时对大量样品进行测序分析的能力。为大通量、低成本、适时、快速、直观地进行单核苷酸多态性研究和临床检验提供了非常理想的技术操作平台。
2、微数字聚合酶链反应
该方法为将样品作大倍数稀释和细分,直至每个细分试样中所含有的待测分子数不超过1个,再将每个细分试样同时在相同条件下聚合酶链反应后,通过基因芯片逐个计数。该方法为绝对定量的方法。
3、聚合酶链反应-限制性片段长度多态性分析技术
聚合酶链式反应(PCR)是一种用于放大扩增特定的DNA片段的分子生物学技术,它可看作是生物体外的特殊DNA复制,PCR的最大特点是能将微量的DNA大幅增加。该法一般用于检测已知的突变位点。
因此,无论是化石中的古生物、历史人物的残骸,还是几十年前凶杀案中兇手所遗留的毛发、皮肤或血液,只要能分离出一丁点的DNA,就能用PCR加以放大,进行比对。这也是“微量证据”的威力之所在。
由1983年美国Mullis首先提出设想,1985年由其发明了聚合酶链反应,即简易DNA扩增法,意味着PCR技术的真正诞生。到如今2013年,PCR已发展到第三代技术。1976年,台湾科学家钱嘉韵,发现了稳定的Taq DNA聚合酶,为PCR技术发展也做出了基础性贡献。
PCR是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右)。
DNA聚合酶沿着磷酸到五碳糖(5'-3')的方向合成互补链。基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度,复性温度,延伸温度之间很好地进行控制。
4、高效液相色谱法
该方法是基于发生错配的杂合双链DNA与完全匹配的纯合双链DNA解链特征的差异而进行检测的,可检测出含有单个碱基的置换、插入或缺失的异源双链片段。
与测序法相比,该法简单、快速,不仅可用于已知突变的检测,还可用于未知突变的扫描。但只能检查有无突变,不能检测出突变类型,结果判断容易出错。
5、单链构象异构多态分析技术
依据单链DNA在某一种非变性环境中具有其特定的第二构象,构象不同导致电泳的迁移率不同,从而将正常链与突变链分离出来。与测序法相比,灵敏性更高。
7. 什么是质谱,质谱分析原理是什么
质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。
质谱分析原理:将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。
质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。
(7)质谱用于dna检测方法扩展阅读
相关仪器:
质谱仪一般由四部分组成:
进样系统——按电离方式的需要,将样品送入离子源的适当部位;
离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束。
质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;
检测器——用来接受、检测和记录被分离后的离子信号。
一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。
8. DNA检测的方法都有哪些
DNA检测
技术有很多,主要分为定性和定量方法。给你举几个:1,分子杂交技术,(包括southern杂交,northern杂交,基因芯片等)分子杂交分析的基本原理是基于DNA探针检测变性而且固定在硝酸纤维素膜上的宿主细胞DNA。这些探针可以不依赖宿主细胞DNA来制备,例如用随机引物制备探针。探针上标记酶﹑生物素﹑放射性同位素﹑地高辛(Dig)等。由于地高辛标记核酸探针,操作方便、灵敏度高,已标记的探针在4℃贮存可达两年之久,方便随时应用,所以现在常采用地高辛标记核酸探针,用光标记法将光敏Dig标记到探针上,制成光敏-Dig-核酸探针,再与固定在硝酸膜上的靶核酸进行靶DNA分子杂交,使之与抗Dig-碱性磷酸酶结合,最后可用不同的检测方式进行检测,
