导航:首页 > 方法技巧 > 初中快速计算的方法与技巧

初中快速计算的方法与技巧

发布时间:2022-06-04 10:14:13

如何提高初中生的数学计算能力

在进入初中阶段以后数学能力的培养是初中数学的重要任务之一,计算能力的好坏直接影响数学知识的应用,和以后内容的学习。进入初中时学生的年龄处在12----13岁左右,心理较为成熟,自控能力有所加强,但好玩、贪玩、慌张、做不下来等都导致其计算能力的培养,没有恒心,没有毅力,计算题都是算了半截或草草了事。 面对这样的现状,我在教学的实际过程中除了坚持课本中的教学之外,还尝试了好多方法,其效果较好,我说出来供大家参考,共同交流。 一、 加强自查,也可以互查 七年级上册的有理数、一元一次方程中都涉及到计算,我就让学生做完题目后进行自查,可以将计算题再做一遍,将方程解带回进行验根,也可以将自己算的结果和同桌交流,结果不一样的可以两人共同检查其中存在的问题,互相帮助纠正,对下次计算时可互相提醒,同时也可以让父母帮助其进行检查。 二、 对其出现的错误及时总结,及时提醒。 我在教学的过程中要求每名学生对自己容易出现问题的地方归纳在一起,写成条子,压在自己的书桌上,贴在自己眼睛能见到的墙上,比如乘方中的符号问题、底数问题、去括号问题、方程中的去分母问题、整式中的合并同类项法则的应用等等问题。在我们解决这些问题时头脑中就会映出条子上的内容,在实际计算中就会引起重视,克服经常会出错的问题。 三.分散训练,集中考核。 在学习有理数运算、一元一次方程、整式的化简等涉及到运算的问题时,当堂作业中计算题目较多,学生易于疲劳、烦躁,做题也就不认真了,故在学习这些内容后,每天给学生两道计算题,这样量小,学生容易认真做,易于集中力量,准确率就高了。经过一段时间的训练后,在进行集中考查,对出现的个别问题进行及时解决。 四、提倡运算的简捷性和灵活性。 运算的简捷是运算合理性的标志,是运算速度的要求,它是对学生思维深刻性和灵活性的考察。要提高学生合理进行运算的能力,"一题多解"是一个很好的训练方法。因为通过“一题多解”,就可比较哪一种解法既正确又简捷,从而确定合理的解法。从认知角度来看,运算的多解性是感性阶段,而合理运算则是运算的理性阶段。由多解性通过分析、比较来培养学生运算概括能力,从而进入合理性的阶段,这是一个由量变到质变的过程。 五、培养学生良好的习惯 有部分学生,在测验、考试之前单独关照一下,盯得紧一点,成绩会起很大变化。分析原因,不是基础的东西没有掌握,而是平时的习惯不行。因此,良好的学习习惯,直接影响着学生数学运算能力的形成和提高。所以,教师应要求学生认真听课,积极思考,独立完成作业,养成自觉检查验算和有错必改的习惯。在教学中,应与应用题教学一样,养成看到题目,首先审题的习惯,这样数学运算起来方法会更正确、更合理,数学运算速度会不断提高。学生数学运算出现差错,错写、漏写数字和运算符号是常有的事,因此指导好学生认真书写也十分重要。规范的书写格式可以表达运算的思路和数学运算步骤。诚然,培养学生良好的学习习惯,不能靠一朝一夕,也不能时紧时松,只有坚持不懈,一抓到底方能有成效。另外,老师也应以身作则,板书时、批改作业时,都要作出表率。 总之,提高学生的运算能力是一项复杂的系统工程,是一项长期的任务,不可能一蹴而就。只要我们珍惜每一次训练机会,有计划、有目标、有意识地进行长期的渗透,使学生逐步领悟运算能力的实质,就必然会促使学生养成正确、合理、快速进行运算的习惯,提高运算能力,提高数学效果。

