导航:首页 > 解决方法 > 金属夹杂物的检测方法

金属夹杂物的检测方法

发布时间:2022-09-14 10:37:32

1. 金属材料检测主要检测项目有哪些

金属材料主要检测项目如下:
1、机械性能:主要包括(拉伸试验、高低温拉伸试验、 压缩试验、剪切试验、扭转试验、弯曲试验、冲击试验、洛氏硬度试验 、布氏硬度试验、维氏硬度试验、压扁试验 ;

2、化学成分分析:主要分析金属材里的各种化学成分含量(碳, 硅, 锰, 磷, 硫, 镍, 铬, 钼, 铜, 钒, 钛, 钨, 铅, 铌, 汞, 锡, 镉, 锑, 铝, 镁, 铁, 锌, 氮, 氢, 氧 );
3、金相测试:主要包括(非金属夹杂物、低倍组织、晶粒度、断口检验、镀层厚度、硬化层深度、脱碳层、灰口铸铁金相、球墨铸铁金相、金相切片分析;
4、镀层测试:常用方法为,镀层测厚-库仑法、镀层测厚-金相法、镀层测厚-涡流法、镀层测厚-射线荧光法、镀层成分分析和表面污点分析;
5、腐蚀测试:包括中性盐雾试验 、酸性盐雾试验、铜离子加速盐雾、二氧化硫腐蚀试验、硫化氢腐蚀试验、混和气体腐蚀实验、不锈钢10%草酸浸蚀试验、不锈钢硫酸-硫酸铁腐蚀试验、不锈钢65%硝酸腐蚀试验、不锈钢硝酸-氢氟酸腐蚀试验、不锈钢硫酸-硫酸铜腐蚀试验、不锈钢5%硫酸腐蚀试验;
6、无损探伤:包括超声波检测、射线检测、磁粉检测、渗透检测;
7、尺寸测试:包括尺寸测量、对称性、垂直度、平整度、圆跳动、同轴度、平行度、圆度、粗糙度;
8、焊接工艺评定:包括拉伸测试、弯曲测试 (面弯背弯侧弯)、超声波检测、射线检测、磁粉检测、渗透检测、表面目测、宏观组织检测、焊缝硬度测试、冲击测试。
9、失效分析包括:失效分析的程序和步骤、对失效事件进行调查、确定肇事件或者首先失效件、仔细收集失效件残骸并妥善保管、收集失效件背景资料、确定失效分析方案并制定实施细节、检查、测试与分析。

2. 化学中物质的常见检验方法

物质的常见检验方法笼统地讲有:物理法、化学法。
物理法就是利用物理性质检验,如颜色、气味、水溶性。
化学法就是利用特征反应检验。
具体举例如下:
一、离子的检验
1、钠离子、钾离子,用焰色反应。火焰颜色分别呈黄色、紫色(通过蓝色钴玻璃片)。
2、镁离子,能与NaOH溶液反应生成白色Mg(OH)2沉淀,该沉淀能溶于NH4Cl溶液。
3、铝离子,能与适量的NaOH溶液反应生成白色Al(OH)3絮状沉淀,该沉淀能溶于盐酸和过量的NaOH溶液。
4、铁离子,能与KSCN溶液反应,变为血红色Fe(SCN)3。或者与NaOH溶液反应生成红褐色沉淀。
5、亚铁离子,与NaOH溶液反应,先生成白色Fe (OH)2沉淀,迅速变灰绿色,最后变成红褐色Fe(OH)3沉淀。或向亚铁盐溶液中加入KSCN溶液,不显红色,加入少量新制的氯水后立即显红色。
6、NH4+,铵盐与氢氧化钠溶液反应,并加热,放出使湿润的红色石蕊试纸变蓝的刺激性气味气体。
7、cl-,能与硝酸银反应生成不溶于硝酸的白色沉淀。
8、Br-,能与硝酸银反应生成不溶于硝酸的淡黄色沉淀。
9、I-,能与硝酸银反应生成不溶于硝酸的黄色沉淀。
10、硫酸根,能与Ba(OH)2及可溶性钡盐反应,生成不溶于硝酸的白色沉淀。
11、碳酸根,能与BaCl2溶液反应,生成白色的BaCO3沉淀,该沉淀溶于稀盐酸,且放出无色无味的气体,能使澄清的石灰水变浑浊。
二、气体物质的检验
1、观察法:对于有特殊颜色的气体如氯气(黄绿色)、二氧化氮(红棕色)、碘蒸气(紫红)可根据颜色检验。
2、溶解法:根据溶于水现象检验。例如红棕色二氧化氮溶于水后溶液无色,红棕色溴蒸汽溶于水形成橙色溶液。
3、褪色法:例如SO2可以使品红溶液褪色。
4、氧化法:被空气氧化看变化,例如NO的检验。
5、试纸法:如石蕊试纸,醋酸铅试纸。
6、星火法:适用于有助燃性或可燃性的气体。例如O2使带火星木条复燃;甲烷、乙炔的检验可点燃看现象;甲烷、一氧化碳、氢气则可根据其燃烧产物来判断。
还有一些方法,如闻气味等,但一般不用。

3. 重金属检测方法有哪些

食品中重金属元素限量的检测方法有光度法、比浊法、斑点比较法、色谱法、光谱法、电化学分析法、中子活化分析等.有关国家标准均详细规定了食品中重金属元素的含量测定方法.以下列出的是食品中的铅、镉、汞和砷的国家标准检测方法.
(1)食品中铅的常用检测方法有:石墨炉原子吸收光谱法,其检出限为5微克/千克;火焰原子吸收光谱法,检出限为0.1毫克/千克;单扫描极谱法,检出限为0.085毫克/千克;二硫腙光度法,检出限为0.25毫克/千克;氢化物原子荧光光谱法,检出限为5微克/千克.
(2)食品中镉的常用检测方法有:石墨炉原子吸收光谱法,其检出限为0.1微克/千克;火焰原子吸收光谱法,检出限为5微克/千克;光度法,检出限为50微克/千克;原子荧光法,检出限为1.2微克/千克.
(3)食品中总汞的常用检测方法有:原子荧光光谱分析法,检出限为0.15微克/千克;冷原子吸收光谱法,检出限为0.4微克/千克(压力消解法)或10微克/千克(其它消解法);二硫腙光度法,检出限为25微克/千克.甲基汞的分析常常先用酸提取巯基棉吸附分离,然后用气相色谱法或冷原子吸收光谱法进行测定.
(4)食品中总砷的常用检测方法有:氢化物原子荧光光谱法,检出限为0.01毫克/千克;银盐法,检出限为0.2毫克/千克;砷斑法,检出限为0.25毫克/千克;硼氢化物还原光度法,检出限为0.05毫克/千克.

