1. 水垢按其化学成分划分可划分为几类
您好!
水中溶有的钙,镁盐类等杂质,随水温的升高而析出.析出钙镁类杂质,可在锅炉等的受热面上形成各种不同密度和不同成分的固体附着物,这些固体附着物称为水垢。
1、水垢的种类
(一)碱土金属垢:包括以钙为主要成分的垢,如硫酸钙垢、硅酸钙垢、碳酸钙垢等,以镁为主要成分的,如氢氧化镁垢、磷酸镁垢等。
(二)铁垢:包括以铁为主要成分的垢,有氧化铁垢、磷酸盐铁垢和硅酸盐铁垢。
(三)铝垢:是以铝为主要成分的垢,如硅酸铝垢。
(四)铜垢:是以金属铜为主要成分的垢。
硫酸钙垢坚硬而致密,在低压锅炉设备上(如省煤气中),主要以半水合物或石膏的形式沉淀附着;在锅炉本体中,以无水化合物的形式沉淀附着。
硅酸钙垢主要在锅炉热负荷较大的受热面上形成,它沉淀为硅灰石,垢的硬度较大,导热性很差,能牢固地粘附在受热面上。
碳酸盐垢有着不同的特性,它既可以是坚硬的水垢,又可以是松软的水渣。当炉水进行微弱蒸发时,碳酸盐常沉淀成坚硬的结晶状水垢。当炉水进行剧烈沸腾时,碳酸盐又常常沉淀为水渣。
氢氧化镁和磷酸镁易粘附在锅炉壁上,形成二次水垢。
水垢成分中大部分是碱土金属垢(达90%),还有铁垢、铝垢、铜垢等和金属腐蚀产物及有机物等。
按水垢的形成过程可分为两种:一是盐类杂质在受热面上直接结晶而形成的一次水垢;一是易粘附在受热面上的水渣,再次生成二次水垢。
水渣分为两种,除一种水渣易粘附在受热面上,形成难以用机械方式除去的二次水垢外,还有一种水渣呈流动状态不易粘附在受热面上,运行中可按照排污方法将其排出。由此看来,不论是一次水垢,还是二次水垢或水渣的形成过程,都是在一定环境和一定条件下形成的,互相牵连,互相制约,所以不可忽视。
2、水垢的形成
水垢和水渣的形成是一个复杂的物理化学过程,这个过程分为两步:第一步为盐类杂质由过饱和溶液中析出;第二步为结晶出来的盐类杂质附着在金属受热面上,形成水垢或悬浮在溶液中成为水渣。
希望以上回答能帮助您!
2. 如何清洗锅炉污垢
锅炉清洗分为机械清洗和化学清洗。
机械清洗分两种:1、传统器械除垢。即用扁铲、钢丝刷和机动铣管器进行除垢,多用于结垢简单的小型燃气锅炉上,但劳动强度大,除垢效果差,容易损坏锅炉本体。2、人工高压水枪清洗。但仅限于结构较为简单的工业锅炉,因锅炉是压力容器,对安全性要求极高,在对锅炉进行清洗时注意不能对其造成损害,否则易造成事故。
化学清洗多为酸洗,酸洗除垢有溶解作用、剥离作用和疏松作用。酸洗工艺除垢效果及对金属的腐蚀状况不易控制,操作不当甚至会严重影响锅炉的安全运行,必须请有资质的(省级及省级以上锅炉压力容器安全监察机构认可的)单位进行酸洗清洗。
化学清洗另一种为碱煮法,操作简单,副作用比较小,但煮炉时间长,药剂消耗量大,且除垢效果差,主要用来除油脱脂。
中性超分子清洗成膜技术不同于酸洗和碱洗。相比酸洗,在高效去除水垢、锈垢及各种难溶垢的同时,不损害锅炉表面金属,操作简单,将超分子清洗剂按照一定比例添加到锅炉中运行即可,中、低压锅炉可实现不停车清洗;相比于碱洗,清洗除垢效果好,运作时间短。超分子在除垢的同时,会在锅炉金属表面形成一层致密的超分子膜,杜绝锅炉的膜态沸腾隐患,确保锅炉安全高效运行,延长锅炉寿命2倍以上,提高锅炉产汽效率。
3. 如何判断缓蚀阻垢剂
1 缓蚀剂的分类
缓蚀剂的应用广泛,种类繁多,分类方法也较多,人们常常从不同的角度对缓蚀剂进行分类,常见的分类方法有:
1) 根据化学组成分类[1 ] . 按照构成缓蚀剂的物质是无机化合物还是有机化合物可分为无机缓蚀剂和有机缓蚀剂.
2) 根据所抑制的电极过程分类. 按照缓蚀剂在电化学腐蚀过程中抑制的电极反应是阳极反应还是阴极反应或两者兼而有之,缓蚀剂可分为阳极型缓蚀剂,阴极型缓蚀剂或混合型缓蚀剂.
一般来说,阳极型缓蚀剂使金属的腐蚀电位Ec向正的方向移动,阴极型缓蚀剂使金属的腐蚀电位Ec向负的方向移动; 而混合型缓蚀剂则对腐蚀电位Ec的影响较小,故腐蚀电位的移动很小或没有移动.
3) 根据所生成保护膜的类型分类[2 ] . 按照缓蚀剂在保护金属过程中所形成的保护膜的类型,缓蚀剂可以分为钝化膜型缓蚀剂、沉淀膜型缓蚀剂和吸附膜型缓蚀剂. 其中沉淀膜型缓蚀剂又分为水中离子型和金属离子型两种.
2 缓蚀剂在金属表面形成保护膜的机理分析
2. 1 钝化膜型缓蚀剂
钝化膜型缓蚀剂简称钝化剂,为无机强氧化剂[3 ] .如铬酸盐、亚硝酸盐、钼酸盐和钨酸盐等. 在反应中比较容易被还原的强氧化剂才能作钝化剂. 以铬酸盐为例,铬酸盐包括铬酸(H2CrO4) 和重铬酸(H2Cr2O7) 的可溶性盐,如Na2Cr2O7 、Na2CrO4 、K2Cr2O7 、(NH4) 2CrO4 等,
分子结构中铬为正六价. 铬酸盐和重铬酸盐可以以任何比例混合而不影响缓蚀效果,所以一般统称为铬酸盐.
铬酸盐有很强的氧化能力,发生氧化反应时Cr6 +还原为Cr3 + . 铬酸盐在较高浓度时是十分有效的阳极钝化剂. 铬酸盐对碳钢的钝化与碳钢在H2SO4 中的电位极化相似,钝化时铁表面发生的反应为:
Cr2O72 - + 8H+ + 6e →Cr2O3 + 4H2O
反应时被还原的铬酸盐以Cr2O3 的形态吸附在铁的表面和铁表面同时生成的Fe2O3 共同组成钝化膜,反应为:2Fe + 3H2O →Fe2O3 + 6H+ + 6e
用铬酸盐钝化的铁的表面那层钝化膜,充分脱水,结构致密,防腐性能好. 而其它缓蚀剂处理铁都无法得到这样的膜,甚至用KMnO4 强氧化剂也不能达到铬酸盐钝化铁的那种程度.
铬酸盐的优点是:它不仅对钢铁,而且对铜、锌、铝及其合金都能给予良好的保护;适用的pH 值范围很宽(pH = 6~11) ;缓蚀效果特别好,使用铬酸盐作缓蚀剂时,碳钢的腐蚀速度可低于0. 025 mm/ 年. 铬酸盐的缺点是:毒性大,环境保护部门对铬酸盐的排放有严格的要求;容易被还原而失效,不宜用于有还原性物质(例如硫化氢) 泄露的炼油厂的冷却系统中.
2. 2 沉淀膜型缓蚀剂
水中离子型缓蚀剂分析以聚磷酸盐为例,聚磷酸盐是目前使用最广泛、最经济的冷却水缓蚀剂之一. 除了具有良好的缓蚀性能外,聚磷酸盐还是优良的阻垢剂,可阻止水中碳酸钙和硫酸钙结垢. 最常用的聚磷酸盐是六偏磷酸钠和三聚磷酸钠. 它们是一些线形无机聚合物。聚磷酸盐具有强表面活性,其分子结构中的P O 基能容易提供电子对给具有空轨道的金属,牢牢地吸附在金属上. 聚磷酸盐的缓蚀、阻垢性能都和它的表面活性有关. 聚磷酸盐具有阳极极化和阴极极化双重缓蚀性能.
聚磷酸盐是一种非氧化型的钝化剂. 聚磷酸盐加入水中之后,很容易吸附在金属表面上,并且置换出吸附在金属表面的一部分H+ 和H2O 分子,降低了溶解氧和H+ 及H2O 反应的可能性. 而且,它使溶解氧更容易吸附在金属表面. 当足量的氧吸附在金属表面时,氧使金属表面钝化,所以,聚磷酸盐必须在溶解氧存在条件下才能表现出阳极极化的缓蚀性能. 聚磷酸盐和水中存在的二价金属离子如铁、钙、锌等结合,在金属表面形成一层沉积物膜,起阴极极化作用,抑制金属的腐蚀,所以聚磷酸盐又是阴极型缓蚀剂. 聚磷酸盐的表面活性使它具有清洗金属表面的能力. 在冷却水系统开工时可以用它对系统进行全面的清洗. 如果系统的污垢不严重,聚磷酸盐能逐渐的将污垢清洗出去. 逐渐建立完整的腐蚀控制,它对于控制点蚀和瘤状或结节状的腐蚀特别有效.
