A. 数据分析的原理是什么
数据分析的目的是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律。在实际工作中,数据分析能够帮助管理者进行判断和决策,以便采取适当策略与行动。比如:企业的高管希望通过市场分析和研究,把握当前产品的市场动向,从而制定合理的产品研发和销售计划,这就必须依赖数据分析才能够完成。
简单的说,就是对数据进行分析,比较专业的说法是,数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,未提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。以求最大化地开发数据的功能,发挥数据的作用。
数据分析包含“数据”和“分析”两个方面一方面包括加工和整理数据,另一方面也包括分析数据,从中提取有价值的信息并形成对业务有帮助的结论。
数据分析的成果通常以分析报告的形式呈现。对于数据分析报告,分析就是论点,数据就是论据,两者缺一不可。
B. 数据分析的方法有哪些
② 数据分析为了挖掘更多的问题,并找到原因;
③ 不能为了做数据分析而坐数据分析。
2、步骤:① 调查研究:收集、分析、挖掘数据
② 图表分析:分析、挖掘的结果做成图表
3、常用方法: 利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等,它们分别从不同的角度对数据进行挖掘。 ①分类。分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。 ②回归分析。回归分析方法反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。 ③聚类。聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。 ④关联规则。关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。 ⑤特征。特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。如营销人员通过对客户流失因素的特征提取,可以得到导致客户流失的一系列原因和主要特征,利用这些特征可以有效地预防客户的流失。 ⑥变化和偏差分析。偏差包括很大一类潜在有趣的知识,如分类中的反常实例,模式的例外,观察结果对期望的偏差等,其目的是寻找观察结果与参照量之间有意义的差别。在企业危机管理及其预警中,管理者更感兴趣的是那些意外规则。意外规则的挖掘可以应用到各种异常信息的发现、分析、识别、评价和预警等方面。 ⑦Web页挖掘。
C. 数据分析架构及方法
数据分析架构及方法
一、以往的数据分析在今天的各类型企业中,数据分析岗位已经基本得到普及和认可,这个岗位的核心任务往往是支撑运营和营销,将企业内部的数据,客户的数据进行分析和总结,形成以往工作情况的量化表现,以及客户的行为趋势或特征等。
如果从更宏观的角度来认识数据分析岗位的话,每一个数据分析人员都明白,其实数据分析岗位要达到的目标就是希望通过数据来发现潜在的规律,进而帮助预测未来,这一点同数据挖掘的目标一致。那么为什么在大多数公司都已经具备的数据分析岗位基础上,今天却还是在反复提到数据挖掘这个概念,我们就需要来看看数据分析都有哪些是没有做到的内容。
1数据分散
多数数据分析岗位在公司中的岗位设置是隶属在单一业务部门中作为一个支撑岗,只有少数的公司是将数据分析作为一个独立的部门。其差异性在于,前者的数据分析所能分析的内容仅限于自身部门所输出的指标,比如投诉部门只看投诉处理过程中的数据,销售部门只看销售过程中的数据,一旦涉及到需要将各类指标汇总分析的情况,这种组织架构就会带来极大的负面影响,由于不同部门具备自己部门指标导出的权限,且与其他部门的配合并不影响绩效任务,所以这种跨部门采集数据的过程往往效率奇低。而数据分析最关键的就在于汇集更多的数据和更多的维度来发现规律,所以以往的数据分析多是做最基础的对比分析以及帕累托分析,少有使用算法来对数据进行挖掘的动作,因为越少的指标以及越少的维度将会使得算法发挥的效果越差。