4. 钢材夹杂物检测M法K法有什么区别他们的检测方式是什么

M法和K法是DIN 50602里面的夹杂物评定方法,分别对应ISO 4967的A法和B法:

  1. M法是最大尺寸法,一般评价各类夹杂物的最大值,相对简单

  2. K法相对繁琐,非常耗时,需要统计规定观察区域内所有夹杂物类型,长度及宽度,然后通过查表计算K4的值

可以直接查DIN 50602这个标准,最好看英文版,中文版翻译有很多错翻和漏翻。

5. 哪些机构能够检测金属的成分呢

检测金属成分:
由于不同金属有着截然不同的特性,因而在检测过程中,不同的金属需要利用不同的方式进行检测。充分考虑不同金属的特性和外在因素影响,是实现金属材料高效检测的必然步骤。从而为检测结果的真实性,提供理论性依据。

金属材料在各行各业中都充当着重要的角色担当,金属材料检测的理论知识得到了史无前例的发展,尤其在生产实践中颇有意义。金属材料的检测方法和项目较多,下面来简单介绍几种常见的金属材料检测方法。

1. 马口铁镀层监测

马口铁又名镀锡铁,是电镀锡薄钢板的俗称,是指在两面渡有商业纯锡的冷轧低碳薄钢板或钢带。马口铁具有良好的密封性、保藏性和避光性,在包装容器方面应用广泛,其安全性能受到广泛关注。镀锡量是马口铁耐腐蚀性的重要指标之一,在马口铁质量监测中具有重要意义,马口铁镀层是一种重要的检测材料,对于其的检测和分析对于施工具有很重要的位置,对马口铁镀层的检测准确性是检测的重要任务。镀锡量的测试方法包括化学容量法、库伦法、X射线荧光法等,常见的测量方法是利用库伦原理,计算纯锡层、合金层完全溶解的时间,从而通过计算各自溶解所消耗的电量,用法拉第电解定律求出纯锡量和合金锡量。不同的测试方法针对性不同,要根据具体生产实践进行分析,以保证检测数据的科学性、可靠性。
2. 铁磁基体非磁性膜厚检测

经济的发展,促使人们开始对钢铁制品表面的涂覆塑料、富锌涂料的涂层厚度开始检测,目前市场上使用最多的是MI-NI2100型膜厚测量仪,对膜厚进行检验检测。不同的行业对于膜厚的结果不同,企业可以根据需求进行研究,从而制定出适合自身发展的检测技术,为企业的发展提供基础。
3. Φ50mm钢管的曲度检测

钢管在日常的生产实践中最为常见,其质量如何受到使用者的高度重视。人们一般来说不考虑钢管的拉伸性,而由于其使用长度长,经常担心其在较长跨度下承受弯曲的强度,尤其对于焊接管来说,曲度检测非常重要。近些年来,随着科学技术的高速发展,钢管的曲度检测成为可能,曲度检测试验机能够通过试验的方法,检测得出钢管的弯曲度,这大大提高了我们对于金属材料的检测能力。
4. 显微镜视频摄像

金属材料检测技术的发展,出现了金属显微组织分析技术,国内市场出现的MM6大型金相显微镜能鉴别各类夹杂物。这种技术主要借助于显微镜视频摄像技术,与计算机互联,进行计算机视频采集处理,检测人员能够及时清楚地在屏幕上看到成像,从而进行鉴别。传统的方法是通过胶片,经过显影、定影和烘干一系列程序后,得到照片,具有延迟性,而显微镜视频摄像技术的数字特性,方便技术人员的拷贝和复制,为定量金相奠定了基础。
5. 图像分析检测

如上文提到的,显微镜视频摄像技术为定量金相打下了坚实的基础,而如今的图像分析仪让定量金相成为现实,并逐步在金相检验标准中得到了体现。图像分析仪是根据视学原理将成像系统生成的图像转化成电信号,并经过扫描转化得到的电压—位置函数,检测人员通过得到的函数,测量面积、周长、直径等参数,而后将这些参数进行排列组合计算,从而进行成分的分析。
金属是一种在自然界非常常见的材料,不同的金属材料有着不同的温度燃点及拉伸度。因而不同的金属材料在检测过程中会遇到不同程度的检测难度与压力。使用不同的方法进行金属材料的性能的检测,能够发现不同的金属材料潜在问题,提高金属材料检测质量,创造出质量更上乘的金属产品,从而提高企业的金属材料生产竞争能力。