聚磷酸盐在碱性条件下,形成磷酸钙垢的危险很大. 使用聚磷酸盐时,如系统中只有钢铁材料,水中的pH值在5. 0~7. 0 为宜. 如系统中存在铜和铜合金,低pH值易使铜受到腐蚀,水中的pH 值应严格控制在6. 7~7. 0 或添加铜缓蚀剂并降低pH 值,以避免生成磷酸钙垢. pH 值高于8 ,不但会产生磷酸盐垢,同时也会发生局部的腐蚀. 还有磷酸盐含磷,是微生物生长繁殖的养料,在水中聚磷酸盐会被许多的微生物分解而降低缓蚀性能,也会局部腐蚀并造成微生物污染.
金属离子型缓蚀剂分析以铜缓蚀剂为例[4 ] ,当设备用铜和铜合金制造时,存在一种特殊的腐蚀问题:被腐蚀而产生的铜离子很容易和较活泼的金属,如铁和铝等发生如下反应:
Fe + Cu2 + →Cu + Fe2 +
2Al + 3Cu2 + →2Al3 + + 3Cu
铜离子经还原而生成的金属铜便沉积在活泼金属上面,铜作为阴极,活泼金属为阳极,构成腐蚀电池. 由于铜的电位较低(Eo氧化= - 0. 337 V) ,腐蚀电池的电动势很大,会使活泼金属受到严重的、穿透速度很快的腐蚀. 铜和铜合金产生的铜离子,还会被水带到很远的地方沉积下来而引起腐蚀. 将水中的铜离子浓度控制在0. 1 mg/ L 以下可以防止这种腐蚀,冷却水系统所使用
的缓蚀剂,大多数都能抑制铜受到腐蚀,但将水中的离子浓度控制在0. 1 mg/ L 以下,要在中性和碱性水中才能实现. 因此,使用有铜和铜合金材料的冷却水的pH值必须控制在6. 5 以上. 下面介绍几种重要的铜缓蚀剂:
1)β—疏基苯并噻唑(MBT) [5 ,6 ] (Mercaptobenzoth2iazole) ,其结构式为:
对于铜和铜合金,β—疏基苯并噻唑是一种特别优良的缓蚀剂,它在低浓度时(例如2 mg/ L) 就能将铜和铜合金的腐蚀速度降得很低. 铜的表面对β—疏基苯并噻唑有很强的化学吸附作用,吸附在铜表面的β—疏基苯并噻唑按一定的方式排列,将腐蚀物质隔开,并且阻止铜变为铜离子进入水中而引起腐蚀.β—疏基苯并噻唑对铜沉积在铁和铝等活泼金属上而引起的电偶腐蚀的抑制也很有效.β—疏基苯并噻唑的优点是: (1) 对铜和铜合金的腐蚀控制比较有效; (2) 用量少. 它的缺点是:易被氧化而失效,所以应避免和氧化剂型的缓蚀剂一起使用;对氯和氯胺很敏感,也易被它们氧化.
2) 1 ,2 ,3 —苯并三唑(BTA) (Benzotriazole) ,结构式为
1 ,2 ,3 —苯并三唑是一种很有效的铜和铜合金缓蚀剂.它对铜的缓蚀作用与MBT相似:铜的表面对苯并三唑或苯并三唑与铜离子的螯合物有强烈的化学吸附作用,在铜表面形成防腐屏幕,防止腐蚀性物质与铜接触,又阻止铜进入水中成为铜离子. 所以它不但能抑制金属基体上的铜溶解进入水中,而且还能使进入水中的铜离子钝化,防止铜在钢、铝、锌及镀锌铁等金属上的沉积和黄铜的脱锌. 此外,1 ,2 ,3 —苯并三唑对铁、镉、锌、锡也有缓蚀作用. 它的使用浓度比MBT 还低,只要1 mg/ L 就能建立对铜和铜合金的良好保护,使用时的pH 值范围为5. 5~10 ,浓度不必随pH 值而调整.1 ,2 ,3 —苯并三唑的抗氧化能力强,不会因加氯而遭到破坏. 虽然氯会与它生成不稳定的化合物,使它对铜的保护作用减弱.1 ,2 ,3 —苯并三唑的优点是:对铜和铜合金的缓蚀效果好;更能耐受氯的氧化作用. 它的缺点是价格较高.
3) 硫酸亚铁:硫酸亚铁是特别的缓蚀剂,常作为海水、其他咸水或直流冷却系统中的铜和铜合金的缓蚀剂. 用海水作冷却水的铜换热器,加以硫酸亚铁使铜管内壁生产一层含有铁化合物的保护膜,甚至可以厚达0. 0762 mm ,有效地抑制铜受到的腐蚀,特别是水流冲刷引起的腐蚀. 这一过程称为硫酸亚铁造膜处理.
硫酸亚铁的优点是:价格便宜,用量少;污染较轻.它的缺点是:造膜技术较为复杂;冷却水中含有硫化氢或其它还原性物质,且污染很严重时,硫酸亚铁造膜无效.
2. 3 吸附膜型缓蚀剂
吸附膜型缓蚀剂如有机胺、木质素类、葡萄糖酸盐等. 以有机胺为例,有机胺是用作冷却水系统的吸附膜剂,这种有机胺又称为膜胺,主要指C10~C20的链状脂肪族胺. 如C16 H33NH2 、(C16 H33 ) 2NH、C18 H37NH2 、(C18H37) 2NH. 它们制造容易,缓蚀性能较好,所以应用也较广. 胺及其衍生物也具有较好的缓蚀性能. 有机胺分子中的亲水基团为—NH2 和NH ,亲油基团为烷基. 有机胺投加到水中后,氨基(亲水基) 吸附在金属表面,烷基(亲油基) 朝外(腐蚀环境) . 金属表面都吸附了有机胺后,就形成一层吸附膜. 吸附膜中的烷基发挥遮蔽作用. 阻止水、氯离子和氧等腐蚀性物质和金属接触,起到防止金属腐蚀的作用. 由于氨基能稳固地吸附在金属表面,故可防止水流速对吸附膜的破坏作用. 有机胺能透过金属表面上已存在的腐蚀产物或污垢面而逐渐在金属表面形成保护膜. 因此,有机胺不仅可以用于比较清洁的系统. 而且可用在已运转一段时间且存在一些腐蚀和污垢的系统. 有机胺在渗透穿过腐蚀产物和污垢并在金属表面附着的过程中,能使这些污垢和腐蚀产物相互的结合松弛,与金属表面的粘聚力下降,使它们逐渐脱落而被水冲走. 由于有机胺有相当好的清洗金属表面的能力,所以在污垢比较多的系统中使用有机胺时,要逐渐加入,并慢慢增加其浓度,以免剥落下来的污垢太多,造成热交换器管子堵塞.
C16H33NH2 、(C16H33) 2NH、C18H2 ,NH2 、(C18H37) 2NH
等有机胺只要加2 %左右于冷却水中,就可均匀扩散到各个角落. 起始浓度由20 mg/ L~50 mg/ L 分批投入,待有机胺在金属表面形成单分子膜后,就消耗较少,只要补充损失量即可. 有机胺的膜相当牢固,成膜后在冷却水中维持几个mg/ L 即可,短时间停止投药或水中有机胺浓度降到零也不会引起多大变化,发现后及时投药就可以. 有机胺的缓蚀效果相当好. 在一般的冷却水系统使用,其缓蚀率可达90 %以上,经常受冲刷和侵蚀的区域约为50 %. 单独使用有机胺的防腐效果好,如再和其它缓蚀剂一起使用,防腐蚀效果则更佳. 但有机胺的防腐蚀性能受盐量的影响较大. 在含盐高的水中,单体胺的扩散较困难,防腐蚀能力下降,在海水中投加50 mg/ L 的胺对碳钢的缓蚀率仅有35 %~60 % ,增加胺的浓度至200 mg/ L ,缓蚀率也只有60 %
~80 %.
有机胺的优点是:缓蚀效果好;抗氯性能良好,加氯杀菌不会影响有机氨的防护作
缓蚀阻垢剂的测定是根据调试,腐蚀点量,吸附、预膜、钝化的一系列的检测,你既然自己可以调配你应该自己也可以调试啊!