发光检测
和显色检测均可,灵敏度可达10pg以下2,基于DNA结合蛋白的方法Threshold®
Immunoassay分析系统是基于两种DNA序列非特异性蛋白,单链DNA(ssDNA)结合蛋白(SSB)和抗ssDNA
的单抗。检测的基本过程是当生物素—DNA单链结合蛋白和尿素酶—抗ssDNA
的单抗与变性的宿主细胞DNA结合最终形成复合物,通过亲合素将此复合物连接到生物素—硝酸纤维素膜,在通过洗涤所有非特异性的被洗脱掉,最后放于有
尿素溶液
的读数仪,尿素酶催化尿素分解成NH3和CO2
导致PH值发生变化,读数仪根据PH值的变化换算成DNA的量,从而达到检测残余DNA含量的目的。3,PCR法,其中以实时定量PCR法最为突出荧光定量
PCR是基于PCR扩增时,在加入一对引物的同时加入一个特异性的荧光探针,产物的增加可以通过荧光信号指示,通过实时监控PCR体系中的荧光信号,对样本中初始模板进行定量分析。定量PCR可实时检测产物量,通过加入已知浓度的
标准样品
绘制标准曲线,然后根据待测样品在标准曲线中的位置推算初始模板的浓度,从而达到检测残余DNA含量的目的。此外,对DNA的定量技术也有很多,可以看下这篇文章《核酸定量技术及其在生物检测中的应用》
9. 如何分析一个不确定的蛋白质或DNA片段
这是一个很大的问题。。。
“不确定”?你是指序列未知的待测蛋白质或DNA吗?好吧,我能想到的“不确定”就是未知序列的意思了。
测定未知蛋白质或者DNA的序列一般都可以用三种方法:生物方法、化学方法和物理方法。生物学方法——酶解,一般和化学方法结合使用。
对于蛋白质的测序首先测定蛋白质分子中多肽链的数目,然后拆分多肽链并断开链内二硫键再分析每一条多肽链的序列。
由于测序分析的方法一次能测定的序列不能太长,所以要将获得的多肽链进行裂解,一般使用酶或者溴化氢、羟胺等化学试剂。获得小的多肽片段之后可以使用Edman降解法进行化学降解分析,也可以使用外肽酶进行水解,或者使用质谱等物理方法测定其序列,此外还可以根据所编码的DNA序列进行推定,但是一般这种方法准确率比较低。获得多肽片段序列之后进行肽段在多肽链中次序的决定,解决这个问题使用的是使用多种断裂方法获得不同的肽段组合,因为不同的断裂方法切口彼此错位,不同套的肽段正好相互跨过切口重叠,然后使用推理的方法,将肽段”组装“起来。现在较为常用的方法是X-ray,首先异源表达获得蛋白质晶体然后测定其三维结构,自然也就获得了蛋白质的序列。另外核磁共振也有使用,但是由于测定蛋白质分子量受限,不如X-ray使用广泛。
DNA的测序也是使用生物学方法和化学方法。
生物化方法可以使用与蛋白质测序类似的方法,先获得小片段,然后叠加,R.W.Holley首先测定酵母丙氨酸tRNA序列是使用的策略就是这样。但是一般蛋白质所含氨基酸数目从几个到几千,但是不会太多,相比之下DNA的核苷酸就是天文数字了,因此必须使用其他的办法。Sanger首先提出一种策略——”加减法“,即设计方法使得DNA末端固定为某一种核苷酸,然后通过测定DNA长度来推测其序列。
首先,在做“加法体系”和“减法体系”以前的工作。
待测DNA的单链作为模板,一个合适的引物,四种dNTP,用同位素标记。
DNA聚合酶从引物开始合成一条互补链,理想情况是,合成所产生各种长度的片段都存在。
然后除去那些未参与合成的dNTP,将剩下的合成产物,分成两部分。
一部分用于加法系统,一部分用于减法系统。