6. 金属检测标准都包括哪些

一、金属材料力学性能试验方法:
GB/T 228.1—2010金属材料 拉伸试验 第一部分:室温试验方法
GB/T 228.2—2015金属材料 拉伸试验 第2部分:高温试验方法
GB/T 229—2007金属材料 夏比摆锤冲击试验方法
GB/T 230.1—2009金属材料 洛氏硬度试验 第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺)
GB/T 231.1—2009金属材料 布氏硬度试验 第1部分:试验方法
GB/T 232—1999金属材料 弯曲试验方法
GB/T 233—2000金属材料 顶锻试验方法
GB/T 235—2013金属材料 薄板和薄带 反复弯曲试验方法
GB/T 238—2013金属材料 线材 反复弯曲试验方法
GB/T 239.1—2012金属材料 线材 第1部分:单向扭转试验方法
GB/T 239.2—2012金属材料 线材 第2部分:双向扭转试验方法
GB/T 241—2007金属管 液压试验方法
GB/T 242—2007金属管 扩口试验方法
GB/T 244—2008金属管 弯曲试验方法
GB/T 245—2008金属管 卷边试验方法
GB/T 246—2007金属管 压扁试验方法
GB/T 1172—1999黑色金属硬度及强度换算值
GB/T 2038—1991金属材料延性断裂韧度JIC试验方法
GB/T 2039—2012金属材料 单轴拉伸蠕变试验方法
GB/T 2107—1980金属高温旋转弯曲疲劳试验方法
GB/T 2358—1994金属材料裂纹尖端张开位移试验方法
GB/T 2975—1998钢及钢产品力学性能试验取样位置及试样制备
GB/T 3075—2008金属材料 疲劳试验 轴向力控制方法
GB/T 3250—2007铝及铝合金铆钉线与铆钉剪切试验方法及铆钉线铆接试验方法
GB/T 3251—2006铝及铝合金管材压缩试验方法
GB/T 3252—1982铝及铝合金铆钉线与铆钉剪切试验方法
GB/T 3771—1983铜合金硬度和强度换算值
GB/T 4156—2007金属材料 薄板和薄带埃里克森杯突试验
GB/T 4158—1984金属艾氏冲击试验方法
GB/T 4160—2004钢的应变时效敏感性试验方法(夏比冲击法)
GB/T 4161—2007金属材料 平面应变断裂韧度KIC试验方法
GB/T 4337—2008金属材料 疲劳试验 旋转弯曲方法
GB/T 4338—2006金属材料高温拉伸试验方法
GB/T 4340.1—2009金属材料 维氏硬度试验 第1部分:试验方法
GB/T 4340.2—2012金属材料 维氏硬度试验 第2部分:硬度计的检验与校准
GB/T 4340.3—2012金属材料 维氏硬度试验 第3部分:标准硬度块的标定
GB/T 4341.1—2014金属材料 肖氏硬度试验 第1部分:试验方法
GB/T 5027—2007金属材料 薄板和薄带塑性应变比(r值)的测定
GB/T 5028—2008金属材料薄板和薄带拉伸应变硬化指数(n值)的测定
GB/T 5482—2007金属材料动态撕裂试验方法
GB/T 6398—2000金属材料疲劳裂纹扩展速率试验方法
GB/T 6400—2007金属材料 线材和铆钉剪切试验方法
GB/T 7314—2005金属材料室温压缩试验方法
GB/T 7732—2008金属材料 表面裂纹拉伸试样断裂韧度试验方法
GB/T 7733—1987金属旋转弯曲腐蚀疲劳试验方法
GB/T 10120—2013金属材料 拉伸应力松弛试验方法
GB/T 10128—2007金属材料 室温扭转试验方法
GB/T 10622—1989金属材料滚动接触疲劳试验方法
YB-T 5345-2006 金属材料滚动接触疲劳试验方法
GB/T 10623—2008金属材料 力学性能试验术语
GB/T 12347—2008钢丝绳弯曲疲劳试验方法
GB/T 12443—2007金属材料 扭应力疲劳试验方法
GB/T 12444—2006金属材料 磨损试验方法 试环-试块滑动磨损试验
GB/T 12444.1—1990金属 磨损试验方法MM型磨损试验
GB/T 12778—2008金属夏比冲击断口测定方法
GB/T 13239—2006金属材料 低温拉伸试验方法
GB/T 13329—2006金属材料 低温拉伸试验方法
GB/T 14452—1993金属弯曲力学性能试验方法
GB/T 15248—2008金属材料轴向等幅低循环疲劳试验方法
GB/T 15824—2008热作模具钢热疲劳试验方法
GB/T 16865—2013 变形铝、镁及其合金加工制品拉伸试验用试样及方法
GB/T 17104—1997金属管 管环拉伸试验方法
GB/T 17394.1—2014金属材料 里氏硬度试验 第1部分 试验方法
GB/T 17394.2—2012金属材料 里氏硬度试验 第2部分:硬度计的检验与校准
GB/T 17394.3—2012金属材料 里氏硬度试验 第3部分:标准硬度块的标定
GB/T 17394.4—2014金属材料 里氏硬度试验 第4部分 硬度值换算表
GB/T 17600.1—1998钢的伸长率换算 第1部分:碳素钢和低合金钢
GB/T 17600.2—1998钢的伸长率换算 第2部分 奥氏体钢
GB/T 26077—2010金属材料 疲劳试验 轴向应变控制方法
GB/T 22315—2008金属材料 弹性模量和泊松比试验方法
二、金属材料化学成分分析:
GB/T 222—2006钢的成品化学成分允许偏差
GB/T 223.X系列 钢铁及合金 X含量的测定
GB/T 4336—2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法)
GB/T 4698.X系列 海绵钛、钛及钛合金化学分析方法 X量的测定
GB/T 5121.X系列 铜及铜合金化学分析方法 第X部分:X含量的测定
GB/T 5678—1985铸造合金光谱分析 取样方法
GBT 6987.X系列 铝及铝合金化学分析方法 ……
GB/T 7999—2007铝及铝合金光电直读发射光谱分析方法
GB/T 11170—2008不锈钢 多元素含量的测定 火花放电原子发射光谱法(常规法)
GB/T 11261—2006钢铁 氧含量的测定 脉冲加热惰气熔融-红外线测定方法
GB/T 13748.X系列 镁及镁合金化学分析方法 第X部分 X含量测定 ……
三、金属材料物理冶金试验方法
GB/T 224—2008钢的脱碳层深度测定法
GB/T 225—2006钢淬透性的末端淬火试验方法(Jominy 试验)
GB/T 226—2015钢的低倍组织及缺陷酸蚀检验法
GB/T 227—1991工具钢淬透性 试验方法
GB/T 1954—2008铬镍奥氏体不锈钢焊缝铁素体含量测量方法
GB/T 1979—2001结构钢低倍组织缺陷评级图
GB/T 1814—1979钢材断口检验法
GB/T 2971—1982碳素钢和低合金钢断口检验方法
GB/T 3246.1—2012变形铝及铝合金制品组织检验方法 第1部分 显微组织检验方法
GB/T 3246.2—2012变形铝及铝合金制品组织检验方法 第2部分 低倍组织检验方法
GB/T 3488—1983硬质合金 显微组织的金相测定
GB/T 3489—1983硬质合金孔隙度和非化合碳的金相测定
GB/T 4236—1984钢的硫印检验方法
GB/T 4296—2004变形镁合金显微组织检验方法
GB/T 4297—2004变形镁合金低倍组织检验方法
GB/T 4334—2008金属和合金的腐蚀 不锈钢晶间腐蚀试验方法
GBT 4335—2013低碳钢冷轧薄板铁素体晶粒度测定法
GB/T 4334.6—2015不锈钢5%硫酸腐蚀试验方法
GB/T 4462—1984高速工具钢大块碳化物评级图
GB/T 5058—1985钢的等温转变曲线图的测定方法(磁性法)
GB/T 5168—2008α-β钛合金高低倍组织检验方法
GB/T 5617—2005钢的感应淬火或火焰淬火后有效硬化层深度的测定
GB/T 8359—1987高速钢中碳化物相的定量分析 X射线衍射仪法
GB/T 8362—1987钢中残余奥氏体定量测定 X射线衍射仪法
GB/T 9450—2005钢件渗碳淬火硬化层深度的测定和校核
GB/T 9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定
GB/T 10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法
GB/T 10851—1989铸造铝合金针孔
GB/T 10852—1989铸造铝铜合金晶粒度
GB/T 11354—2005钢铁零件渗氮层深度测定和金相组织检验
GB/T 13298—2015金属显微组织检验方法
GB/T 13299—1991钢的显微组织检验方法
GB/T 13302—1991钢中石墨碳显微评定方法
GB/T 13305—2008不锈钢中α-相面积含量金相测定法
GB/T 13320—2007钢质模锻件 金相组织评级图及评定方法
GB/T 13825—2008金属覆盖层 黑色金属材料热镀锌单位面积称量法
GB/T 13912—2002金属覆盖层 钢铁制件热浸镀层技术要求及试验方法
GB/T 14979—1994钢的共晶碳化物不均匀度评定法
GB/T 15711—1995钢材塔形发纹酸浸检验方法
GB/T 30823—2014测定工业淬火油冷却性能的镍合金探头试验方法
GB/T 14999.1—2012高温合金试验方法 第1部分:纵向低倍组织及缺陷酸浸检验
GB/T 14999.2—2012高温合金试验方法 第2部分:横向低倍组织及缺陷酸浸检验
GB/T 14999.3—2012高温合金试验方法 第3部分:棒材纵向断口检验
GB/T 14999.4—2012高温合金试验方法 第4部分:轧制高温合金条带晶粒组织和一次碳化物分布测定
YB/T 4002—2013连铸钢方坯低倍组织缺陷评级图
四、金属材料无损检测方法
GB/T 1786—2008锻制圆饼超声波检验方法
GB/T 2970—2004厚钢板超声波检验方法
GB/T 3310—1999铜合金棒材超声波探伤方法
GB/T 4162—2008锻轧钢棒超声检测方法
GB/T 5097—2005无损检测 渗透检测和磁粉检测 观察条件
GB/T 5126—2001铝及铝合金冷拉薄壁管材涡流探伤方法
GB/T 5193—2007钛及钛合金加工产品超声波探伤方法
GB/T 5248—2008铜及铜合金无缝管涡流探伤方法
GB/T 5616—2014无损检测 应用导则
GB/T 5777—2008无缝钢管超声波探伤检验方法
GB/T 6402—2008钢锻件超声检测方法
GB/T 6519—2013变形铝、镁合金产品超声波检验方法
GB/T 7233.1—2009超声波检验 第1部分:一般用途铸钢件
GB/T 7233.2—2010铸钢件 超声检测 第2部分:高承压铸钢件
GB/T 7734—2004复合钢板超声波检验
GB/T 7735—2004钢管涡流探伤检验方法
GB/T 7736—2008钢的低倍缺陷超声波检验法
GB/T 8361—2001冷拉圆钢表面超声波探伤方法
GB/T 8651—2002金属板材超声波探伤方法
GB/T 8652—1988变形高强度钢超声波检验方法
GB/T 9443—2007铸钢件渗透检测
GB/T 9445—2015无损检测 人员资格鉴定与认证
GB/T 10121—2008钢材塔形发纹磁粉检验方法
GB/T 11259—2015无损检测 超声检测用钢参考试块的制作和控制方法
GB/T 11260—2008圆钢涡流探伤方法
GB/T 11343—2008无损检测 接触式超声斜射检测方法
GB/T 11345—2013焊缝无损检测 超声检测 技术、检测等级和评定
GB/T 11346—1989铝合金铸件X射线照相检验针孔(圆形)分级
GB/T 12604.1—2005无损检测 术语 超声检测
GB/T 12604.2—2005无损检测 术语 射线照相检测
GB/T 12604.3—2005无损检测 术语 渗透检测
GB/T 12604.5—2008无损检测 术语 磁粉检测
GB/T 12604.6—2008无损检测 术语 涡流检测
GB/T 12604.7—2014无损检测 术语 泄漏检测
GB/T 12604.8—1995无损检测 术语 中子检测
GB/T 12604.9—2008无损检测 术语 红外检测
GB/T 12604.10—2011无损检测 术语 磁记忆检测
GB/T 12604.11—2015无损检测 术语 X射线数字成像检测
GB/T 12605—2007无损检测 金属管道熔化焊环向对接接头射线照相检测
GB/T 12966—2008铝合金电导率涡流测试方法
GB/T 12969.1—2007钛及钛合金管材超声波探伤方法
GB/T 12969.2—2007钛及钛合金管材涡流探伤方法
GB/T 14480.1—2015无损检测仪器涡流检测设备第1部分:仪器性能和检验
GB/T 14480.2—2015无损检测仪器涡流检测设备第2部分:探头性能和检验
GB/T 14480.3—2008无损检测涡流检测设备第3部分系统性能和检验
GB/T 15822.1—2005无损检测 磁粉检测 第1部分:总则
GB/T 15822.2—2005无损检测 磁粉检测 第2部分 检测介质
GB/T 15822.3—2005无损检测 磁粉检测 第3部分 设备
GB/T 18694—2002无损检测 超声检验 探头及其声场的表征
GB/T 18851.1—2005无损检测 渗透检测第1部分 总则
GB/T 18851.2—2008无损检测 渗透检测 第2部分:渗透材料的检验
GB/T 18851.3—2008无损检测 渗透检测 第3部分:参考试块
GB/T 18851.4—2005无损检测 渗透检测 第4部分 设备
GB/T 18851.5—2005无损检测 渗透检测 第5部分 验证方法
GB/T 19799.1—2005无损检测 超声检测 1号校准试块
GB/T 19799.2—2005无损检测 超声检测 2号校准试块
GB/T 23911—2009无损检测 渗透检测用试块
五、金属材料腐蚀试验方法
GB/T 1838—2008电镀锡钢板镀锡量试验方法
GB/T 1839—2008钢产品镀锌层质量试验方法
GB/T 10123—2001金属和合金的腐蚀 基本术语和定义
GB/T 13303—1991钢的抗氧化性能测定方法
GBT 15970.X系列 金属和合金的腐蚀 应力腐蚀试验
可以在中服云方案库搜索更多金属检测报告、规范!

