① 求代数式的最大值或最小值有哪些方法
1、合并同类项:把多项式中同类项合并成一项,叫做合并同类项。合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
2、去括号法则:括号前足“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。
3、添括号法则:添括导后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“—”号,括到括号里的各项都改变符号。
例:求代数式-2m方-6m+12的最大值 2x方+4x+8的最小值。
解:-2m²-6m+12=-2(m²+3m+9/4)+12+9/2=-2(m+3/2)²+33/2,最大值是33/2 。
2x²+4x+8=2(x²+2x+1)+6=2(x+1)²+6,最小值是6。
(1)求代数式值的正确方法和技巧扩展阅读:
关于代数式的分类应注意:
1、要按代数式给出的初始形式分类,例如(x²+1)/x²+1虽然可以化简为x²+1,但它仍然是分式;又如,√(x²+1)²-1虽然可以化简为 x2,但它仍然是无理式。
2、要按实施于指定的变数字母的运算分类。例如对于变数字母 x ,式子x+√a是有理式,式子√x+a是无理式。
② 数学求值题的几种常用技巧
一、直接代入求值
例1当x=10,y=9时,代数式x2-y2的值是.
分析:这是一个简单的代数式求值问题,直接代入求值即可.
解:当x=10,y=9时,x2-y2=102-92=100-81=19.
温馨提示:直接代入是求代数式的值最常用的方法,对于较简单的代数式可采用直接代入法求值.
二、先化简,再代入求值
分析:直接代入求值比较繁琐,若将代数式先化简再代入,则可化繁为简.
解:原式=5x3y-3[-x2y+2x3y-3x2y]=5x3y+3x2y-6x3y+9x2y=-x3y+12x2y.
温馨提示:当代数式可以化简时,要先化简再求值,代入时要注意负数和分数的乘方要加上括号,计算时要严格按照运算顺序进行.
三、先求字母的值,再代入求值
例3已知(x-1)2+y+2=0,求x2y-2x+3y的值.
分析:要求代数式的值,必须先求出x、y的值.根据已知式中数的平方与绝对值都是非负数,且它们的和为0,由非负数的性质可求出x、y的值.
解:由(x-1)2+y+2=0,得x-1=0,y+2=0,解得x=1,y=-2.
所以x2y-2x+3y=12×(-2)-2×1+3×(-2)=-10.
温馨提示:当几个非负数的和为0时,则这几个非负数同时为0.
四、先变形,再整体代入求值
例4若x2+3x=7,则2x2+6x-3=.
分析:直接求出x的值比较困难,考虑将x2+3x看作一个整体,把2x2+6x-3转化为用x2+3x的式子表示,整体代入可快捷求值.
解:因为2x2+6x-3=2(x2+3x)-3,又x2+3x=7,
所以2x2+6x-3=2×7-3=11.
温馨提示:注意观察待求式与已知式的关系,把待求式适当变形可转化为用已知条件中的式子表示,然后整体代入,可简化计算.
五、取特殊值代入求值
温馨提示:特殊值法体现了从一般到特殊的数学思想,是一种最简捷的求值方法,特别适合于解填空题、选择题
③ 代数式的值的方法有哪两种求代数式值
求代数式的值的方法有哪两种 求代数式值的方法有
解:
常用的一般有两种
1、先化简在求值
2、带入求值
答
④ 学习代数式的技巧
《代数式》是学好初中代数的起点和重要内容。
首先要理解代数式的概念:
(1)抽象理解:用运算符号把数与表示数的字母连结而成的式子;
(2)形象理解:象“用胶水把邮票粘贴在信封上”那样;
(3)单独的一个数或一个字母也是代数式的理解:
因为字母x的零次方为1,所以2=2乘x的零次方,是代数式
因为字母a=1乘a,所以也是代数式。
2.关于列代数式的两个基本功——“翻译”
(1)由意义写代数式。抓关键词,如“a与b的平方的差”异于“a与b的平方差”
(2)由代数式说意义。熟悉常见的意义,如:平方和、立方差、负倒数等等。
3.对于求代数式的值的理解。
(1)当字母取一个值时,代数式可能最多有一个值与之对应。
如当x=0时,1/x无意义,当x=2时,1/x=1/2.