2指标维度少
在以往的企业中,数字化管理更多的体现在日常运维工作中,对于客户端的数据采集虽然从很早以前就已经开展,CRM系统的诞生已经有很久的时间了,但是一直以来客户端的数据维度却十分缺失,其原因在于上述这些途径所获得的数据多为客户与企业产生交互之后到交互结束之间的数据,但是这段时间只是这个客户日常生活中很少的一部分内容,客户在微博,微信上的行为特点,关注的领域或是品牌,自身的性格特点等,可以说一个客户真正的特点,习惯,仅通过与企业的交互是无从知晓的,因此难以挖掘出有效的结论。
3少使用算法
在上述制约条件下,可想而知数据分析人员对于算法的使用必然是较少的,因为数据分析依赖于大量的指标、维度以及数据量,没有这三个条件是难以发挥算法的价值的,而在排除掉算法后,数据分析人员更多的只能是针对有限的数据做最为简单的分析方法,得出浅显易懂的分析结论,为企业带来的价值则可以想象。
4数据分析系统较弱目前的数据分析多采用excel,部分数据分析人员能够使用到R或SPSS等软件,但当数据量达到TB或PB单位级别时,这些软件在运算时将会消耗大量时间,同时原始的数据库系统在导出数据时所花费的时间也是相当长的,因此对大数据量的分析工作,常规的系统支撑难以到达要求。
二、技术革命与数据挖掘
得益于互联网对于人们生活的影响逐渐增大,我们发现数据正在疯狂的增长。今天一个人一天的时间中有将近一半是在互联网中度过的,一方面这些使用互联网的交互都是能够被捕捉记录的,一方面由于碎片化时间的使用,客户与企业交互的机会也变的越来越频繁,进一步保障了客户数据的丰富。同时在大数据技术的支撑下,今天的系统能够允许对这些大规模的数据量进行高效的分析。
因此数据分析人员也能够开始使用一些较为抽象的算法来对数据做更为丰富的分析。所以数据分析正式进入到了数据分析2.0的时代,也就是数据挖掘的时代了。
三、数据处理流程
数据分析也即是数据处理的过程,这个过程是由三个关键环节所组成:数据采集,数据分析方法选取,数据分析主题选择。这三个关键环节呈现金字塔形,其中数据采集是最底层,而数据分析主题选择是最上层。
四、数据采集
数据采集即是如何将数据记录下来的环节。在这个环节中需要着重说明的是两个原则,即全量而非抽样,以及多维而非单维。今天的技术革命和数据分析2.0主要就是体现在这个两个层面上。
1全量而非抽样由于系统分析速度以及数据导出速度的制约,在非大数据系统支撑的公司中,做数据分析的人员也是很少能够做到完全全量的对数据进行收集和分析。在未来这将不再成为问题。
2多维而非单维另一方面则在于数据的维度上,这在前边同样提及。总之针对客户行为实现5W1H的全面细化,将交互过程的什么时间、什么地点、什么人、因为什么原因、做了什么事情全面记录下来,并将每一个板块进行细化,时间可以从起始时间、结束时间、中断时间、周期间隔时间等细分;地点可以从地市、小区、气候等地理特征、渠道等细分;人可以从多渠道注册账号、家庭成员、薪资、个人成长阶段等细分;原因可以从爱好、人生大事、需求层级等细分;事情可以从主题、步骤、质量、效率等细分。通过这些细分维度,增加分析的多样性,从而挖掘规律。
五、数据分析方法选取数据分析方法是通过什么方法去组合数据从而展现规律的环节。从根本目的上来说,数据分析的任务在于抽象数据形成有业务意义的结论。因为单纯的数据是毫无意义的,直接看数据是没有办法发现其中的规律的,只有通过使用分析方法将数据抽象处理后,人们才能看出隐藏在数据背后的规律。