7. 金属材料的化学成分如何检测请专业人士回答

金属材料的化学成分检测:是指通过谱图对产品或样品的成分进行分析,对各个成分进行定性定量分析的技术方法。成分分析主要用于对未知物及未知成分等进行分析,通过快速确定目标样品中的组成成分来鉴别材料的材质、原材料、助剂、特定成分及含量、异物等信息。

可按 GB、ASTM、ISO 等标准,承接各种材料和产品(金属、半导体、绝缘体、聚合物和生物材料)的性能检测,进行材料的定性定量分析、组织结构分析、化学成分及元素价态分析、表面及微区的形貌、力学性质及物化性能、复杂体系样品的综合分析等数十项测试。
材料表面成分、结构测定与分析

测试项目:有机物分析
测试范围:反映材料的化学键信息,特别是有机物的官能团鉴定,液体的成分分析
测试项目:表面成分及化学态分析
测试范围:各种固体表面的元素成分、化学价态、分子结构分析和深度剖析
测试项目:样品成分分析
测试范围:各种固体材料的形貌分析、微区化学成分检测,样品成分的线分布和面分布分析
测试项目:微量元素成分分析
测试范围及服务项目:检测特殊元素在表面的聚集,表面改性,等离子表面处理
测试项目:样品相结构、表面应力分析
测试范围:粉末样品、固体样品的物相分析、微量相分析、薄膜分析、高温衍射、应力测量、晶粒度、晶胞参数等的测定
金相测定与分析