4. 反渗透结垢的判断和处理
摘要 首先,反渗透设备在运行过程中,低压冲洗产生的压力会产生淡水,两侧水的浓度会加深,同时也会导致盐的浓度加深,盐中含有大量的可沉淀物质,久而久之,就会出现结垢现象。其次,阻垢剂装置漏药较为严重,极有可能影响到反渗透阻垢剂的加药用量,在加药过程中,药剂不均匀也是导致反渗透膜结垢的重要原因。最后,设备停机的过程中没有及时进行冲洗也会导致反渗透膜结垢。
主要是炉水含铁量大和炉管的局部热负荷太高,水中的氧化铁沉积在管壁上形成氧化铁垢。炉水含铁贵大的原因有,锅炉运行时,炉管遭到高温炉水腐蚀,或随给水带人的氧化铁,或在锅炉停用时产生的腐蚀产物,它们都会附着在热负荷较髙的炉管上,转化为氧化铁垢。其转换机理为,炉水中铁的化合物主要是胶态的氧化铁。通常胶态的氧化铁带正电。当锅炉管局部热负荷很高时,该部位的金属表面与其他各部分金属之间,就会产生电位差。在热负荷较高的区域,金属表面因电子集中而带负电。这样带正电的氧化铁微粒就向带负电的金属表面聚集,结果便形成氧化铁垢。颗粒较大的氧化铁,在锅炉水急剧蒸发浓缩的过程中,在水中电解质含量较大和pH值较高的条件下,它也会逐渐从水中析出并沉积在炉管内壁上,成为氧化铁垢。
防止方法
(1)减少给水、炉水的含铁量。除了对炉水进行适当的排污外,主要是防止给水系统发生运行腐蚀和停用腐蚀,以减少给水的含铁量。
为了减少锅炉在运行期间的腐蚀,防止过量的腐蚀产物随给水进人锅炉,除了要严格控制进入给水中的各类杂质外,还必须对给水进行适当地处理。例如,对给水采用给水加氧处理(OT)或弱氧化性处理[AVT (0)],给水中的含铁量要比传统的加氨和联氨除氧工况的还原性处理[AVT (R)]低得多。
(2)减少组成给水的各部分水中的含铁量。除了对补给水、凝结水进行把关外,还应重点监控琉水和生产返回凝结水。在火电厂中,高压加热器疏水系统在缺氧的环境下,往往因疏水流速过高发生流动加速腐蚀。疏水流速过髙是因为蒸汽在尚未完全凝结成水时,初期汽中有水,后期水中有汽造成的。低压加热器疏水系统,往往因为漏入空气,使疏水的铁含量增高。对于热电厂,还应对用户返回的凝结水进行质量把关,不合格的返回水不能直接进入锅炉。
(3)若凝汽式电厂中分段蒸发锅炉的排污率小于丨%时,则常常会因盐段炉水的浓缩倍率过大,导致含铁量增高,以致在盐段炉管内生成氧化铁垢。为了防止在锅炉盐段产生氧化铁垢,可采取降低盐段与净段的浓缩倍率的措施,或者用增大排污率的临时性措施,来控制盐段炉水的含铁量。
(4)对于中小锅炉,还可以向炉水中加络合剂,使铁的氧化物变成稳定的络合物,以减缓或防止氧化铁垢的生成。不过大型锅炉还未有成功的报道。
6. 关于冷却水处理结垢的判断
通常判断冷却水中的碳酸钙等盐类会否结垢,是在检测了硬度、碱度和溶解固体等主要水质指标后通过查表和计算得出饱和pHs值,以实测的水体pH值与pHs之差为Langelier指数L.I .,当L.I.>0时认为水有结垢的倾向,L.I.<0时认为水有腐蚀的倾向。类似的还有Ryznar稳定指数、Puckorius修正指数、Feitler临界指数等,但这些方法对于经过某种阻垢处理后的水显得无能为力。例如,向水中加入少量阻垢剂后,水质变化不大却不会结垢。特别是经过 磁场、电场处理的水,水质基本不变,只有靠动态或静态地模拟实际热交换系统进行试验,才能了解处理效果。动态试验要求设备的种类齐全、容积足够大,才能保证正确性;静态 试验过程中的加热造成水分蒸发,误差很大。目前还没有合适的磁化水、电化水结垢性判定指标〔1〕,如何检测这类物理法处理水的效果是亟待解决的关键性技术问题。
1 测试原理
先了解微电解如何引起水中碳酸盐结垢。将两块金属板插入水槽(无搅拌)分别作为阴极和阳极,在两极板间施加直流电场,逐渐增高电压,测得的相对于饱和甘汞参比电极(SCE)的阴极极化曲线如图1所示。图1中曲线的变化反映出阴极与水的界面发生了两个电极反应:�
1/2O2 H2O 2e→2OH- (1)�
2H2O 2e→2OH- H2 (2)�
当极化电位正于-700 mV(SCE)时,主要发生溶解氧还原反应〔见式(1)〕,而电位负于-1200mV(SCE)后,氢气析出反应逐渐显着起来〔见式(2)〕。由于两种反应都产生OH-, 使阴极 表面附近的pH值上升,CO32-增多,导致Ca、Mg离子结晶析出,即发生式(3)~(5)的反应:�
HCO3- OH-→H2O CO32- (3)
Mg2 2OH-→Mg(OH)2↓ (4)
Ca2 CO32- → CaCO3↓ (5)
通电后阴极板上pH值上升状况的实测如图2所示(无搅拌)。
由图2可见,开始pH值迅速上升,而当通过电量>0.2C/cm2、pH>9以后变化趋于平缓。这个动态的平衡趋势是碳 酸钙不断结晶析出造成的,因式(3)右边的CO32-减少将引起左边OH-的消耗。由此可以推断,微电解一定时间后,阴极界面处碳酸钙结晶析出的速度将趋于常数。
再了解冷却水中重碳酸盐受热分解引起的结垢过程。水中碳酸钙的平衡反应可以归纳为〔2〕:�
式中各组分的标准生成焓如表1所示。
表1 标准生成焓 反应物和生成物的种类 △Hf。(kJ/mol)
CaCO3(s) -1205.7
H 0
HCO3- -690.5
Ca2 -542.4
由于一个反应的焓变等于生成物的标准生成焓之和减去反应物的标准生成焓之和,因此求出反应式(6)的焓变ΔH°为:�
ΔH°=-542.4-690.5-(-1 205.7-0)=-27.2kJ/mol (7) �
ΔH°是25 ℃标准状态时的值,为了确定温度对反应平衡的影响,根据Van‘t Hoff 公 式得出:�
ln(K25/K)=(ΔH°/R)(1/T -1/T25)
ln(K25/K)=-6.5/1.98×10-3(1/T-1/298) (8)�
式中 �K25——25 ℃时反应式(6)的平衡常数�
� K�——绝对温度T时的平衡常数�
设温度从25℃上升至60℃,通过计算可得:
K25/K=3.183 (9)�
即平衡常数K缩小了3.183倍。根据资料,微电解时阴极上的CO2-3离子浓度可达水体中的8倍〔3、4〕。因此,可以用微电解时阴极界面上的电化学反应模拟加热过程中重碳酸盐受热分解引起碳酸钙结垢的过程,并且能够强化试验条件,缩短测试周期。�
2 试验装置和方法�
试验装置如图3所示。
�
阳极采用1块钛基涂钌的不溶性金属板(5cm×10cm×0.1cm,也可以用石墨板等替代);阴 极为1块不锈钢板(1Cr18Ni9Ti,5 cm×10cm×0.1cm),工作面积均为5cm×8cm。电极片用弹簧铜卡夹持,拆装方便。稳压电源用JWY—3020~3A,0~30V)。采用磁力搅拌器搅拌。电解池为3L烧杯,微电解1h,实测杯中水温变化<1.5℃。称量用3级半 自动光学读数天平(TG328B)。 �
试验用水为自来水配制,将硫酸溶入CaCO3后用NaHCO3调节碱度。配制原水的总硬度400mg/L(以CaCO3计),总碱度200mg/L(以CaCO3计);15℃时的pHs=7.19,实测pH=7.06,Langelier指数=-0.13。根据需要,用自来水将配制原水稀释成不同浓度。测试操作:先将阴极板在70℃左右的3%柠檬酸(氨水调节pH=3)溶液中浸泡2h,取出用清水洗净,再放入80℃烘箱烘干至恒重,并用分析天平称出初始重量,然后装入弹簧卡。 试验表明,表面污染处容易粘垢,测微小垢量时会产生误差。将待测原水注入烧杯并搅拌均匀,预调电流密度,开始计时通电。电解结束后,取下阴极板,用同样方法烘干和称出终止重量,算出极板上的垢量。一般用肉眼就能区别垢量的多少,如用显微镜观察,可以清楚地看到垢层的疏密变化。由于阴极板的背面未绝缘,一般也会积垢,但对试验结果影响不大,将这些垢加算在工作面积上。�
3 试验结果和讨论�
以不同的电流密度通电60min,阴极板上的平均垢量如图4所示。由图可见,电流密度0.5mA/cm2左右,单位面积上的垢量最大约0.8mg/cm2。电流密度过低,生成的OH-较少,阴极板面pH值增高不多,所以碳酸钙结晶析出量较少;而电流密度过大,反应式(2)产生出大 量氢气,气泡上升时将析出的晶粒带走,使板上的积垢量减少。置于显微镜下观察发现,电流密 度低时,结出的垢层均匀致密;电流密度大时垢层疏松,晶粒分散。为了得到明显的测试结 果,采用0.5mA/cm2的电流密度,此时阴极电位-1.40V(SCE)左右,极板表面没有明显的 气泡流动。作为对照,在水中插入一根内设500W电热器的铜棒,棒表面的温度控制在90℃左右 。 加热4h后,铜棒表面的平均垢量约0.4mg/cm2。参照图4,微电解法只要0.1mA/cm2的电流密度就能达到同样垢量。