❷ 能快速口算的技巧有哪些方法

一、一种做多位乘法不用竖式的方法.我们都可以口算1X1 10X1,但是,11X12 12X13 12X14呢?这时候,大家一般都会用竖式,通过竖式计算,得数是132、156、168.其中有趣的规律:即个位上的数字正好是两个因数个位数字的积.十位上的数字是两个数字个位上的和.百位上的数字是两个因数十位数字的积.例如:
12X14=168 1=1X1 6=2+4 8=2X4如果有进位怎么办呢?这个定律对有进位的情况同样适用,在竖式时只要~满几时,就向下一位进几.~例如:
14X16=224 4=4X6的个位 2=2+4+6 2=1+1X1 试着做做看下面的题:
12X15= 11X13= 15X18= 17X19=二、几十一乘以几十一的速算方法 例如: 21×61= 41×91= 41×91= 51×61= 81×91= 41×51= 41×81= 71×81= 这些算式有什么特点呢?是“几十一乘以几十一”的乘法算式,我们可以用:先写十位积,再写十位和(和满10 进1),后写个位积.“先写十位积,再写十位和(和满10 进1),后写个位积”就是一见到几十一乘以几十一的乘法算式,如果十位数的和是一位数,我们先直接写十位数的积,再接着写十位数的和,最后写上1 就一定正确;如果十位数的和是两位数,我们先直接写十位数的积加1 的和,再接着写十位数的和的个位数,最后写一个1 就一定正确.我们来看两个算式:21×61=41×91= 用“先写十位积,再写十位和(和满10 进1),后写个位积”这种速算方法直接写得数时的思维过程.第一个算式,21×61=?思维过程是:2×6=12,2+6=8, 21×61 就等于1281.第二个算式,41×91=?思维过程是:4×9=36,4+9=13,36+1=37, 41×91 就等于3731. 试试上面题目吧!然后再看看下面几题 61×91= 81×81= 31×71= 51×41=一、10-20的两位数乘法及乘方速算方法:尾数相乘,被乘数加上乘数的尾数(满十进位)【例1】 1 2 X 1 3 ----------1 5 6 (1)尾数相乘2X3=6 (2)被乘数加上乘数的尾数12+3=15 (3)把两计算结果相连即为所求结果【例2】 1 5X 1 5------------2 2 5(1)尾数相乘5X5=25(满十进位)(2)被乘数加上乘数的尾数15+5=20,再加上个位进上的2即20+2=22(3)把两计算结果相连即为所求结果二、两位数、三位数乘法及乘方速算a.首数相同,尾数相加和是十的两位数乘法 方法:尾数相乘,首数加一再相乘 【例1】 5 4X 5 6---------3 0 2 4(1)尾数相乘4X6=24直接写在十位和个位上(2)首数5加上1为6,两首数相乘6X5=30(3)把两结果相连即为所求结果【例2】 7 5X 7 5----------5 6 2 5(1)尾数相乘5X5=25直接写在十位和个位上(2)首数7加上1为8,两首数相乘8X7=56(3)把两计算结果相连即可b.尾数是5的三位数乘方速算方法:尾数相乘,十位数加一,再将两首数相乘【例】 1 2 5X 1 2 5------------1 5 6 2 5(1)尾数相乘5X5=25直接写在十位和个位上(2)首数12加上1为13,再两数相乘13X12=156(3)两计算结果相连c.任意两位数乘法方法:尾数相乘,对角相乘再相加,首数相乘 【例】 3 7X X 6 2---------2 2 9 4(1)尾数相乘7X2=14(满十进位)(2)对角相乘3X2=6;7X6=42,两积相加6+42=48(满十进位)(3)首数相乘3X6=18加上十位进上的4为18+4=22(4)把计算结果相连即为所求结果b.任意两位数及三位平方速算方法:尾数的平方,首数乘尾数扩大2倍,首数的平方[例] 2 3X 2 3---------5 2 9 (1)尾数的平方3X3=9(满十进位)(2)首尾数相乘2X3=6扩大两倍为12写在十位上(满十进位)(3)首数的平方2X2=4加上十位进上的1为5(4)把计算结果相连即为所求结果c.