测试项目:线路板切片观察;膜层厚度;钢的渗碳层、渗硼层、氮化层、渗氮层氮化物检验、脱碳层测定、淬硬层深度测量
测试范围:晶粒度、相面积分数、涂层/镀层厚度测量、孔隙度评估、球墨铸铁中石墨的球状性、颗粒尺寸分析、铸造铝合金的枝晶臂间距,反射光观察,明、暗场、偏光、微分干涉分析研究,并采用M32镜头,对材料表面、断口进行观察、失效分析、研究和测量
测试项目:钢中非金属夹杂物测定;有色金属及其合金、黑色金属、不锈钢的组织测定;有色金属、碳钢、合金钢、不锈钢的实际晶粒度测定;产品焊接质量检查、焊缝组织观察
测试范围:晶粒度、相面积分数、涂层/镀层厚度测量、孔隙度评估、球墨铸铁中石墨的球状性、颗粒尺寸分析、铸造铝合金的枝晶臂间距,反射光观察,明、暗场、偏光、微分干涉分析研究,并采用M32镜头,对材料表面、断口进行观察、失效分析、研究和测量
测试项目:制样(普通合金钢;有色金属、PCB板电子产品;硬质合金、高速钢、陶瓷、玻璃等样品)
测试范围: 用于材料的精密切割、冷热镶嵌、磨光、抛光等,制得金相表面,并进行图像分析及图像处理,特别可用于线路板制样
测试项目:钢中非金属夹杂物;钢的实际晶粒度、显微组织测定;产品焊接质量检查
测试范围:大型金属材料产品零件的现场金相检验,产品焊接质量检查,采用数码技术,可直接获取微观图片,测量缺陷大小,同时可进行复性检验
材料形貌测定与分析

测试项目:样品涂层厚度、定性成分分析
测试范围:测量常见镀层、涂层厚度,并同时进行成分分析
测试项目:微米、纳米尺度观察表面三维形貌
测试范围:材料表面的微结构及形貌,可得到表面原子级分辨图像,测量对样品表面无特殊要求
测试项目:样品粗糙度、涂层厚度
测试范围:半导体器件、数据存储媒体、聚合物、金属、陶瓷、生物薄膜等各种基体材料表面镀层的形貌、台阶高度(薄膜的厚度)和粗糙度
测试项目:样品表面、断面微观形貌,涂层厚度
测试范围:各种固体材料的形貌分析、微区化学成分检测,样品成分的线分布和面分布分析
测试项目:样品颜色、色差

测试范围:采用内置CCD数码目标定位系统、投射、反射、前置或上置式测量方式对各种固体、液体材料进行快捷颜色鉴别、色彩品质控制及样品表面结构(镜面)对颜色影响分析
材料力学特性测定与分析

测试项目:软材料、薄膜(或镀膜、薄涂层)材料的硬度、弹性模量、应力应变测定(0~300mN)
测试范围:实时记录法向力、摩擦力、穿透深度、声发射信号,从而准确可靠地获得膜与基底的结合力,研究薄膜与其它样品表面的摩擦、磨损行为
测试项目:显微硬度测定(10g~1000g)
测试范围:用于测定材料的显微硬度,特别是测定微小、薄型试验以及表面渗镀层等式样的表层硬度和硬化层深度,还可测定玻璃、陶瓷、玛瑙、宝石等脆性材料的显微硬度
测试项目:软材料、薄膜(或镀膜、薄涂层)材料与基底的结合力、摩擦磨损行为测定(10μN~1N)
测试范围:实时记录法向力、摩擦力、穿透深度、声发射信号,从而准确可靠地获得膜与基底的结合力,研究薄膜与其它样品表面的摩擦、磨损行为
测试项目:涂镀层结合力、维氏硬度测定(1N~200N)
测试范围:实时记录法向力、摩擦力、穿透深度、声发射信号,从而准确可靠地获得膜与基底的结合力,研究薄膜与其它样品表面的摩擦、磨损行为
测试项目:摩擦磨损性能测定
测试范围:用于薄膜或者基材对接触针或球的摩擦系数、磨损体积测量、表面粗糙度测量
材料物理化学性能测定与分析

测试项目:加速腐蚀试验
测试范围:盐雾腐蚀实验箱针对各种材料的表面处理,包含涂料、电镀、无机及有机膜、阳极处理及防锈油等防腐蚀处理后,测试制品的耐腐蚀性
测试项目:样品的极化曲线、循环伏安曲线、阻抗谱、腐蚀速率等
测试范围:计时电流、计时电位、计时电量、控制电位电量、循环伏安、线扫伏安恒电位交流阻抗、恒电流交流阻抗、单频交流阻抗、杂化交流阻抗腐蚀行为图,腐蚀电位,循环动电流,循环极化电阻,恒电位,动电位,恒电流,动电流