配制原水与自来水的结垢性能比较如图5所示。试验时采用1.25mA/cm2的电流密度,改变通电的时间。图中显示,通电时间<5 min,极板上基本无垢,可以视为结晶的孕育期;通 电时间≤60min,垢量随电解时间增加呈线性增加。配制水的结垢速度约0.01mg/(cm2·min),较自来水的结垢速度大5倍左右。
将配制的原水稀释成不同总硬度的水,采用0.25mA/cm2的电流密度,通电时间60min的测试结果如图6所示。由于稀释水的总硬度与总碱度之比不变,由图可见,阴极垢量随着 水的总硬度增加而呈线性增加。
�
为了探讨测试结果与Langelier指数的关系,将配制的15℃不同浓度的水,用0.25mA/cm2的电流密度通电60min得出阴极垢量;同时将水样分别按温度上升至20~70℃计算Langelier指数〔5〕。将计算结果作为阴极垢量的函数描点得到图7,由图可知,温度 相同时,阴 极垢量增加,Langelier指数线性增加。因L.I.>0的水有结垢倾向,根据图7测出阴极垢量0 .3mg/cm2的水加热至50℃以上才会结垢,而测出垢量0.8mg/cm2的水20℃以上就会 结垢。
为了验证测试方法对经过处理的水的有效性,在配制的原水中添加六偏磷酸钠5mg/L作为阻垢剂,用1.25mA/cm2的电流密度通电60min,结果结垢量从0.415mg/cm2降至0.329mg/cm2;添加六偏磷酸钠15mg/L时,极板上仅有微量垢痕,几乎称不出重量变 化。用微电解 方法检测同济大学研制的SC系列水处理器的阻垢效果,确认物理场处理水的碳酸钙阻垢率可 以达到90%以上,而且经过处理后,垢层结构变得比较松散。�
试验表明,搅拌对阴极结垢量影响较大,有无搅拌可使阴极垢量相差4倍以上。搅拌速 度太快,水流会冲刷掉板面积垢;速度过慢,水中离子来不及向极板扩散。试验选用了300r/min的搅拌转数,并注意了每次测试的转数一致. 需要指出的是,其他条件相同时,不同材料的阴极板结垢量不同,板的表面光洁度越高越不容易结垢。因为测试时要比较两次电解得到的垢量,只有采用相同材料和相同表面状态的阴极,才能保证结果有意义。另外,一般认为L.I.<0时水有腐蚀的倾向,根据图7可推断 测出阴极垢量0.3 mg/cm2的水50℃以下,0.8mg/cm2的水20℃以下有腐蚀性,这与配制的试验用水15℃略偏酸性的条件相符。但试验是在强化结垢的条件下进行的,对水有腐蚀性的判 断是否有效还需探讨。
4 结语
本文通过理论分析和试验研究,提出用微电解的方法检测冷却水的结垢性能。该方法不需特殊仪器设备,操作方便,灵敏度高,重复性强,适用于判断阻垢水处理的效果。�
①测试原理是用阴极电化学还原反应,模拟水中重碳酸盐受热分解形成碳酸钙垢的过程。 �
②基本操作是以电流密度0.5mA/cm2,电解水样60min,比较阴极板上的垢量和结晶状态。�
③阳极采用钛基涂钌板,阴极采用不锈钢板。�
④电解时间≤60min,电解时间增加阴极垢量线性增加,反映出结晶的速度。�
⑤阴极垢量与Langelier指数线性相关。�
⑥主要影响因素有搅拌速度、电流密度、阴极板材料和表面光洁度等。��
参考文献:�
〔1〕窦照英. 正确认识磁场电场防垢技术〔J〕. 电力环境保护,1993,9(3): 36-41
〔2〕Snoeyink V L, Jenkins D. 水化学〔M〕. 蒋展鹏等译.北京:中国建筑工 业出版社,1990.
〔3〕Yan J Fetal�. Mathematical modeling of the formation of calca reous deposits on cathodically protected steel in seawater〔J〕. Electrochem Soc,1993,140( 3):733-742.�
〔4〕郑辅养等. 阴极极化模式对钙质沉积层形成的影响〔J〕. 腐蚀与防护,1995 ,16(6):253-256.�
〔5〕齐冬子. 关于碳酸钙饱和pH值的计算公式〔J〕. 工业水处理, 1993,13 (1):8-11.
7. 循环水中的垢下腐蚀情况是怎么发生的原理是什么
兄弟,你已经问过一个问题了,也有相同的答案了吧?http://..com/question/217000191.html
网络上有以下解释:
垢下腐蚀(under-deposit corrosion)当锅炉受热面上结有水垢或有沉积水渣时,在水垢或水渣下形成的腐蚀称为垢下腐蚀。垢下腐蚀可能是碱性腐蚀,也可能是酸性腐蚀。主要取决于锅水中所含的物质以及锅水的pH值。 碱腐蚀是指锅炉受热面表面有沉积物时,由于沉积物的传热性能比受热面金属差的多,沉积物下面的金属壁温升高,沉积物与金属之间的锅水浓缩,且不易与沉积物之外的锅水均匀混合。当锅水中含有游离的氢氧化钠(NaOH),且锅水的pH值大于13时,金属壁的氧化保护膜被NaOH溶解,电化学腐蚀加剧,这就是碱腐蚀。碱腐蚀的腐蚀物是白色的碳酸钠,它是氢氧化钠与空气中二氧化碳接触后的生成物。 酸腐蚀是指锅水中含有氯化镁(MgCl2)和氯化钙(CaCl2)时,在沉积物下的氯化镁、氯化钙与锅水发生反应形成氢氧化镁和氢氧化钙以及盐酸(HCl),使pH值下降,对钢材形成酸腐蚀。如果金属表面有坚硬、致密的水垢存在,氢不能扩散到汽水混合物中,则渗入钢材与碳钢中的碳化铁(渗碳体)发生反应,结果造成钢材脱碳,同时使金相组织发生变化,会形成微小晶间裂纹。 为了防止产生垢下腐蚀,一是要避免金属表面形成沉积物;二是要避免产生铁的腐蚀物,要进行水质处理和合理排污,新锅炉投入运行前,要清理内部并进行化学煮炉。
除以上内容为,结垢与金属管壁之间的缝隙会产生易于细菌(主要是SRB)繁殖的湿热环境(锅炉等条件除外),相应的会造成比较严重的细菌腐蚀。
8. 工业循环冷却水处理设计规范标准是什么
工业循环冷却水处理设计规范 GB50050—95
主编部门:中华人民共和国化学工业部
批准部门:中华人民共和国建设部
施行日期:1995年10月1日
关于发布国家标准《工业循环冷却水处理设计规范》的通知
建标[1995]132号
根据国家计委计综[1992]490号文的要求,由化工部会同有关部门共同修订的《工业循环冷却水处理设计规范》已经有关部门会审,现批准《工业循环冷却水处理设计规范》GB50050—95为强制性国家标准,自一九九五年十月一日起施行,原《工业循环冷却水处理设计规范》GBJ50—83同时废止。
本标准由化工部负责管理,具体解释等工作由中国寰球化学工程公司负责,出版发行由建设部标准定额研究所负责组织。
中华人民共和国建设部
一九九五年三月十六日
1总则
1.0.1 为了控制工业循环冷却水系统内由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规范。
1.0.2 本规范适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。
1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。
1.0.4 工业循环冷却水处理设计应在不断地总结生产实践经验和科学试验的基础上,积极慎重地采用新技术。
1.0.5 工业循环冷却水处理设计除应按本规范执行外,尚应符合有关现行国家标准、规范的规定。
2术语、符号
2.1 术语
2.1.1 循环冷却水系统Recinrculating cooling water system
以水作为冷却介质,由换热设备、冷却设备、水泵、管道及其它有关设备组成,并循环使用的一种给水系统。
2.1.2 敞开式系统Open system
指循环冷却水与大气直接接触冷却的循环冷却水系统。
2.1.3 密闭式系统Closed system
指循环冷却水不与大气直接接触冷却的循环冷却水系统。
2.1.4 药剂Chemicals
循环冷却水处理过程中所使用的各种化学物质。
2.1.5 异养菌数Count of heterotrophic bacteria
按细菌平皿计数法求出每毫升水中的异养菌个数。
2.1.6 粘泥Slime
指微生物及其分泌的粘液与其它有机和无机的杂质混合在一起的粘浊物质。
2.1.7 粘泥量Slime content