三位数的平方与两位数的平方速算方法相同[例] 1 3 2 X 1 3 2------------1 7 4 2 4(1)尾数的平方2X2=4写在个位(2)首尾数相乘13X2=26扩大2倍为52写在个位上(满十进位)(3)首数的平方13X13=169加上十位进上的5为174(4)把计算结果相连即为所求结果〖注意:三位数的首数指前两位数字!〗三、大数的平方速算方法:把题目与100相差,相差数称之为差数;先算差数的平方写在个位和十位上(缺位补零),再用题目减去差数得一结果;最后把两结果相连即为所求结果【例】 9 4X 9 4-----------8 8 3 6(1)94与100相差为6(2)差数6的平方36写在个位和十位上(3)用94减去差数6为88写在百位和千位上(4)把计算结果相连即为所求结果 B55 × 55 = ? 27 × 23 = ? 91 × 99 = ? 43 × 47 = ? 88 × 82 = ? 74 × 76 = ?大家能够很快算出这些算式的正确答案吗?注意,是很快哦!你能吗?我能--3025 ; 621 ; 9009 ;2021 ; 7216 ; 5624 ;很神气吧!速算秘诀:(就以第一题为例好啦)(1)分别取两个数的第一位,而后一个的要加上一以后,相乘.[5×(5+1)]=30;(2)再将末尾数相乘的得数写在后面就可以得出正确的答案了.5×5=25;(3)3025!Bingo!其它依次类推就行了.仔细看每一个式子里的两位数的十位是相同的,而个位的两数则是相补的.这样的速算秘诀只能够适用于这种情况的算式.所以说大家千万不要把巧算和真正的速算混淆在一起,真正的速算是任何数都能算的.一、关于9的数学速算技巧(两位数乘法)
关于9的口诀:
1 × 9 = 9 2 × 9 = 18 3 × 9 = 27 4 × 9 = 36
5 × 9 = 45 6 × 9 = 54 7 × 9 = 63 8 × 9 = 72
9 × 9 = 81从上面的口诀口有没有看到从1到9任何一个数和9相乘的积,个位数和十位数的和还是等于9.
你看上面的:0 + 9 =9;1 + 8 = 9;2 + 7 = 9;3 + 6 = 9;
4 + 5 = 9;5 + 4 = 9;6 + 3 = 9;7 + 2 = 9;8 + 1 = 9下面我们再做一些复杂一点的乘法:
18 × 12 = ? 27 × 12 = ? 36 × 12 = ? 45 × 12 = ?
54 × 12 = ? 63 × 12 = ? 72 × 12 = ? 81 × 12 = ?
关于两位数的乘法,上面的题目中,前面的乘数都是9的倍数,而且个位和十位的和都等于9.
这样我们能不能找到一种简便的算法呢?也就是把两位数的乘法变成一位数的乘法呢?
我们先把上面这些数变一变.
18 = 1 × 10 + 8;27 = 2 × 10 + 7;36 = 3 × 10 + 6;
45 = 4 × 10 + 5;54 = 5 × 10 + 4;63 = 6 × 10 + 3;
72 = 7 × 10 + 2;81 = 8 × 10 + 1;
我们再把上面的数变一变
1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 = 2 × 9
当然如果知道口诀你们可以直接把18 = 2 × 9同样的方法你们可以拆出下面的数,也可以背口诀27 = 3 × 9 ; 36 = 4 × 9 ;45 = 5 × 9
54 = 6 × 9 ; 63 = 7 × 9 ;72 = 8 × 9
81 = 9 × 9
为了找到计算上面问题的方法,我们把上面的式子再变一次.
18 = 2×(10-1);27 = 3×(10-1);36 = 4×(10-1)
45 = 5×(10-1);54 = 6×(10-1);63 = 7×(10-1)
72 = 8×(10-1);81 = 9×(10-1)
现在我们来算上面的问题:
18 × 12 = 2×(10-1)× 12
= 2 ×(12 ×10 - 12)
= 2 ×(120- 12)
120 - 12 = 108;
这样就有了
18 × 12 = 2 × 108 = 216
是不是把一个两位数的乘法变成了一位数的乘法?
而且可以通过口算就得出结果?我用这种方法教威威算乘法,他只需要我算这一个,后边的题目就自己会算了.
上面我们的计算好象很麻烦,其实现在总结一下就简单了.