8. 金属材质中的化学成分有几种检测方法

金属材料化学成分:一般是指工业应用中的纯金属或合金,其中常见的有铁、铜、铝、锡、镍、金、银、铅、锌等等。而合金常指两种或两种以上的金属或金属与非金属结合而成,且具有金属特性的材料。金属材料通常分为黑色金属、有色金属和特种金属材料。
金属材料检测领域:
钢铁材料:结构钢、铜、铝、铁、不锈钢、耐热钢、高温合金、精密合金、铬、锰及其合金等;
钢管:碳素管、不锈钢管、合金钢管、黑管、镀锌管、镀铝管、镀铬管、渗铝管以及其他合金层钢管、无缝钢管、热轧无缝管、冷拔管、精密钢管、热扩管、冷旋压管和挤压管、直缝钢管等。
合金制品:钢管、铜材铝材、钢板型钢、焊接材料、门窗、卷帘门、厨房用品、各种金属挂件、机器零件、车辆配件等。
焊接材料:焊条、焊剂、焊丝、气焊粉、钎焊料等
钢丝绳:电梯用、输送带用、煤矿重要用途、压实股、客运架空索道用、出口钢丝绳、粗直径钢丝绳等
紧固件:螺栓、螺母、螺柱、螺钉、铆钉、垫圈、挡圈、焊钉等
金属及其合金:轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等;
特种金属材料:功能合金、金属基复合材料等;
金属材料制品:生铁、铝管、铁板、铁管、钢锭、钢坯、型材、线材、金属制品、有色金属及其制品、钢铁、紧固件、铸铁、钢管、铜管、不锈钢管、钢筋线材、焊接材料、钢板型钢、铜材铝材、钢丝绳及各种金属挂件等各类金属及合金制品。
金属材料检测项目:
物理性能检测:拉伸、弯曲、屈服、疲劳、扭转、应力、应力松弛、冲击、磨损、硬度、耐液压、拉伸蠕变、扩口、压扁、压缩、剪切强度、磁性能、电性能、热力学性能、抗氧化性能、密度、热膨胀系数等
化学性能:大气腐蚀、晶间腐蚀、应力腐蚀、点蚀、腐蚀疲劳、人造气氛腐蚀等;
元素含量分析:品质(全成分分析)分析、硅(Si)、锰(Mn)、磷(P)、碳(C)、硫(S)、镍(Ni)、铬(Cr)、铜(Cu)、镁(Mg)、钙(Ca)、铁(Fe)、钛(Ti)、锌(Zn)、铅(Pb)、锑(Sb)、镉(Cd)、铋(Bi)、砷(As)、钠(Na)、钾(K)、铝(Al)、等
工艺性能检测:细丝拉伸、断口检验、反复弯曲、双向扭转、液压试验、扩口、弯曲、卷边、压扁、环扩张、环拉伸、显微组织、等
无损检验:X射线无损探伤、电磁超声、超声波、涡流探伤、漏磁探伤、渗透探伤、磁粉探伤等
金相检验:宏观金相、微观金相(SEM、TEM、EBSD)、晶粒度评级、脱碳层深度、非金属夹杂物评级等
环境可靠性能:大气腐蚀、晶间腐蚀、应力腐蚀、点蚀、腐蚀疲劳、人造气氛腐蚀、盐雾试验等
金属牌号鉴定:通过仪器及技术手段确定金属材料的元素含量以及各含量在材料中所占的比例,从而确认材料具体牌号
金属材料检测标准:
GB/T 34558-2017 金属基复合材料术语
GB/T 7314-2017 金属材料室温压缩试验方法
GB/T 6398-2017 金属材料疲劳试验
GB/T 34205-2017 金属材料硬度试验
GB/T 7314-2017e 金属材料室温压缩试验
GB/T 33812-2017 金属材料疲劳试验应变控制热机械疲劳试验
GB/T 246-2017 金属材料管压扁试验
GB/T 12443-2017 金属材料扭矩控制疲劳试验
GB/T 34477-2017 金属材料薄板和薄带抗凹性能试验
GB/T 14265-2017 金属材料中氢、氧、氮、碳和硫分析
GB 4806.9-2016 食品安全标准食品接触用金属材料及制品
GB/T 33820-2017 金属材料延性试验多孔状和蜂窝状金属高速压缩试验
GB/T 32660.1-2016 金属材料韦氏硬度试验第1部分:试验方法
GB/T 4341.2-2016 金属材料肖氏硬度试验第2部分:硬度计的检验