用标准的浮游生物网,在一定时间内过滤定量的水,将截留下来的悬浊物放入量筒内静置一定时间,测其沉淀后粘泥量的容积,以mL/ 表示。
2.1.8 污垢热阻值Fouling resistance
表示换热设备传热面上因沉积物而导致传热效率下降程度的数值,单位为㎡•K/W。
2.1.9 腐蚀率Corrosionrate
以金属腐蚀失重而算得的平均腐蚀率,单位为mm/a。
2.1.10 系统容积System capacity volume
循环冷却水系统内所有水容积的总和。
2.1.11 浓缩倍数Cycle of concentration
循环冷却水的含盐浓度与补充水的含盐浓度之比值。
2.1.12 监测试片Monitoring test coupon
放置在监测换热设备或测试管道上监测腐蚀用的标准金属试片。
2.1.13 预膜Prefilming
在循环冷却水中投加预膜剂,使清洗后的换热设备金属表面形成均匀密致的保护膜的过程。
2.1.14 间接换热Indirest heat exchange
换热介质之间不直接接触的一种换热形式。
2.1.15 旁流水Side stream
从循环冷却水系统中分流出部分水量,按要求进行处理后,再返回系统。
2.1.16 药剂允许停留时间Permittde retention time of chemi-cals
药剂在循环冷却水系统中的有效时间。
2.1.17 补充水量Amount of makeup water
循环冷却水系统在运行过程中补充所损失的水量。
2.1.18 排污水量Amount of blowdown
在确定的浓缩倍数条件下,需要从循环冷却水系统中排放的水量。
2.1.19 热流密度Heat load intensity
换热设备的单位传热面每小时传出的热量,以w/㎡表示。
2.2 符号
编号 符号 含义
2.2.1 A 冷却塔空气流量( /h)
2.2.2 Ca 空气中的含尘量(g/ )
2.2.3 Cmi 补充水中某项成份的含量(mg/L)
2.2.4 Cms 补充水的悬浮物含量(mg/L)
2.2.5 Cri 循环冷却水中某项成份的含量(mg/L)
2.2.6 CTS 循环冷却水的悬浮物含量(mg/L)
2.2.7 Gsi 旁流处理后水中某项成份的含量(mg/L)
2.2.8 Css 旁流过滤后水的悬浮物含量(mg/L)
2.2.9 Gc 加氯量(kg/h)
2.2.10 Gf 系统首次加药量(kg)
2.2.11 Gn 非氧化性杀菌灭藻剂的加药量(kg)
2.2.12 Gr 系统运行时的加药量(kg/h)
2.2.13 g 单位循环冷却水的加药量(mg/L)
2.2.14 gc 单位循环冷却水的加氯量(mg/L)
2.2.15 Ks 悬浮物沉降系数
2.2.16 N 浓缩倍数
2.2.17 Q 循环冷却水量( /h)
2.2.18 Qb 排污水量( /h)
2.2.19 Qe 蒸发水量( /h)
2.2.20 Qm 补充水量( /h)
2.2.21 Qsi 旁流处理水量( /h)
2.2.22 Qsf 旁流过滤水量( /h)
2.2.23 Qw 风吹损失水量( /h)
2.2.24 Td 设计停留时间(h)
2.2.25 V 系统容积( )
2.2.26 Vf 设备中的水容积( )
2.2.27 Vp 管道容积( )
2.2.28 Vpc 管道和膨胀罐的容积( )
2.2.29 Vt 水池容积( )
3循环冷却水处理
3.1 一般规定
3.1.1 循环冷却水处理设计方案的选择,应根据换热设备设计对污垢热阻值和腐蚀率的要求,结合下列因素通过技术经济比较确定:
3.1.1.1 循环冷却水的水质标准;
3.1.1.2 水源可供的水量及其水质;
3.1.1.3 设计的浓缩倍数(对敞开式系统);
3.1.1.4 循环冷却水处理方法所要求的控制条件;
3.1.1.5 旁流水和补充水的处理方式;
3.1.1.6 药剂对环境的影响。
3.1.2 循环冷却水用水量应根据生产工艺的最大小时用水量确定,供水温度应根据生产工艺要求并结合气象条件确定。
3.1.3 补充水水质资料的收集与选取应符合下列规定:
3.1.3.1 当补充水水源为地表水时,不宜少于一年的逐月水质全分析资料;
3.1.3.2 当补充水水源为地下水时,不宜少于一年的逐季水质全分析资料;
3.1.3.3 循环冷却水处理设计应以补充水水质分析资料的年平均值作为设计依据,以最差水质校核设备能力。
3.1.4 水质分析项目宜符合本规范附录A的要求。
3.1.5 敞开式系统中换热设备的循环冷却水侧流速和热流密度,应符合下列规定:
3.1.5.1 管程循环冷却水流速不宜小于0.9m/s;
3.1.5.2 壳程循环冷却水流速不应小于0.3m/s。当受条件限制不能满足上述要求时,应采取防腐涂层、反向冲洗等措施;
3.1.5.3 热流密度不宜大于58.2kW/㎡。
3.1.6 换热设备的循环冷却水侧管壁的污垢热阻值和腐蚀率应按生产工艺要求确定,当工艺无要求时,宜符合下列规定:
3.1.6.1 敞开式系统的污垢热阻值宜为1.72× ~3.44× •㎡K/W;
3.1.6.2 密闭式系统的污垢热阻度宜小于0.86× ㎡•K/W。
3.1.6.3 碳钢管壁的腐蚀率宜小于0.125mm/a,铜、铜合金和不锈钢管壁的腐蚀率宜小于0.005mm/a。
3.1.7 敞开式系统循环冷却水的水质标准应根据换热设备的结构形式、材质、工况条件、污垢热阻值、腐蚀率以及所采用的水处理配方等因素综合确定,并宜符合表3.1.7的规定。
循环冷却水的水质标准表3.1.7
注:①甲基橙碱度以CaCo3计;
②硅酸以SiO2计;
③ +以CaCo3计。
3.1.8 密闭式系统循环冷却水的水质标准应根据生产工艺条件确定。
3.1.9 敞开式系统循环冷却水的设计浓缩倍数不宜小于3.0。浓缩倍数可按下式计算:
式中N——浓缩倍数;
Qm——补充水量( /h);
Qb——排污水量( /h);
Qw——风吹损失水量( /h)。
3.1.10 敞开式系统循环冷却水中的异养菌数宜小于5× 个/mL;粘泥量宜小于4mL/ 。
3.2 敞开式系统设计
3.2.1 循环冷却水在系统内的设计停留时间不应超过药剂的允许停留时间。设计停留时间可按下式计算:
式中Td——设计停留时间(h);
V——系统容积( )。
3.2.2 循环冷却水的系统容积宜小于小时循环水量的1/3。当按下式计算的系统容积超过前述规定时,应调整水池容积。
式中Vf——设备中的水容积( );
Vp——管道容积( );
Vt——水池容积( )。
3.2.3 经过投加阻垢剂、缓蚀剂和杀菌灭藻剂处理后的循环冷却水不应作直流水使用。
3.2.4 系统管道设计应符合下列规定:
3.2.4.1 循环冷却水回水管应设置直接接至冷却塔集水池的旁路管;
3.2.4.2 换热设备的接管宜预留接临时旁路管的接口;
3.2.4.3 循环冷却水系统的补充水管管径、集水池排空管管径应根据清洗、预膜置换时间的要求确定。置换时间应根据供水能力确定,宜小于8h。当补充水管设有计量仪表时,应增设旁路管。
3.2.5 冷却塔集水池宜设置便于排除或清除淤泥的设施。集水池出口处和循环水泵吸水井宜设置便于清洗的栏污滤网。
3.3 密闭式系统设计
3.3.1 密闭式循环冷却水系统容积可按下式计算:
式中Vpc——管道和膨胀罐的容积( )。
3.3.2 密闭式循环冷却水系统的加药设施,应具备向补充水和循环水投药的功能。
3.3.3 密闭式循环冷却水系统的供水总管和换热设备的供水管,应设置管道过滤器。
3.3.4 密闭式循环冷却水系统的管道低点处应设置泄空阀,管道高点处应设置自动排气阀。
3.4 阻垢和缓蚀
3.4.1 循环冷却水的阻垢、缓蚀处理方案应经动态模拟试验确定,亦可根据水质和工况条件相类似的工厂运行经验确定。当做动态模拟试验时,应结合下列因素进行:
3.4.1.1 补充水水质;
3.4.1.2. 污垢热阻值;
3.4.1.3 腐蚀率;
3.4.1.4 浓缩倍数;
3.4.1.5 换热设备的材质;
3.4.1.6 换热设备的热流密度;
3.4.1.7 换热设备内水的流速;
3.4.1.8 循环冷却水温度;
3.4.1.9 药剂的允许停留时间;
3.4.1.10 药剂对环境的影响;
3.4.1.11 药剂的热稳定性与化学稳定性。
3.4.2 当敞开式系统换热设备的材质为碳钢,循环冷却水采用磷系复合配方处理时,循环冷却水的主要水质标准除应符合本规范3.1.7条的规定外,尚应符合下列规定:
3.4.2.1 悬浮物宜小于10mg/L;
3.4.2.2 甲基橙碱度宜大于50mg/L(以CaCo3计);
3.4.2.3 正磷酸盐含量(以 计)宜小于或等于磷酸盐总含量(以 计)的50%。
3.4.2 当采用聚磷酸盐及其复合药剂配方时,换热设备出口处的循环冷却水温度宜低于50℃。
3.4.4 当敞开式系统循环冷却水处理采用含锌盐的复合药剂配方时,锌盐含量宜小于4.0mg/L(以 计),pH值宜小于8.3。当pH值大于8.3时,水中溶解锌与总锌重量比不应小于80%。
3.4.5 当敞开式系统循环冷却水处理采用全有机药剂配方时,循环冷却水的主要水质标准除应符合本规范3.1.7条的规定外,尚应符合下列规定:
3.4.5.1 pH值应大于8.0;
3.4.5.2 钙硬度应大于60mg/L;
3.4.5.3 甲基橙碱度应大于100mg/L(以CaCO3计)。
3.4.6 当循环冷却水系统中有铜或铜合金换热设备时,循环冷却水处理应投加铜缓蚀剂或采用硫酸亚铁进行铜管成膜。
3.4.7 循环冷却水系统阻垢、缓蚀剂的首次加药量,可按下列公式计算:
式中Gf——系统首次加药量(kg);
g——单位循环冷却水的加药量(mg/L)。
3.4.8 敞开式循环冷却水系统运行时,阻垢、缓蚀剂的加药量,可按下列公式计算:
式中Gr——系统运行时的加药量(kg/h);
Qe——蒸发水量( /h)。
3.4.9 密闭式循环冷却水系统运行时,缓蚀剂加药量可按下列公式计算:
3.5 菌藻处理
3.5.1 敞开式循环冷却水的菌藻处理应根据水质、菌藻种类、阻垢剂和缓蚀剂的特性以及环境污染等因素综合比较确定。
3.5.2 敞开式循环冷却水的菌藻处理宜采用加氯为主,并辅助投加非氧化性杀菌灭藻剂。
3.5.3 敞开式循环冷却水的加氯处理宜采用定期投加,每天宜投加1~3次,余氯量宜控制在0.5~1.0mg/L之内。每次加氯时间根据实验确定,宜采用3~4h。加氯量可按下式计算:
式中Gc——加氯量(kg/h);
Q——循环冷却水量( /h);
gc——单位循环冷却水的加氯量,宜采用2~4mg/L。
3.5.4 液氯的投加点宜设在冷却塔集水池水面以下2/3水深处,并应采取氧气分布措施。
3.5.5 非氧化性杀菌灭藻剂的选择应符合下列规定:
3.5.5.1 高效、广谱、低毒;
3.5.5.2 pH值的适用范围较宽;
3.5.5.3 具有较好的剥离生物粘泥作用;
3.5.5.4 与阻垢剂、缓蚀剂不相互干扰;
3.5.5.5 易于降解并便于处理。
3.5.6 非氧化性杀菌灭藻剂,每月宜投加1~2次。每次加药量可按下式计算:
式中Gn——加药量(kg)。
3.5.7 非氧化性杀菌灭藻剂宜投加在冷却塔集水池的出水口处。
3.6 清洗和预膜处理
3.6.1 循环冷却水系统开车前,应进行清洗、预膜处理、但密闭式系统的预膜处理应根据需要确定。
3.6.2 循环冷却水系统的水清洗,应符合下列规定:
3.6.2.1 冷却塔集水池、水泵吸水池、管径大于或等于800mm的新管,应进行人工清扫;
3.6.2.2 管道内的清洗水流速不应低于1.5m/s;
3.6.2.3 清洗水应从换热设备的旁路管通过;
3.6.2.4 清洗时应加氯杀菌,水中余氯宜控制在0.8~1.0mg/L之内。
3.6.3 换热设备的化学清洗方式应符合下列规定:
3.6.3.1 当换热设备金属表面有防护油或油污时,宜采用全系统化学清洗。可采用专用的清洗剂或阴离子表面活性剂;
3.6.3.2 当换热设备金属表面有浮锈时,宜采用全系统化学清洗。可采用专用的清洗剂;
3.6.3.3 当换热设备金属表面锈蚀严重或结垢严重时,宜采用单台酸洗。当采用全系统酸洗时,应对钢筋混凝土材质采取耐酸防腐措施。换热设备酸洗后应进行中和、钝化处理;
3.6.3.4 当换热设备金属表面附着生物粘泥时,可投加具有剥离作用的非氧化性杀菌灭藻剂进行全系统清洗。
3.6.4 循环冷却水系统的预膜处理应在系统清洗后立即进行,预膜处理的配方和操作条件应根据换热设备材质、水质、温度等因素由试验或相似条件的运行经验确定。
3.6.5 当一个循环冷却水系统向两个或两个以上生产装置供水时,清洗、预膜应采取不同步开车的处理措施。
3.6.6 循环冷却水系统清洗、预膜水应通过旁路管直接回到冷却塔集水池。
4旁流水处理
4.0.1 循环冷却水处理设计中有下列情况之一时,应设置旁流水处理设施:
4.0.1.1 循环冷却水在循环过程中受到污染,不能满足循环冷却水水质标准的要求;
4.0.1.2 经过技术经济比较,需要采用旁流水处理以提高设计浓缩倍数;
4.0.1.3 生产工艺有特殊要求。
4.0.2 旁流水处理设计方案应根据循环冷却水水质标准,结合去除的杂质种类、数量等因素综合比较确定。
4.0.3 敞开式系统采用旁流过滤方案去除悬浮物时,其过滤水量可按下式计算:
式中Qsf——旁流过滤水量( /h);
Cms——补充水的悬浮物含量(mg/L);
Crs——循环冷却水的悬浮物含量(mg/L);
Css——旁流过滤后水的悬浮物含量(mg/L);
A——冷却塔空气流量( /h);
Ca——空气中含尘量(g/ );
Ks——悬浮物沉降系数,可通过试验确定。当无资料时可选用0.2。
4.0.4 敞开式系统的旁流过滤水量亦可按循环水量的1%~5%或结合国内运行经验确定。
4.0.5 密闭式系统宜设旁滤处理设施,旁滤量宜为循环水量的2%~5%。
4.0.6 当采用旁流水处理去除碱度、硬度、某种离子或其它杂质时,其旁流水量应根据浓缩或污染后的水质成份、循环冷却水水质标准和旁流处理后的出水水质要求等按下式计算确定:
式中Qsi——旁流处理水量( /h);
Cmi——补充水中某项成份的含量(mg/L);
Cri——循环冷却水中某项成份的含量(mg/L);
Csi——旁流处理后水中某项成份的含量(mg/L)。
5补充水处理
5.0.1 敞开式系统补充水处理设计方案应根据补充水量、补充水的水质成份、循环冷却水的水质标准、设计浓缩倍数等因素,并结合旁流水处理和全厂给水处理的内容综合确定。
5.0.2 密闭式系统的补充水,应符合生产工艺对水质和水温的要求,可采用软化水、除盐水或冷凝水等。当补充水经除氧或除气处理后,应设封闭设施。
5.0.3 循环冷却水系统的补充水量可按下列公式计算:
5.0.3.1 敞开式系统
5.0.3.2 密闭式系统
式中α——经验系数,可取α=0.001。
5.0.4 密闭式系统补充水管道的输水能力,应在4t~6h内将系统充满。
5.0.5 补充水的加氯处理,宜采用连续投加方式。游离性余氯量可控制在0.1~0.2mg/L的范围内。
5.0.6 补充水应控制铝离子的含量。
6排水处理
6.0.1 循环冷却水系统的排水应包括系统排污水、排泥、清洗和预膜的排水、旁流水处理及补充水处理过程中的排水等,当水质超过排放标准时,应结合下列因素确定排水处理设计方案:
6.0.1.1 排水的水质和水量;
6.0.1.2 排放标准或排入全厂污水处理设施的水质要求;
6.0.1.3 重复使用的条件。
6.0.2 排水处理设施的设计能力应按正常的排放量确定。当排水的水质、水量变化较大,影响污水处理设施正常运行时,应设调节池。
6.0.3 系统清洗、预膜的排水和杀菌灭藻剂毒性降解所需的调节设施,宜结合全厂的排水调节设施统一设计。
6.0.4 当排水需要进行生物处理时,宜结合全厂的生物处理设施统一设计。
6.0.5 密闭式系统因试车、停车或紧急情况排出含有高浓度药剂的循环冷却水时,应设置贮存设施。
7药剂的贮存和投配
7.0.1 循环冷却水系统的水处理药剂宜在全厂室内仓库贮存,并应在循环冷却水装置区内设药剂贮存间。液氯和非氧化性杀菌灭藻剂应渗专用仓库或贮存间贮存。
7.0.2 药剂的贮存量应根据药剂的消耗量、供应情况和运输条件等因素确定,或按下列要求计算:
7.0.2.1 全厂仓库中贮存的药剂量可按15~30d消耗量计算;
7.0.2.2 贮存间贮存的药剂量可按7~10d消耗量计算;
7.0.2.3 酸贮罐容积宜按一罐车的容积加10d消耗量计算。
7.0.3 药剂在室内的堆放高度宜符合下列规定:
7.0.3.1 袋装药剂为1.5~2.0m;
7.0.3.2 散装药剂为1.0~1.5m;
7.0.3.3 桶装药剂为0.8~1.2m。
7.0.4 药剂贮存间与加药间宜相互毗连,并设运输和起吊设备。
7.0.5 浓酸的装卸和投加应采用负压抽吸、泵输送或重力自流,不应采用压缩空气压送。