数据分析方法选取是整个数据处理过程的核心,一般从分析的方法复杂度上来讲,我将其分为三个层级,即常规分析方法,统计学分析方法跟自建模型。我之所以这样区分有两个层面上的考虑,分别是抽象程度以及定制程度。
其中抽象程度是说,有些数据不需要加工,直接转成图形的方式呈现出来,就能够表现出业务人员所需要的业务意义,但有些业务需求,直接把数据转化成图形是难以看出来的,需要建立数据模型,将多个指标或一个指标的多个维度进行重组,最终产生出新的数据来,那么形成的这个抽象的结果就是业务人员所需要的业务结论了。基于这个原则,可以划分出常规分析方法和非常规分析方法。
那么另一个层面是定制程度,到今天数学的发展已经有很长的时间了,其中一些经典的分析方法已经沉淀,他们可以通用在多用分析目的中,适用于多种业务结论中,这些分析方法就属于通用分析方法,但有些业务需求确实少见,它所需要的分析方法就不可能完全基于通用方法,因此就会形成独立的分析方法,也就是专门的数学建模,这种情况下所形成的数学模型都是专门为这个业务主题定制的,因此无法适用于多个主题,这类分析方法就属于高度定制的,因此基于这一原则,将非常规分析方法细分为统计学分析方法和自建模型类。
1常规分析方法常规分析方法不对数据做抽象的处理,主要是直接呈现原始数据,多用于针对固定的指标、且周期性的分析主题。直接通过原始数据来呈现业务意义,主要是通过趋势分析和占比分析来呈现,其分析方法对应同环比及帕累托分析这两类。同环比分析,其核心目的在于呈现本期与往期之间的差异,如销售量增长趋势;而帕累托分析则是呈现单一维度中的各个要素占比的排名,比如各个地市中本期的销售量增长趋势的排名,以及前百分之八十的增长量都由哪几个地市贡献这样的结论。常规分析方法已经成为最为基础的分析方法,在此也不详细介绍了。
2统计学分析方法统计学分析方法能够基于以往数据的规律来推导未来的趋势,其中可以分为多种规律总结的方式。根据原理多分为以下几大类,包括有目标结论的有指导学习算法,和没有目标结论的无指导学习算法,以及回归分析。
其中有指导的学习算法简单说就是有历史数据里边已经给出一个目标结论,然后分析当各个变量达到什么情况时,就会产生目标结论。比如我们想判断各项指标需要达到什么水平时我们才认定这个人患有心脏病的话,就可以把大量的心脏病人的各项指标数据和没有心脏病的正常人的各项指标数据都输入到系统中,目标结论就是是否有心脏病,变量就是各项指标数据,系统根据这些数据算出一个函数,这个函数能够恰当的描述各个指标的数据与最终这个是否是心脏病人之间的关系,也就是当各个指标达到什么临界值时,这个人就有心脏病的判断,这样以后再来病人,我们就可以根据各项指标的临界值。这个案例中的函数就是算法本身了,这其中的算法逻辑有很多种,包括常见的贝叶斯分类、决策树、随机森林树以及支持向量机等,有兴趣的朋友可以在网上看看各种算法的逻辑是怎么样的。
另外无指导的学习算法因为没有一个给定的目标结论,因此是将指标之中所有有类似属性的数据分别合并在一起,形成聚类的结果。比如最经典的啤酒与尿布分析,业务人员希望了解啤酒跟什么搭配在一起卖会更容易让大家接受,因此需要把所有的购买数据都放进来,然后计算后,得出其他各个商品与啤酒的关联程度或者是距离远近,也就是同时购买了啤酒的人群中,都有购买哪些其他的商品,然后会输出多种结果,比如尿布或者牛肉或者酸奶或者花生米等等,这每个商品都可以成为一个聚类结果,由于没有目标结论,因此这些聚类结果都可以参考,之后就是货品摆放人员尝试各种聚类结果来看效果提升程度。在这个案例中各个商品与啤酒的关联程度或者是距离远近就是算法本身了,这其中的逻辑也有很多中,包括Apriori等关联规则、聚类算法等。
另外还有一大类是回归分析,简单说就是几个自变量加减乘除后就能得出因变量来,这样就可以推算未来因变量会是多少了。比如我们想知道活动覆盖率、产品价格、客户薪资水平、客户活跃度等指标与购买量是否有关系,以及如果有关系,那么能不能给出一个等式来,把这几个指标的数据输入进去后,就能够得到购买量,这个时候就需要回归分析了,通过把这些指标以及购买量输入系统,运算后即可分别得出,这些指标对购买量有没有作用,以及如果有作用,那么各个指标应该如何计算才能得出购买量来。回归分析包括线性及非线性回归分析等算法。