9. 重金属的检测有哪些方法

重金属检测方法及应用
一、重金属的危害特性
(一)自然性:
长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。
(二)毒性:
决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。
(三)时空分布性:
污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。
(四)活性和持久性:
活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性更强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。
(五)生物可分解性:
有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。
(六)生物累积性:
生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。
(七)对生物体作用的加和性:
多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。
二、重金属的定量检测技术
通常认可的重金属分析方法有:紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)、电感耦合等离子质谱法(ICP-MS)。除上述方法外,更引入光谱法来进行检测,精密度更高,更为准确!
日本和欧盟国家有的采用电感耦合等离子质谱法(ICP-MS)分析,但对国内用户而言,仪器成本高。也有的采用X荧光光谱(XRF)分析,优点是无损检测,可直接分析成品,但检测精度和重复性不如光谱法。最新流行的检测方法--阳极溶出法,检测速度快,数值准确,可用于现场等环境应急检测。
(一)原子吸收光谱法(AAS)
原子吸收光谱法是20世纪50年代创立的一种新型仪器分析方法,它与主要用于无机元素定性分析的原子发射光谱法相辅相成,已成为对无机化合物进行元素定量分析的主要手段。
原子吸收分析过程如下:1、将样品制成溶液(同时做空白);2、制备一系列已知浓度的分析元素的校正溶液(标样);3、依次测出空白及标样的相应值;4、依据上述相应值绘出校正曲线;5、测出未知样品的相应值;6、依据校正曲线及未知样品的相应值得出样品的浓度值。
现在由于计算机技术、化学计量学的发展和多种新型元器件的出现,使原子吸收光谱仪的精密度、准确度和自动化程度大大提高。用微处理机控制的原子吸收光谱仪,简化了操作程序,节约了分析时间。现在已研制出气相色谱—原子吸收光谱(GC-AAS)的联用仪器,进一步拓展了原子吸收光谱法的应用领域。
(二)紫外可见分光光度法(UV)
其检测原理是:重金属与显色剂—通常为有机化合物,可于重金属发生络合反应,生成有色分子团,溶液颜色深浅与浓度成正比。在特定波长下,比色检测。
分光光度分析有两种,一种是利用物质本身对紫外及可见光的吸收进行测定;另一种是生成有色化合物,即“显色”,然后测定。虽然不少无机离子在紫外和可见光区有吸收,但因一般强度较弱,所以直接用于定量分析的较少。加入显色剂使待测物质转化为在紫外和可见光区有吸收的化合物来进行光度测定,这是目前应用最广泛的测试手段。显色剂分为无机显色剂和有机显色剂,而以有机显色剂使用较多。大多当数有机显色剂本身为有色化合物,与金属离子反应生成的化合物一般是稳定的螯合物。显色反应的选择性和灵敏度都较高。有些有色螯合物易溶于有机溶剂,可进行萃取浸提后比色检测。近年来形成多元配合物的显色体系受到关注。多元配合物的指三个或三个以上组分形成的配合物。利用多元配合物的形成可提高分光光度测定的灵敏度,改善分析特性。显色剂在前处理萃取和检测比色方面的选择和使用是近年来分光光度法的重要研究课题。
(三)原子荧光法(AFS)
原子荧光光谱法是通过测量待测元素的原子蒸气在特定频率辐射能激以下所产生的荧光发射强度,以此来测定待测元素含量的方法。
原子荧光光谱法虽是一种发射光谱法,但它和原子吸收光谱法密切相关,兼有原子发射和原子吸收两种分析方法的优点,又克服了两种方法的不足。原子荧光光谱具有发射谱线简单,灵敏度高于原子吸收光谱法,线性范围较宽干扰少的特点,能够进行多元素同时测定。原子荧光光谱仪可用于分析汞、砷、锑、铋、硒、碲、铅、锡、锗、镉锌等11种元素。现已广泛用环境监测、医药、地质、农业、饮用水等领域。在国标中,食品中砷、汞等元素的测定标准中已将原子荧光光谱法定为第一法。
气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能态会跃迁到高能态,同时发射出与原激发波长相同或不同的能量辐射,即原子荧光。原子荧光的发射强度If与原子化器中单位体积中该元素的基态原子数N成正比。当原子化效率和荧光量子效率固定时,原子荧光强度与试样浓度成正比。
现已研制出可对多元素同时测定的原子荧光光谱仪,它以多个高强度空心阴极灯为光源,以具有很高温度的电感耦合等离子体(ICP)作为原子化器,可使多种元素同时实现原子化。多元素分析系统以ICP原子化器为中心,在周围安装多个检测单元,与空心阴极灯一一成直角对应,产生的荧光用光电倍增管检测。光电转换后的电信号经放大后,由计算机处理就获得各元素分析结果。
(四)电化学法—阳极溶出伏安法
电化学法是近年来发展较快的一种方法,它以经典极谱法为依托,在此基础上又衍生出示波极谱、阳极溶出伏安法等方法。电化学法的检测限较低,测试灵敏度较高,值得推广应用。如国标中铅的测定方法中的第五法和铬的测定方法的第二法均为示波极谱法。
阳极溶出伏安法是将恒电位电解富集与伏安法测定相结合的一种电化学分析方法。这种方法一次可连续测定多种金属离子,而且灵敏度很高,能测定10-7-10-9mol/L的金属离子。此法所用仪器比较简单,操作方便,是一种很好的痕量分析手段。我国已经颁布了适用于化学试剂中金属杂质测定的阳极溶出伏安法国家标准。
阳极溶出伏安法测定分两个步骤。第一步为“电析”,即在一个恒电位下,将被测离子电解沉积,富集在工作电极上与电极上汞生成汞齐。对给定的金属离子来说,如果搅拌速度恒定,预电解时间固定,则m=Kc,即电积的金属量与被测金属离了的浓度成正比。第二步为“溶出”,即在富集结束后,一般静止30s或60s后,在工作电极上施加一个反向电压,由负向正扫描,将汞齐中金属重新氧化为离子回归溶液中,产生氧化电流,记录电压-电流曲线,即伏安曲线。曲线呈峰形,峰值电流与溶液中被测离了的浓度成正比,可作为定量分析的依据,峰值电位可作为定性分析的依据。
示波极谱法又称“单扫描极谱分析法”。一种极谱分析新力一法。它是一种快速加入电解电压的极谱法。常在滴汞电极每一汞滴成长后期,在电解池的两极上,迅速加入一锯齿形脉冲电压,在几秒钟内得出一次极谱图,为了快速记录极谱图,通常用示波管的荧光屏作显示工具,因此称为示波极谱法。其优点:快速、灵敏。
(五)X射线荧光光谱法(XRF)
X射线荧光光谱法是利用样品对x射线的吸收随样品中的成分及其多少变化而变化来定性或定量测定样品中成分的一种方法。它具有分析迅速、样品前处理简单、可分析元素范围广、谱线简单,光谱干扰少,试样形态多样性及测定时的非破坏性等特点。它不仅用于常量元素的定性和定量分析,而且也可进行微量元素的测定,其检出限多数可达10-6。与分离、富集等手段相结合,可达10-8。测量的元素范围包括周期表中从F-U的所有元素。多道分析仪,在几分钟之内可同时测定20多种元素的含量。
x射线荧光法不仅可以分析块状样品,还可对多层镀膜的各层镀膜分别进行成分和膜厚的分析。
当试样受到x射线,高能粒子束,紫外光等照射时,由于高能粒子或光子与试样原子碰撞,将原子内层电子逐出形成空穴,使原子处于激发态,这种激发态离子寿命很短,当外层电子向内层空穴跃迁时,多余的能量即以x射线的形式放出,并在教外层产生新的空穴和产生新的x射线发射,这样便产生一系列的特征x射线。特征x射线是各种元素固有的,它与元素的原子系数有关。所以只要测出了特征x射线的波长λ,就可以求出产生该波长的元素。即可做定性分析。在样品组成均匀,表面光滑平整,元素间无相互激发的条件下,当用x射线(一次x射线)做激发原照射试样,使试样中元素产生特征x射线(荧光x射线)时,若元素和实验条件一样,荧光x射线强度与分析元素含量之间存在线性关系。根据谱线的强度可以进行定量分析
(六)电感耦合等离子体质谱法(ICP-MS)
ICP-MS的检出限给人极深刻的印象,其溶液的检出限大部份为ppt级,实际的检出限不可能优于你实验室的清洁条件。必须指出,ICP-MS的ppt级检出限是针对溶液中溶解物质很少的单纯溶液而言的,若涉及固体中浓度的检出限,由于ICP-MS的耐盐量较差,ICP-MS检出限的优点会变差多达50倍,一些普通的轻元素(如S、 Ca、Fe 、K、 Se)在ICP-MS中有严重的干扰,也将恶化其检出限。
ICP-MS由作为离子源ICP焰炬,接口装置和作为检测器的质谱仪三部分组成。
ICP-MS所用电离源是感应耦合等离子体(ICP),其主体是一个由三层石英套管组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。如果通过高频装置使氩气电离,则氩离子和电子在电磁场作用下又会与其它氩原子碰撞产生更多的离子和电子,形成涡流。强大的电流产生高温,瞬间使氩气形成温度可达10000k的等离子焰炬。被分析样品通常以水溶液的气溶胶形式引入氩气流中,然后进入由射频能量激发的处于大气压下的氩等离子体中心区,等离子体的高温使样品去溶剂化,汽化解离和电离。部分等离子体经过不同的压力区进入真空系统,在真空系统内,正离子被拉出并按照其质荷比分离。在负载线圈上面约10mm处,焰炬温度大约为8000K,在这么高的温度下,电离能低于7eV的元素完全电离,电离能低于10.5ev的元素电离度大于20%。由于大部分重要的元素电离能都低于10.5eV,因此都有很高的灵敏度,少数电离能较高的元素,如C,O,Cl,Br等也能检测,只是灵敏度较低。