(2)代数式的值可能不至一个。
因为字母可能取很多的值,所以对应的代数式的值必然也有很多。
(3)在使代数式有意义的情况下,字母所取的值不同,代数式的值未必不同。
如当x=2时,x²=4,当x=-2时,x²=4。
(4)一般地,字母的取值有一个范围,即能使代数式有意义的那个范围。
(5)只含有一个字母的代数式叫做一元代数式,其字母的取值范围很重要。
理解后,为学习后面的函数打下基础。
⑤ 代数式求值的常用方法
1、直接代入求解法,这个不多说。
2、构造特定表达式法。以一元二次方程为例,其两个实数根为a、b,如求a^2+b^2,就要化为(a+b)^2-2ab。或通过因式分解,化为特定形式的:求999^2=?可先化为999^2-1=(999+1)(999-1)=998000来求。诸如此类,不胜枚举。
3、换元法。如已知a^2+b^2=1,要求ab的最大值和最小值。可令a=sinX,b=cosX,则ab=sinX*cosX=sin2X/2,立马知道最大值为1/2,最小值为-1/2
4、赋值法。比较常用到是利用多项式定理和数列,用一个特殊值来赋值的。这个很灵活,技术比较巧妙,具体可以去查下参考书。
⑥ 求代数式的值的步骤和方法
求代数式的值的解题步骤是:
①指出代数式中的字母所取的值;
②抄写原代数式;
③把字母的值代入代数式中;
④按规定的运算顺序进行计算.
⑦ 初中代数式求值方法
代数式求值的方法是:先化简,再求值。因为直接代入会很麻烦,式子复杂容易出错。当然了,如果代数式不复杂也是可以直接代入求值的。
aqui te amo。
⑧ 浅谈初中数学常用求代数式值方法
大家通常会认为小学数学只是加减乘除的累积,是一门理性的学科,只重视了表面的数字运算,却很容易就忽视了数学与其他科目之间的联系,以及小学数学对孩子逻辑思维能力的训练。逻辑思维能力并不像人们想象的那样固化,它是可以通过后期培养的,并且会逐渐成为帮助人们理清思路解决问题的法宝之一。
一、什么是数学思维能力?
思维是人脑对客观事物的一般特殊性和规律性的一种间接的、概括的反映过程。数学思维是对数学对象(空间形式、数量关系、结构关系等)的本质属性和内部规律的间接反映,并按照一般思维规律认识数学内容的理性活动。
二、培养数学思维能力的各种好处
首先,对孩子来讲,良好的数学思维能力可以帮助他们快速获取新知识、更好地进行创造性学习,也属于智力发展的核心;对教师来讲,培养孩子的数学思维能力能够有效提高教学效益。为了教师和学生之间实现更加高水平的教、学平衡,提高学生数学思维能力刻不容缓。当然,习惯不是三两天就能养成的,更何况数学思维习惯,它的养成需要落实到平时的学习生活中去,从思维品质的形成开始。
4、培养思维的广阔性
思维的广阔性是指对一个问题能从多方面考虑。具体表现为对一个事实能作多方面的解释,对一个对象能用多种方式表达,对一个题目能想出各种不同的解法。在数学学习中,注重多方位、多角度的思考方式,拓广解题思路,可以促进学生思维的广阔性。
5、培养思维的批判性
思维的批判性是指思维活动中善于严格地估计思维材料和精细地检查思维过程。在数学学习的过程中,学生要善于从已有的答案和解题过程中提炼出自己想要的东西,发表自己的见解。不能一味盲从,要学会用批判性的思路去进行各种方式的反思和检验。就算思想上完全接受了东西,也要谋改善,提出新的想法和见解。
以上五种思维品质是提高数学思维能力的必要途径,但大家切勿忽视了一点,就是这五大思维品质之间的紧密联系,不可分一而行,否则会很被思维定势所牵制,出现机械套用之前思维模式的倾向,并且同一种方法使用的次数越多,这种倾向就会越明显。
我们就如何养成学生良好的数学思维习惯,讨论了五种主要的思维品质及培养方法。而这五种思维品质是最为重要的。它们之间互相联系,密不可分。除了严谨性、广阔性、灵活性、批判性,还有探讨性、独创性、目的性等。
⑨ 初二上册数学代数式知识点总结
重点代数式的有关概念及性质,代数式的运算
☆内容提要☆
一、 重要概念
分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积-包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:
①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,
=x, =│x│等。
4.系数与指数
区别与联系:
①从位置上看;
②从表示的意义上看
5.同类项及其合并
条件:
①字母相同;
②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:
①从外形上判断;
②区别: 、 是根式,但不是无理式(是无理数)。
7.算术平方根
⑴正数a的正的平方根( [a0-与平方根的区别]);
⑵算术平方根与绝对值
① 联系:都是非负数, =│a│
②区别:│a│中,a为一切实数; 中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:
①被开方数的因数是整数,因式是整式;
②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
9.指数
⑴ ( -幂,乘方运算)
① a0时, ②a0时, 0(n是偶数), 0(n是奇数)
⑵零指数: =1(a0)
负整指数: =1/ (a0,p是正整数)
二、 运算定律、性质、法则
1.分式的'加、减、乘、除、乘方、开方法则
2.分式的性质
⑴基本性质: = (m0)
⑵符号法则:
⑶繁分式:
①定义;
②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:① o = ;② ③ = ;④ = ;⑤
技巧:
5.乘法法则:
⑴单
⑵单
⑶多多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(ab) =
7.除法法则:
⑴单
⑵多单。
8.因式分解:
⑴定义;
⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质: = ; ; (a0); (a0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
11.科学记数法: (110,n是整数=
一、代数式的定义:
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
注意:
(1)单个数字与字母也是代数式;
(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;
(3)代数式可按运算关系和运算结果两种情况理解。
三、整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。特别地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
四、升(降)幂排列:
把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
五、代数式书写要求:
1.代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;
2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b)·2·a 应写成2a(a+b);
3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;
4.在代数式中出现除法运算时,按分数的写法来写;
5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。
六、系数与次数
单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
注意:(1)单项式的系数包括它前面的符号;
(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。
2.单项式的次数:单项式中所有字母的指数和叫做单项式的次数。
注意:(1)单项式的次数是它含有的所有字母的指数和,只与字母的指数有关,与其系数无关;
(2)单项式中字母的指数为1时,1通常省略不写,在确定单项式的次数时,一定不要忘记被省略的1。
3.多项式的次数:多项式中次数最高的项的次数就是多项式的次数.