7.0.6 酸贮罐的数量不宜少于2个。贮罐应设安全围堰或放置于事故池内,围堰或事故池应作内防腐处理并设集水坑。
7.0.7 药剂溶解槽的设置应符合下列规定:
7.0.7.1 溶解槽的总容积可按8~24h的药剂消耗量和5%~20%的溶液浓度确定;
7.0.7.2 溶解槽应设搅拌设施;
7.0.7.3 溶解槽宜设一个;
7.0.7.4 易溶药剂的溶解槽可与溶液槽合并。
7.0.8 药剂溶液槽的设置应符合下列规定:
7.0.8.1 溶液槽的总容积可按8~24h的药剂消耗量和1%~5%的溶液浓度确定;
7.0.8.2 溶液槽的数量不宜少于2个;
7.0.8.3 溶液槽宜设搅拌设施,搅拌方式应根据药剂的性质和配制条件确定。
7.0.9 液态药剂宜原液投加。
7.0.10 药剂溶液的计量宜采用计量泵或转子流量计,计量设备宜设备用。
7.0.11 液氯计量应有瞬时和累计计量。加氯机出口宜设转子流量计进行瞬时计量,氯瓶宜设磅秤进行累计计量。
7.0.12 加氯机的总容量和台数应按最大小时加氯量确定。加氯机宜设备用。
7.0.13 加氯间必须与其它工作间隔开,并应符合下列规定:
7.0.13.1 应设观察窗和直接通向室外的外开门;
7.0.13.2 氯瓶和加氯机不应靠近采暖设备;
7.0.13.3 应设通风设备,每小时换气次数不宜小于8次。通风孔应设在外墙下方;
7.0.13.4 室内电气设备及灯具应采用密闭、防腐类型产品,照明和通风设备的开关应设在室外;
7.0.13.5 加氯间的附近应设置防毒面具、抢救器材和工具箱。
7.0.14 当工作氯瓶的容量大于或等于500kg时,氯瓶间应与加氯间隔开,并应设起吊设备;当小于500kg时,氯瓶间和加氯间宜合并,并宜设起吊设备。
7.0.15 向循环冷却水直接投加浓酸时,应设置酸与水的均匀混合设施。
7.0.16 药剂的贮存、配制、投加设施、计量仪表和输送管道等,应根据药剂的性质采取相应的防腐、防潮、保温和清洗的措施。
7.0.17 药剂贮存间、加药间、加氯间、酸贮罐、加酸设施等,应根据药剂性质及贮存、使用条件设置生产安全防护设施。
7.0.18 循环冷却水系统可根据药剂投加设施的具体需要,结合循环冷却水处理的内容和规模设置维修工具。
8监测、控制和化验
8.0.1 循环冷却水系统监测仪表的设置应符合下列要求:
8.0.1.1 循环给水总管应设流量、温度和压力仪表;
8.0.1.2 循环回水总管宜设流量、温度和压力仪表;
8.0.1.3 旁流水管、补充水管应设流量仪表;
8.0.1.4 换热设备对腐蚀率和污垢热阻值有严格要求时,应在换热设备的进水管或出水管上设流量、温度和压力仪表。
8.0.2 循环冷却水系统宜设模拟监测换热器、监测试片器和粘泥测定器。
8.0.3 循环冷却水系统宜在下列管道上设置取样管:
(1)循环给水总管;
(2)循环回水总管;
(3)补充水管;
(4)旁流水出水管;
(5)换热设备出水管。
8.0.4 循环水泵的吸水池或冷却塔的集水池应设液位计,水池的水位与补充水进水阀门宜用联锁控制。吸水池宜设低液位报警器。
8.0.5 循环冷却水系统采用加酸处理时,应对pH值进行检测。
8.0.6 化验室的设置应根据循环冷却水系统的水质分析要求确定。日常检测项目的化验设施宜设置在循环冷却水装置区内,非日常检测项目可利用全厂中央化验室的设施或与其它单位协作检测。
8.0.7 以水质化验和微生物分析为主的化验室,宜设水质分析间、天平间、试剂间、仪器间、生物分析间和更衣间等。
8.0.8 水质日常检测项目包括下列内容:
(1)pH值;
(2)硬度;
(3)碱度;
(4)钾离子;
(5)电导率;
(6)悬浮物;
(7)游离氯;
(8)药剂浓度。
8.0.9 循环冷却水水质化验可根据具体要求增加以下检测项目:
(1)微生物分析;
(2)垢层与腐蚀产物的成份分析;
(3)腐蚀速率测定;
(4)污垢热阻值测定;
(5)生物粘泥量测定;
(6)药剂质量分析。
8.0.10 循环冷却水宜每季进行水质全分析。
附录A水质分析项目表
水样(水源)名称:外观:
取样地点:水温:℃
取样日期:
9. 怎样制备垢和腐蚀产物的分析试样 技能条鉴定
金相试制备
金相检验研究金属及合金内部组织重要金相显微镜确效观察内部显微组织需制备能用于微观检验品——金相试称磨片
金相试制备主要程序:取、嵌(于品)、磨光、抛光、浸蚀等
、取原则
手工用金相显微镜金属部进行金相研究其功与否说首先取决所取试代表性般情况研究金属及合金显微组织金相试应材料或零件使用重要部位截取;或偏析、夹杂等缺陷严重部位截取析失效原则应失效与完整部位别截取试探究其失效原于较裂纹部件则应裂纹发源处、扩展处、裂纹尾部别取析裂纹产原研究热处理零件组织较均匀任选断面试若研究氧化、脱碳、表面处理(渗碳)情况则应横断面观察些零部件重要部位选择要通具体服役条件析才能确定
二、试截取
手工论采取何种截取截取试都必须保证使试观察面金相组织发变化软材料用锯、车、刨等切取;硬材料用水冷砂轮切片机、电火花切割等切取;硬脆材料(白口铸铁)用锤击获取
于要测量表面处理层深试要注意切割面与渗层面垂直研究轧制材料研究夹杂物形状、类型、材料变形程度、晶粒拉程度、带状组织等应平行于轧制向截取纵向试;研究材料表层缺陷、非金属夹杂物布应垂直轧制向截取横向试
金相试较理想形状圆柱形柱体具体情况定般取高10~15mm直径Φ10~15mm;形试边10~15mm宜实际工作由于检材料零件品种极要材料零件截取理想形状与尺寸定困难般按实际情况决定试高度其直径或边半宜形状与便于握手磨制原则
三、试镶嵌
手工试尺寸、形状特殊(金属碎片、丝材、薄片、细管、钢皮等)易握持或要保护试边缘(表面处理检验、表面缺陷检验等)则要试进行夹持或镶嵌
镶嵌冷镶嵌热镶嵌冷镶嵌指室温使镶嵌料固化般适用于宜受压软材料及组织结构温度变化敏或溶点较低材料热镶试镶嵌料起放入钢模内加热加压冷却脱模者使用较广泛嵌料用酚-甲醛树脂、酚-糠醛树脂、聚氯乙烯、聚苯乙烯前两种主要呈热凝性材料两种热塑性材料并呈透明半透明性酚-甲醛树脂内加入木粉即用所谓电木粉染同颜色用热镶嵌工艺见表1-1热镶嵌碰些缺陷些缺陷、补救办见表1-2
表1-1用热镶嵌工艺
名称
温度(℃)
压力(MPS)
加热间(min)
保温间(min)
聚氯乙烯
175-100
30-40
10
7
聚苯乙烯
140-150
35-40
10
7
酚醛树脂
138-142
30
5
电木粉
100-150
30-35
15
表1-2镶嵌见缺陷原及修办
材料
缺陷
原
修办
酚
醛
树
脂
等
类
镶
料
放射状裂
试截面相模
试四角太尖锐
选用直径模
减试尺寸
试边缘处收缩
塑性收缩
降低镶嵌温度
选择低收缩率树脂
模套冷却再推镶嵌试
环周性裂
吸收潮气
镶嵌程截留气体
镶嵌料模套预热
液态暂减压
破裂
镶嵌程太短
压力足
加镶嵌间
液态向固态转化程加足够压力
未融合
压力足
加热间足
增加适镶嵌压力
增加加热间
透
明
性
镶
料
棉花球状物
间介质未达高温度
高温度保温间足
高温度增加保温间
龟裂
镶嵌试模内应力释放
冷却较低温度再模
镶嵌试置于沸水软化
四、试磨光
手工磨光目要能平整磨面种磨面留极细磨痕抛光程消除磨光工序粗磨细磨两步
1.粗磨
手工于软材料用锉刀锉平般材料都用砂轮机磨平操作应利用砂轮侧面保证试磨平要注意接触压力宜同要断用水冷却防止温度升高造内部组织发变化倒角防止细磨划破砂纸需要观察脱碳、渗碳等表面层情况试能倒角要采用电镀敷盖防止些试边缘倒角粗磨完凡作表面层金相检验棱边都应倒圆弧免工序程砂纸或抛光物拉裂甚至能抛光物钩住抛飞外造事故
2.细磨
手工细磨手工磨光机械磨光
手工细磨目消除粗磨遗留深粗磨痕抛光作准备细磨本身包括道操作即各号砂纸粗细顺序进行细磨操作式手工磨光机械磨光两种磨光程用水或汽油等润滑冷却液则称湿式磨光否则称干式磨光磨光效率及质量言湿式磨光显要比干式磨光总体趋势看湿式、机械磨光逐步替代干式、手工磨光
手工细磨磨削工具砂纸砂纸由纸基、粘结剂、磨料组合手工磨光主要使用干砂纸机械磨光要求使用水砂纸两种砂纸主要区别纸基粘结剂水砂纸自要求纸基=粘结剂都能防水磨料基本相同主要造刚玉、碳化硅及氧化铝按照磨料颗粒粗细尺寸砂纸各种规格别编号磨料尺寸般用粒度单位用筛选获磨粒说粒度号用1英寸度少孔眼筛网确定例10号粒度指1英寸度10孔眼筛网;磨粒粒度实际尺寸表示用W单位种磨粒称微粉28微米微粉其粒度号W28干、水砂纸编号、粒度尺寸别见表1-3、1-4
表1-3干砂纸编号粒度尺寸
编号
磨料尺寸(微米)