加法系统:将用于加法系统的产物再分成四小份,每一小份中仅仅将四份中的dNTP的一种加入反应体系。比如仅加入dATP。由于DNA由聚合酶具有3′→5′的外切酶活性,而反应体系中缺少另外三种必要的dNTP,合成产物就从3′→5′方向降解。然而由于存在dATP,显然遇到dA的位置降解反应就停止了。因而所有的片段都是以A结尾的。同理,可以分别制备以C、G或T结尾的另外三组片段。
四组片段在同一块凝胶板的不同样品槽中同时电泳(这类图LZ可以在书上随便找到),从放射自显图上就可以推断出碱基序列,因为从A样品槽查出的放射性区带代表A在片段中的位置,同理也可定出C、G和T的位置。
【加法系统实际就是以降解为条件,以DNA聚合酶的3′→5′的外切酶活性为基础,当降解过程遇到试剂中所富含的dNTP时,反应就停止】
按理只用一个加法系统就足以推断DNA的碱基序列了。但由于技术上的原因,只用一种方法有时不能得到完全正确的结果,因此又设计了一种减法系统。
减法系统:也是将上述酶促产物分成四小份,每一小份中只加入三种dNTP,比如缺少dATP。在这个反应体系中,DNA聚合酶能够把片段继续合成下去,但是在遇到应该是dATP参入的位置时,合成反应就停下来了。这就可以得到一个都是以A前一个位置为结尾的片段组,电泳后同样可以定出A的位置。
【减法系统实际就是以合成为条件,当合成过程缺少需要的dNTP时,反应就停止】
但此加减法并不尽如人意,由于反应速度上的差异,有些片段可能多些,另一些片段可能少些,有时可能导致漏读和重读,有时图谱上还会出现假谱线,当同样碱基排列时图谱上有时只出现一条带。因此用这个方法测定DNA片段可能有1/50的误差。目前常用的是它的改进法-双脱氧末端终止法。
剩下的就是读板的问题,可以想到,在理想情况下,比如以A结尾的各种长度的片段,出现的可能性是均等的。那么在聚丙烯酰胺凝胶电泳中,相对分子量小的片段迁移速度快。书上的图,都是一块板子,有四个列,分别是以四种不同结尾的核苷酸的电泳情况。跑在越前面的(也就是最靠近底部的),就第一个被读出来,随后的相对分子量不断增大,迁移速度慢,也就是比较大的片段,按其顺序和所处的列,就克直观读出序列。
化学法由Maxam-Gilbert在1977年发明。
一、取待测DNA片段,既可以是单链也可以是双链。
此法又叫化学切割法,或化学降解法,切割之前先对待测片段作末端标记。用放射性P32-磷酸集团标记链的末端之一。
二、将标记完的样品,分成四份。分别采用不同的化学试剂对所得样品,进行修饰进而切割【切割就是利用特异的化学试剂,修饰DNA分子中不同的碱基,使被修饰的碱基之间的连接变得不稳定,发生断裂,而产生各种长度的DNA片段。】
【四组切割的方法,在G、G+A、T+C、C处切割】
“+”就是同时切割,有点讨厌的是这点,能修饰A,使其糖苷键不稳定的甲酸,同时也会使G的不稳定,所以无奈就有了G+A并在一起,
(1)G反应,"硫酸二甲酯",使鸟嘌呤G的N7原子甲基化,而与脱氧戊糖之间的糖苷键不稳定,可在中性环境中受热断裂,得到一系列G末端的片段。
(2)G+A反应 "甲酸",使A和G嘌呤环上的N原子质子化,糖苷键变得不稳定,可用哌啶将其断裂,得到一系列A和G混合的末端的片段。
(3)T+C反应 "肼",使T和C的嘧啶环断裂,通过消除反应,使DNA链发生断裂,得到一系列T+C末端的片段。
(4)C反应 在NaCl存在时,只有C与肼反应,得到一系列C末端的片段。
用上面加减法一样的电泳,克得到结果,直观读出。
至于为什么(2)(3)两步,为什么是G+A、T+C?
事实上,如果有单独只断A的或只断T的修饰方法,也可以。但从书上列出的图中,可以看出,断裂的混合物G+A、T+C电泳后并不影响读结果。
10. 用质谱仪如何判断DNA甲基化
有些质谱仪分析不到甲基化,这跟破碎方法有关。用CID破碎的质谱仪,存在中性丢失,会失去CH4,所以分析不了甲基化;而用ECD和ETD的质谱仪可以做甲基化这样的修饰分析。