统计学分析方法还有很多,不过在今天多用上述几大类分析方法,另外在各个分析方法中,又有很多的不同算法,这部分也是需要分析人员去多多掌握的。
3自建模型自建模型是在分析方法中最为高阶也是最具有挖掘价值的,在今天多用于金融领域,甚至业界专门为这个人群起了一个名字叫做宽客,这群人就是靠数学模型来分析金融市场。由于统计学分析方法所使用的算法也是具有局限性的,虽然统计学分析方法能够通用在各种场景中,但是它存在不精准的问题,在有指导和没有指导的学习算法中,得出的结论多为含有多体现在结论不精准上,而在金融这种锱铢必较的领域中,这种算法显然不能达到需求的精准度,因此数学家在这个领域中专门自建模型,来输入可以获得数据,得出投资建议来。在统计学分析方法中,回归分析最接近于数学模型的,但公式的复杂程度有限,而数学模型是完全自由的,能够将指标进行任意的组合,确保最终结论的有效性。
六、数据分析主题选取
在数据分析方法的基础上,进一步是将分析方法应用在业务需求中,基于业务主题的分析可以涉及太多的领域,从客户的参与活动的转化率,到客户的留存时长分析,再到内部的各环节衔接的及时率和准确度等等,每一种都有独特的指标和维度的要求,以及分析方法的要求,以我个人的经验来看,主要分析主题都是围绕着营销、运营、客户这三大角度来开展的。
1营销/运营分析营销运营分析多从过程及最终的成效上来进行分析,包括营销活动从发布到客户产生购买的过程的分析,运营从客户开始使用到停止使用为止的过程中的分析,前者更倾向于分析客户行为的变动趋势,以及不同类型的客户之间的行为差异,后者更倾向于分析在过程中服务的及时率和有效率,以及不同类型的客户之间对于服务需求的差异。
在针对这部分分析主题时,多采用常规分析方法,通过同环比以及帕累托来呈现简单的变动规律以及主要类型的客户,但通过统计学分析方法,营销分析可以根据有指导的学习算法,得出营销成功与营销失败之间的客户特征的差异,而运营分析则可以根据无指导的学习算法,得出哪些特征的客户对哪些服务是有突出的需求的,另外营销和运营分析都可以通过回归分析来判断,各项绩效指标中,哪些指标是对购买以及满意度有直接影响的。通过这些深入的挖掘,可以帮助指导营销及运营人员更好的完成任务。
2客户分析客户分析除了与营销和运营数据关联分析时候使用,另外单独对于客户特征的分析也是有很大价值的。这一部分分析更多需要通过统计学分析方法中的有指导和无指导的学习算法,一方面针对高价值客户,通过有指导的学习算法,能够看到哪些特征能够影响到客户的价值高低,从而为企业锁定目标客户提供指导;另一方面针对全体客户,通过无指导的学习算法,能够看到客户可以大概分为哪几种群落,针对每个群落的客户展开焦点讨论和情景观察,从而挖掘不同群落客户之间的需求差异,进而为各个群落的客户提供精准营销服务。 通过以上这些的操作,一个企业的数据分析或者说数据挖掘工作的完整流程就呈现了出来。可以看到,无论是数据采集,还是分析方法,亦或是分析主题,在大数据和互联网的支撑基础上,在未来都将有大幅度的增加,数据分析人员将成为下一个阶段的关键企业支撑人员,也即是在未来,在各个领域中,都将产生大量的宽客,或者增长黑客这样的数据分析人员,来带动企业的发展。
D. 数据挖掘技术与客户关系管理的应用综述
数据挖掘技术与客户关系管理的应用综述
企业通过实施客户关系管理,可以降低成本,增加收入,提高业务运作效率。对于每一个面临竞争的公司,数据仓库是必须最终拥有的市场武器。通过它可以更多地了解客户的需求以及处理这些需求的方法。数据挖掘能够对将来的趋势和行为进行预测,从而很好地支持人们的决策。作为专门管理企业前台的客户关系管理为企业提供了一个收集、分析和利用各种客户信息的系统,帮助企业充分利用其客户管理资源,也为企业在电子商务时代从容自如地面对客户提供了科学手段和方法。建立和维持客户关系是取得竞争优势的唯一的最重要的基础, 这是网络化经济和电子商务对传统商业模式变革的直接结果。