❸ 初中数学的方法与技巧

一:平时的数学学习:
○1课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.
○2让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.
○3课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.
○4单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”.
二:期中期末数学复习:
要将平时的单元检测卷订成册,并且将错题再做一遍.如果整张试卷考得都不好,那么可以复印将试卷重做一遍.除试卷外,还可以将作业上的错题、难题、易错题重做一遍.另外,自己还可以做2-3张期末模拟卷.
三:数学考试技巧:
如果想得高分,在选择、填空、计算题上是不能丢分的.在考数学的时候思想不能开小差,而且遇到难题时不能想“没考好怎么办啊”等内容.在通常情况下,期末考试的难题都是不知道怎么做,但有可能突然明白的那种.遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析,如这次考试有两个空白的钟,还有去年七年级期末的几题填空.这些条件都对你的解题有很大帮助.在期中、期末考试中有充足的时间,将自己的速度压下来,不是越快越好,争取一次做成功.大概留35分钟的时间检查.
最终提醒大家:多做题有一定作用,但上课听讲、认真答题及提高准确率、总结经验才是最重要的.还要将所学的知识用到生活中去,做到学以致用.当你运用数学知识解决了生活中实际问题的时候,你就会感受到学习的乐趣。

❹ 速算的方法与技巧

全脑速算
全脑速算是模拟电脑运算程序而研发的快速脑算技术教程,它能使儿童快速学会脑算任意数加、减、乘、除、乘方及验算。从而快速提高孩子的运算速度和准确率。
全脑速算的运算原理:
通过双手的活动来刺激大脑,让大脑对数字直接产生敏感的条件反射作用,达到快速计算的目的。
(1)以手作为运算器并产生直观的运算过程。
(2)以大脑作为存储器将运算的过程快速产生反应并表示出。
例如:6752 + 1629 = ?
运算过程和方法: 首位6+1是7,看后位(7+6)满10,进位进1,首位7+1写8,百位7减去6的补数4写3,(后位因5+2不满10,本位不进位),十位5+2是7,看后位(2+9)满10进1,本位7+1写8,个位2减去9的补数1写1,所以本题结果为8381。
全脑速算乘法运算部分原理:
假设A、B、C、D为待定数字,则任意两个因数的积都可以表示成:
AB×CD=(AB+A×D/C)×C0+B×D
= AB×C0 +A×D×C0/C+B×D
= AB×C0 +A×D×10+B×D
= AB×C0 +A0×D+B×D
= AB×C0 +(A0+B)×D
= AB×C0 +AB×D
= AB×(C0 +D)
= AB×CD
此方法比较适用于C能整除A×D的乘法,特别适用于两个因数的“首数”是整数倍,或者两个因数中有一个因数的“尾数”是“首数”的整数倍。
两个因数的积,只要两个因数的首数是整数倍关系,都可以运用此方法法进行运算,
即A =nC时,
AB×CD=(AB+n D)×C0+B×D
例如:
23×13=29×10+3×3=299
33×12=39×10+3×2=396
加法速算
计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀 ——“本位相加(针对进位数) 减加补,前位相加多加一 ”就可以彻底解决任意位数从高位数到低位数的加法速算问题。
例如:(1),67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
减法速算
计算任意位数的减法速算方法也同样是用一种减法速算通用口诀 ——“本位相减(针对借位数) 加减补,前位相减多减一 ”就可以彻底解决任意位数从高位数到低位数的减法速算问题。
例如:(1),67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
乘法速算
乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗数×10。
速算嬗数|=(a-c)×d+(b+d-10)×c,,
速算嬗数‖=(a+b-10)×c+(d-c)×a,
速算嬗数Ⅲ=a×d-‘b’(补数)×c 。 更是独秀一枝,无以伦比。
(1),用第一种速算嬗数=(a-c)×d+(b+d-10)×c,适用于首同尾任意的任意二位数乘法速算。
比如 :26×28, 47×48,87×84-----等等,其嬗数一目了然分别等于“8”,“20 ”和“8”即可。
(2), 用第二种速算嬗数=(a+b-10)×c+(d-c)×a适用于一因数的二位数之和接近等于“10”,另一因数的二位数之差接近等于“0”的任意二位数乘法速算 ,
比如 :28×67, 47×98, 73×88----等等 ,其嬗数也同样可以一目了然分别等于“2”,“5 ”和“0”即可。
(3), 用第三种速算嬗数=a×d-‘b’(补数)×c 适用于任意二位数的乘法速算。

❺ 常用的速算方法与技巧有哪些

1.凑整法:根据运算定律和运算性质,把算式中能凑成整数(特别是整十数、整百数等)的部分合并或拆开,然后求得结果。

例如:8+4.1+1+5.9

=(8+1)+(4.1+5.9)

=10+10

=20

例如:1.25×18

=1.25×(10+8)

=1.25×10+1.25×8

=12.5+10

=22.5

例如:78×98

=78×(100-2)

=78×100-78×2

=7800-156

=7644

2.变化法:适当转变运算方法,即以加代减,以减代加,以乘代除,以除代乘;或改变运算顺序,或利用约分、加减进行化简等。

例如:4.7×0.25+7.3÷4

=(4.7+7.3)×0.25

=3

例如:3÷4-0.5÷0.7-0.3÷0.4+5÷7

=(3÷4-0.3÷0.4)+(5÷7-0.5÷0.7)

=0

例如:3.25×0.8×0.125÷(0.1253)

=1

3.特性法:利用“0”与“1”在运算中的特性,进行简便运算。

例如:(1.9-1.9×0.9)÷(3.8-2.8)