10. 目前金属表面检测的主要方法有哪些

主流金属制品表面缺陷在线检测方法。
一、漏磁检测
漏磁检测技术广泛应用于钢铁产品的无损检测。其检测原理是,利用磁源对被测材料局部磁化,如材料表面存在裂纹或坑点等缺陷,则局部区域的磁导率降低、磁阻增加,磁化场将部分从此区域外泄,从而形成可检验的漏磁信号。在材料内部的磁力线遇到由缺陷产生的铁磁体间断时,磁力线将会发生聚焦或畸变,这一畸变扩散到材料本身之外,即形成可检测的磁场信号。采用磁敏元件检测漏磁场便可得到有关缺陷信息。因此,漏磁检测以磁敏电子装置与磁化设备组成检测传感器,将漏磁场转变为电信号提供给二次仪表。
漏磁检测技术的整个过程为:激磁-缺陷产生漏磁场-传感器获取信号-信号处理-分析判断。在磁性无损检测中,磁化时实现检测的第一步,它决定着被测量对象(如裂纹)能不能产出足够的可测量和可分辨的磁场信号,同时也影响着检测信号的性能,故要求增强被测磁化缺陷的漏磁信号。被测构件的磁化由磁化器来实现,主要包括磁场源和磁回路等部分。因此,针对被测构件特点和测量目的,选择合适的磁源和设计磁回路是磁化器优化的关键。
漏磁检测金属表面缺陷的物理基础使带有缺陷的铁磁件在磁场中被磁化后,在缺陷处会产生漏磁场,通过检测漏磁场来辩识有无缺陷。因此,研究缺陷漏磁场的特点,确定缺陷的特征,就成为漏磁检测理论和技术的关键。要测量漏磁场,测量装置须具有较高的灵敏度,特别是能测空间点磁场,还应有较大的测量范围和频带;测量装置须具有二维及三维的精确步进或调整能力,以确定传感器的空间位置;同时,应用先进的信号处理技术去除噪声,确定实际的漏磁场量。Foerster,Athertion 已成功应用霍尔器件检测缺陷,霍尔器件可在z—Y二维空间步进的最小间隔分别为2μm和0.1μm。
漏磁检测不仅能检测表面缺陷,且能检测内部微小缺陷;可检测到5X10mm。的微小缺陷;造价较低廉。其缺点是,只能用于金属材料的检测,无法识别缺陷种类。目前,漏磁检测在低温金属材料缺陷检测方面已进入实用阶段。如日本川崎公司千叶厂于1993年开发出在线非金属夹杂物检测装置;日本NKK公司福冈厂于同年研制出一种超高灵敏度的磁敏传感器,用于检测钢板表面缺陷。
二、红外线检测与技术
红外线检测是通过高频感应线圈使连铸板坯表面产生感应电流,在高频感应的集肤效应作用下,其穿透深度小于1 mm,且在表面缺陷区域的感应电流会导致单位长度的表面上消耗更多电能,引起连铸板坯局部表面的温度上升。该升温取决于缺陷的平均深度、线圈工作频率、特定输入电能,以及被检钢坯电性能、热性能、感应线圈宽度和钢运动速度等因素。当其它各种因素在一定范围内保持恒定时,就可通过检测局部温升值来计算缺陷深度,而局部温升值可通过红外线检测技术加以检定。利用该技术,挪威Elkem公司于1990年研制出Ther—mOMatic连铸钢坯自动检测系统,日本茨城大学工学部的冈本芳三等在检测板坯试件表面裂纹和微小针孔的实验研究中也利用此法得到较满意的结果。
三、超声波探伤技术
超声波检测是利用声脉在缺陷处发生特性变化的原理来检测。接触法是探头与工件表面之间经一层薄的起传递超声波能量作用的耦合剂直接接触。为避免空气层产生强烈反射,在探测时须将接触层间的空气排除干净,使声波入射工件,操作方便,但其对被测工件的表面光洁度要求较高。液浸法是将探头与工件全部浸入于液体或探头与工件之间,局部以充液体进行探伤的方法。脉冲反射法是当脉冲超声波入射至被测工件后,声波在工件内的反射状况就会显示在荧光屏上,根据反射波的时间及形状来判断工件内部缺陷及材料性质的方法。目前,超声波探伤技术已成功应用于金属管道内部的缺陷检测。
四、光学检测法
机器视觉是以图像处理理论为核心,属于人工智能范畴的一个领域,它是以数字图像处理、模式识别、计算机技术为基础的信息处理科学的重要分支,广泛应用于各种无损检测技术中。基于机器视觉的连铸板坯表面缺陷检测方法的基本原理是:一定的光源照在待测金属表面上,利用高速CCD摄像机获得连铸板坯表面图像,通过图像处理提取图像特征向量,通过分类器对表面缺陷进行检测与分类。20世纪70年代中期,El本Jil崎公司就开始研制镀锡板在线机器视觉检测装置 。1988年,美国Sick光电子公司也成功地研制出平行激光扫描检测装置,用以在线检测金属表面缺陷。基于机器视觉的表面在线检测与分类器设计的研究工作目前在国内尚处于起步阶段。1990年,华中理工大学采用激光扫描方法测量冷轧钢板宽度和检测孔洞缺陷,并开发了相应的信号处理电路;1995年又研制出冷轧连铸板坯表面轧洞、重皮和边裂等缺陷检测和最小带宽测量的实验系统。1996年,宝钢与原航天部二院联合研制出冷轧连铸板坯表面缺陷的在线检测系统,并进行了大量的在线试验研究。近年来,北京科技大学、华中科技大学等也研制出较为实用化的在线检测系统。
从检测技术的观点来看,基于机器视觉的钢表面缺陷检测系统面临困境:①要求检测到的缺陷的几何尺寸越来越小,有的甚至小于0.1 mm;② 检测对象可能处于运动状态,导致采集的图像抖动较大;③现场环境较恶劣,往往受烟尘、油污、温度高等因素的影响,引起缺陷图像信噪比下降;④表面缺陷的多样性(如冷轧连铸板坯表面可达100多种),不同缺陷之间的光学特性、电磁特性不同;有的缺陷之间的差异不明显。因此,基于机器视觉的连铸板坯表面缺陷分类器要求具有收敛速度快、鲁棒性好、自学习功能等特点。

阅读全文

与金属夹杂物的检测方法相关的资料

热点内容
甲醇精馏工段研究方法和步骤 浏览:580
牛羊乳房炎的最佳治疗方法 浏览:791
管理者的研究方法和技术 浏览:40
快速换牙方法 浏览:397
肠结石治疗方法 浏览:557
元角分综合训练方法 浏览:102
多个电源线连接方法 浏览:831
痿病的治疗方法 浏览:332
家装下单预约安装方法 浏览:215
毛姜治疗脱发使用方法 浏览:694
鸟网使用方法 浏览:943
对经草调月经的正确食用方法 浏览:317
倒置电刨使用方法 浏览:416
身上干燥起皮怎么办最快方法 浏览:927
针灸按摩治疗方法 浏览:766
60天快速逆袭的方法 浏览:105
板鞋系鞋带方法慢教程视频 浏览:528
实验室测血糖的方法和步骤 浏览:974
钙的使用方法 浏览:511
4102接地电阻的测量方法视频教程 浏览:548