按粒度标号
特定标号
280
—
50-40
W40
0
40-28
W28
01
28-10
W20
02
10-14
W14
03
14-10
W10
04
10-7
W7
05
7-5
W5
06
5-3.5
W3.5
—
3.5-2.5
表1-4水砂纸编号、粒度号粒度尺寸
编号
粒度号
粒度尺寸(微米)
—
—
—
320
220
—
360
240
63-50
380
280
50-40
400
320
40-28
500
360
—
600
400
28-20
700
500
—
800
600
20-14
900
700
1000
800
手工手工磨光使用放垫平玻璃板或平铁板金相砂纸进行推磨保证试试面平整产弧形磨面所施力应力求均衡磨面与砂纸完全接触同磨削应循单向进行向前推行进行磨削程试提离砂纸细磨般依0号(W40)始逐换细号砂纸推磨般钢铁试磨04号砂纸软材料铝、镁等合金磨05号砂纸每换号细砂纸应试手冲洗干净并面垫玻璃板擦干净谨防粗砂粒掉入细砂纸同磨面向应旋转90°便观察磨痕否磨掉
细磨较软金相试铝、镁、铜等色金属应该砂纸涂层润滑剂防止砂粒嵌入软金属材料内同减少表面撕损现象用润滑剂机油、石蜡、汽油溶液、汽油、皂化水溶液、甘油水溶液等
编号机械磨光 随着技术产发展费手工细磨操作便捷机械细磨逐步代替机械细磨主要优点效率高、同由于磨光程水断冷却、润滑热量及磨粒断带走易产变形层金相试质量容易控制
编号机械细磨主要设备预磨机预磨机主要由电机带或两转盘及冷却部组电机转速600r/min冷却水直接接用自水流量调机械细磨要用水砂纸其规格档情况见表1-4机械粗磨选用粒度号50~180水砂纸细磨相应于手工推磨操作程别选用粒度号240、320、400600水砂纸水砂纸安装水砂纸两种形式种背面光滑安置要用卡圈固定转盘或用少许牛油粘合较通用种种外形工作盘致、背面涂压敏胶水砂纸使用直接粘贴转盘十便
手工细磨要求些事项同适用于机械细磨程机械细磨更应注意勿使金相试发热若使用调预磨机随着水砂纸粒度号增加转盘速度应相应减低
先进自磨光机装计算机磨光程进行程序控制
五、试抛光
手工抛光目除金相试磨面由细磨留磨痕平整疵镜面尽管抛光金相试制备道工序并由光滑镜面金相工作者经验:金相试磨光程要功夫抛光作用仅能除表层薄层金属所抛光结程度取决于前几道工序质量抛光前磨面留少量几条较深磨痕即使增加抛光间难除般必须重新磨光故抛光前应仔细检查磨面否留单向均匀细磨痕否则应重新磨光免白费间提高金相试制备效率重要环节
抛光表面放200倍显微镜观察应基本磨痕磨坑抛光机械抛光、电解抛光及化抛光等
1.机械抛光
手工种使用广泛专用金相品抛光机进行转速般200~600r/min粗抛转速要高些精抛或抛软材料转速要低些抛光盘蒙层织物粗抛用帆布、粗呢等精抛用绒布、细呢金丝绒与丝绸等抛光应织物洒适量抛光磨料(称抛光粉)用抛光粉几种:
氧化铝(AL2O3) 硬度仅略低于金刚石及碳化硅氧化铝称刚玉广泛使用工制电熔氧化铝砂粒——造刚玉刚玉纯度越高越接近(白)色杂质越暗红色越深金相抛光采用白色细颗粒(0.3~1μm)氧化铝微粉能令满意抛光磨料用于粗抛精抛
氧化铬(Cr2O3) 原种褪色绿色染料具高硬度用于抛淬火钢及铸铁等试除氧化铬粉外现用块状氧化铬抛光膏
两种抛光磨料要别制水悬溶液使用般份抛光磨料加二十份水始操作浓度高点逐渐浓度降低
氧化镁(MgO) 种粒度极细精抛磨料白色硬度较低用于精抛色金属或铸铁夹杂物检验试极易潮解形氢氧化镁或碳酸镁(若足够CO2存)磨削性能随丧失氧化镁应该用蒸馏水随用随调制平氧化镁应密封保藏切勿受潮
金刚石粉 具极高硬度良磨削作用抛光软、硬材料都良效用于抛光硬质合金等极硬材料极理想抛光磨料金刚石研磨膏由金刚石粉配油类润滑剂制特点抛光效率高抛光表面质量金刚石研磨膏档按金刚石粉粒实际尺寸(微米)划W3.5研磨膏其颗粒尺寸3.5μm抛光金相试用研磨膏般选用W7-5作粗抛选用W2.5-1.5作精抛
抛光注意事项:
① 抛光试磨面应均匀、平压旋转抛光盘压力宜并边缘断作径向往复移
② 抛光程要断喷洒适量抛光液若抛光布光液太使钢夹杂物及铸铁石墨脱落抛光面质量佳;若抛光液太少使抛光面变晦暗黑斑
③ 期应使试抛光盘各向转防止钢夹杂物产拖尾现象
④ 尽量减少抛光面表层金属变形能性整光间易磨痕全部消除现镜面抛光即停止试用水冲洗或用酒精洗干净转入浸湿或直接显微镜观察
1.电解抛光
手工试放电解质槽作阳极用锈钢或铅扳作阴极接通直流电源阳极表面产选择性溶解逐渐使表面凸起部溶解获平整表面(即抛光)目前应用渐广速度快且表面光洁抛光程发塑性变形(机械抛光避免发塑性变形层影响显微析结;要反复抛光、腐蚀才能变形层除)其缺点工艺程易控制
2.化抛光化机械抛光
手工化抛光依靠化试剂品选择性溶解作用磨痕除种:例用1~2g草酸、2~3mL氢氟酸、40mL氧化氢、50mL蒸馏水化抛光剂碳钢、般低合金钢退火、淬火组织进行化抛光(擦拭);效较适用于没机械抛光设备单位化抛光般总太理想若机械抛光结合;利用化抛光剂边腐蚀边机械抛光提高抛光效率
六、试显示
手工抛光试若直接放显微镜观察能看片亮光仅能观察某些非金属夹杂物、灰口铸铁石墨、粉末冶金制品孔隙等辨别各种组物及其形态特征磨面变形层除同要各同组相显着区关显微组织信息要进行显微组织显示工作按金相组织显示本质化、物理二类化主要浸蚀包括化浸蚀电化浸蚀及氧化利用化试剂溶液借化或电化作用显示金属组织本课程实验使用全部试均采用化浸蚀制作
金相试表面化浸蚀化溶解作用电化溶解作用取决于试材料组相性质及相量
手工般单相合金或纯金属化浸蚀主要看作化溶解程浸蚀剂首先磨面表层薄变形层溶解掉接着晶界起化溶解作用晶界原排列特别紊乱其自由能较高所晶界处较容易受浸蚀呈沟凹见图(1-15)(b)显微镜看固溶体或纯金属面体晶粒若继续浸蚀则晶粒产溶解作用金属原溶解都沿原排列密面进行由于金相试般都晶体各晶粒取向致同磨面各晶粒原排列位向同所每颗晶粒溶解结都按原排列密面露表面即浸蚀每晶粒面与原磨面各倾定角度见图(1-15)(c)垂直照明各晶粒反射光向致显示亮度致晶粒
图1-15 纯金属及单相组织化浸蚀程图共析钢(T8)退火组织侵蚀程
(a)尚未浸蚀(b)晶界优先浸蚀 (c)晶粒浸蚀倾斜
于手工两相合金由于各组相具同电极电位试浸入具电解液作用侵蚀剂两相间形数微电池具负电位相阳极迅速溶入侵蚀剂使该相形凹槽具电位相阴极化作用受侵蚀保留原光滑表面光线照射凹凸平试表面由于各处光线反射程度同显微镜能观察各种同组织即组相图1-16具两相(铁素体十渗碳体)共析钢(T8)退火组织浸蚀程铁素体阳极易浸蚀渗碳体阴极易浸蚀所渗碳体凸铁素体凹显微镜显示铁素体渗碳体交界线
手工于钢铁材料用漫蚀剂4%硝酸酒精溶液或4%苦味酸酒精溶液前者浸蚀热处理组织较适合;者浸蚀缓冷组织较浸蚀浸入擦拭浸蚀间根据要求确定能太深能太浅般使表面由亮变灰白色即浸蚀应立即用水冲洗用酒精擦洗用吸水纸吸干或吹风机吹干,才能显微镜观察要注意试表面能用纸或其东西擦更能用手摸否则表面受损坏观察侵蚀品应保持干燥器防止潮湿空气氧化若氧化能重新抛光浸蚀才能再进行观察
谢谢采纳
10. 水垢和腐蚀的形成与危害
所谓水垢,是指水中含有的钙(Ca++)、镁(Mg++)、铁(Fe++)等金属阳离子接近带有阴离子(-)的管壁时在电荷引力作用下形成的不溶性盐的结晶体。腐蚀是在一定的环境下由于化学反应使材料损耗或变质,水中的溶解氧(DO)是造成腐蚀的决定因素,溶解氧浓度越高腐蚀速度就越快,另外,总溶解固体(TDS)、PH值、温度、金属材质、细菌等变化,也是造成腐蚀的原因。结垢影响换热设备的传热效率,浪费燃料,增加设备运行费用,严重时会导致设备失效报废。水管壁的结垢降低了水的流量,甚至造成水龙头及淋浴头的堵塞。水管中流出的“红水”、“黄水”也是由于水管腐蚀和结垢形成的,在出现红水的管道中有可见锈瘤形成,它阻碍了余氯的杀菌作用,保护了铁垢下微生物的滋生。当遇到水管压力和流速变化时,微生物即刻窜入水中,给用水卫生带来了很大的隐患,如果对沉积物或铁瘤不采取控制措施,管路可能完全堵塞,产生高昂的设备更新费用。
所以及时除垢是非常必要的,石家庄春之原电子除垢仪的工作原理是利用综合电波改变水里的钙、镁等离子的物理结构,变成不溶于水的新结晶体,它们会悬浮于水里,不会粘附于管壁上,防止水垢形成。由于钙镁等离子从水中析出,水便回复于高溶解状态,(水本身为高溶解度液体,但会因吸收其它物质而致饱和),当回复为高溶解状态的水流经有水垢的管道,便能把水垢溶解并吸收,并于排水时排走,因此,该产品除具有防止水垢形成外,还能有效清除老垢。