=(1.9×(1-0.9)÷1

=0.19

4.常用数据法:利用一些常用数据,通过数的等值变形而使计算简便。

常用数据如:25×4=100;125×8=1000;=0.25=25%;=0.75=75%;=0.8=80%;=0.04=4%等等。同学们可自己再列出一些,把它们熟记在心。

我们前面所举的例子已对此有所运用,同学们可对照着看一下。

❻ 初中生需要怎么样提高计算能力呢

多做题。俗话说,熟能生巧,计算能力不是一下就能练就的,不过题目做的多了也就自然会提高计算能力。

❼ 速算方法与技巧

头相同,尾互补的两位数相乘。头互补,尾相同的两位数相乘,任何两位实数相乘。

十位数相同,个位数相加等于10的两位数相乘。表达式为ab*a(10-b),这里ab分别代表了十位数字和个位数字。结果为千位百位是数字a*(a+1),十位个位数字是b*(10-b),列如37*33=1221。

个位数为5的平方的算法,表达式为a5*a5,a代表5之前的数字,结果为十位个位为25,前面数字为a*(a+1)的积,比如说55*55=3025。

(7)初中快速计算的方法与技巧扩展阅读:

用户速算注意事项:

要多做题目训练,俗话说熟能生巧,题目做的多了,做题时遇到类似可以用速算计算的大脑就会快速搜索到对应的口诀。

记口诀也是有技巧的,要分类记忆,找共同点。不能像我们记乘法口诀那样,只需死死地记住就行,不需要理解,但像各种图形的面积、体积、周长公式就不是死记能解决的,要理解记忆,这样记的才能牢固。

❽ 数学快数学快速计算方法

5大数学速算技巧,让孩子做题又快又准确
如果说学语文,最重要的基础是字词,那么学数学,最重要的基础就是口算了。当代教育家,数学特级教师邱学华老师曾经说过:“计算要过关,必须抓口算。”

5大数学速算技巧,让孩子做题又快又准确
那么,怎样才能算得既快又准确呢?只要熟练掌握计算法则和运算顺序,根据题目本身的特点,使用合理、灵活的计算方法,化繁为简,化难为易,就能算得又快又准确。先为大家介绍5个速算技巧:

5大数学速算技巧,让孩子做题又快又准确
1. 方法一:带符号搬家法

当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

例如:

23-11+7=23+7-11

4×14×5=4×5×14

10÷8×4=10×4÷8

2. 方法二:结合律法

加括号法

(1)在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。

例如:

23+19-9=23+(19-9)

33-6-4=33-(6+4)

(2)在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。

例如:

2×6÷3=2×(6÷3)

10÷2÷5=10÷(2×5)

去括号法

(1)在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。

例如:

17+(13-7)=17+13-7

23-(13-9)=23-13+9

23-(13+5)=23-13-5

(2)在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)

例如:

1×(6÷2)=1×6÷2

24÷(3×2)=24÷3÷2

24÷(6÷3)=24÷6×3

3. 方法三:乘法分配律法

分配法

括号里是加或减运算,与另一个数相乘,注意分配。

例如:

8×(5+11)=8×5+8×11

提取公因式法

注意相同因数的提取。

例如:

9×8+9×2=9×(8+2)

4. 方法四:凑整法

看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难嘛。

例如:

99+9=(100-1)+(10-1)

5. 方法五:拆分法

拆分法就是为了方便计算,把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。

例如:

32×125×25

=4×8×125×25

=(4×25)×(8×125)

=100×1000

要想让孩子熟练运用速算方法,需要通过持之以恒的练习,提升计算能力,这样,无论平时做作业还是考试都能游刃有余。

阅读全文

与初中快速计算的方法与技巧相关的资料

热点内容
仁和雪莲精华使用方法 浏览:71
降血糖的方法图片 浏览:565
色浆的制作方法和步骤 浏览:243
治疗失眠的好方法周教授 浏览:750
三星手机恢复出厂设置的方法 浏览:827
如何改善唇深的方法 浏览:201
地球计算方法最新2012 浏览:488
儿童游泳的正确方法图解 浏览:635
如何用卡纸做灯笼手工制作方法 浏览:343
灭蚁灵分析方法 浏览:951
接触器连接方法和图例 浏览:104
多元回归分析方法的选择 浏览:228
狐臭治疗方法手术 浏览:351
找一下清理手机垃圾的方法 浏览:622
如何腌竹笋方法 浏览:291
如何了解字谜的方法 浏览:120
龙支付使用方法 浏览:415
烧烤烤盘使用方法 浏览:941
两轮特技训练方法 浏览:402
丹参染色鉴别方法 浏览:624