4.多项式的项数:在多项式中,每个单项式都叫做多项式的项,其中不含字母的项称为常数项。一个多项式有几项,就叫几项式,它的项数就是几。多项式的项数实质是“和” 中单项式的个数。
七、列代数式:
用含有数、字母和运算符号的式子把问题中的数量表示出来就是列代数式。
正确列出代数式,要掌握以下几点:
(1)列代数式的关键是理解和找出问题中的数量关系;
(2)要掌握一些常见的数量关系如行程问题、工程问题、浓度问题、数字问题等;
(3)要善于抓住问题中的关键词语,如和、差、积、商、大、小、几倍、平方、多、少等。
八、代数式求值:
一般地,用数值代替代数式中的字母,按照代数式中指明的运算计算的结果叫做代数式求值。
代数式求值的三种方法:1.直接代入求值;2.化简代入求值;3.整体代入求值。
常见考法
列代数式与代数式求值是中考的必考知识点,它涉及的知识范围广,可与实际问题(如乘车,购物、储蓄、税收等)相结合,特别的探索规律列代数式这类考题为中考命题者提供了广泛的空间,是近几年的热点,这类题通常是从一列数、一个数阵、一个等式、一组图形中,观察出规律,并尝试归纳出代数式或公式,再加以验证。
误区提醒
(1)列代数式时,由于审题不清,对条件理解不透,很容易搞错运算顺序而列错代数式;(2)求代数式的值,将代数式中字母用相应的数值后,代数式就变成了实数的混合运算。如果没有对实数运算掌握好,就会出现运算顺序搞错的现象。(3)在进行规律探索中,由于在审题中没有抓住问题的性质,常常得出不能完全反映全部规律的错误规律,出现以点概面,以偏概全的现象。
1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)
2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。
3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠-------。
4、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式.
单项式的系数:是指单项式中的数字因数;(不要漏负号和分母)
单项数的次数:是指单项式中所有字母的指数的和.(注意指数1)
5、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
6、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。
⑩ 代数式求值
代数式求值问题是历年中考试题中一种极为常见的题型,它除了按常规直接代入求值外,还要根据其形式多样,思路多变的特点,灵活运用恰当的方法和技巧,本文结合近两年各地市的中考试题,介绍十种常用的求值方法,以供参考。
一、利用非负数的性质
二、化简代入法
化简代入法是指先把所求的代数式进行化简,然后再代入求值,这是代数式求值中最常见、最基本的方法。
三、整体代入法
当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到待求的代数式中去求值的一种方法。通过整体代入,实现降次、归零、约分的目的,以便快速求得其值。
四、赋值求值法
赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的值的一种方法。这是一种开放型题目,答案不唯一,在赋值时,要注意取值范围。
五、倒数法
倒数法是指将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法。
六、参数法
若已知条件以比值的形式出现,则可利用比例的性质设比值为一个参数,或利用一个字母来表示另一个字母。
七、配方法
若已知条件含有完全平方式,则可通过配方,把条件转化成几个平方和的形式,再利用非负数的性质来确定字母的值,从而求得结果。
八、平方法
在直接求值比较困难时,有时也可先求出其平方值,再求平方值的平方根(即以退为进的策略),但要注意最后结果的符号。
九、特殊值法
有些试题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,把一般形式变为特殊形式进行判断,这时常常会使题目变得十分简单。
十、利用根与系数的关系
如果代数式可以看作某两个“字母”的轮换对称式,而这两个“字母”又可能看作某个一元二次方程的根,可以先用根与系数的关系求得其和、积式,再整体代入求值