1 客户关系管理(CRM)
1.1 内容
CRM的概念由美国Gartner集团率先提出。我们认为,CRM是辨识、获取、保持和增加“可获利客户”的理论、实践和技术手段的总称。它既是一种国际领先的、以“客户价值”为中心的企业管理理论、商业策略和企业运作实践,也是一种以信息技术为手段、有效提高企业收益、客户满意度、雇员生产力的管理软件。
客户关系管理(CRM)源于以“客户为中心”的新型商业模式,是一种旨在改善企业与客户之间关系的新型管理机制。通过向企业的销售、市场和客户服务的专业人士提供全面、个性化的客户资料,并强化跟踪服务、信息分析的能力,使他们能够协同建立和维护一系列与客户和生意伙伴之间卓有成效的“一对一关系”,使企业得以提供更快捷和周到的优质服务、提高客户满意度、吸引和保持更多的客户,增加营业额。通过信息共享和优化商业流程有效地降低企业经营成本。
1.2 CRM解决方案的组成
CRM作为企业管理系统软件,通常由以下三部分组成:
(1)网络化销售管理系统(Sales Distributor Management,SDM)。该模块以市场和销售业务为主导,对销售的流程进行了详细的管理,是销售管理人员进行管理和销售业务员销售自动化的重要工具。它实现了销售过程中对客户的集中管理和协同管理,销售管理人员可以随时对销售情况进行分析,具体功能包括客户接待管理、报价单处理、销售合同管理、回款单处理、综合查询功能、综合统计功能。
(2)客户服务管理系统(Customer Service Management,CSM)。该模块主要对企业的售后服务进行管理,加快售后服务的响应速度,提高客户满意度,对服务人员进行考核,加强对产品质量的监督。
客户服务系统最典型的代表就是呼叫中心环境,通过呼叫中心环境布署并且实现基于电话、Web的自助服务。它们使企业能够以更快的速度和更高的效率来满足其客户的独特需求。由于在多数情况下,客户忠实度和是否能从该客户身上赢利取决于企业能否提供优质的服务,因此,客户服务和支持对许多企业就变得十分关键。
(3)企业决策信息系统(Executive Information System,EIS)。随着电子商务时代的到来, 各行各业业务操作流程的自动化,企业内产生了数以几十或上百GB计的大量业务数据。这些数据和由此产生的信息是企业的财富,它如实地记录着企业运作的本质状况。但是面对如此海量的数据,迫使人们不断寻找新的工具,来对企业的运营规律进行探索,为商业决策提供有价值的知识,使企业获得利润。能满足企业这一迫切需求的强有力的工具就是数据挖掘。
1.3 CRM的实施
CRM项目的实施可以分为3步:①应用业务集成。将独立的市场管理,销售管理与售后服务进行集成,提供统一的运作平台。将多渠道来源的数据进行整合,实现业务数据的集成与共享;②业务数据分析。对CRM系统中的数据进行加工、处理与分析这将使企业受益匪浅。对数据的分析可以采用OLAP的方式进行,生成各类报告。也可以采用业务数据仓库(Business Information Warehouse)的处理手段,对数据做进一步的加工与数据挖掘,分析各数据指标间的关联关系,建立关联性的数据模型用于模拟和预测;③决策执行。依据数据分析所提供的可预见性的分析报告,企业可以将在业务过程中所学到的知识加以总结利用,对业务过程和业务计划等做出调整。[page] 2数据挖掘
2.1 什么是数据挖掘
数据挖掘(data mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解模式的非平凡过程。数据挖掘的广义观点:数据挖掘就是从存放在数据库,数据仓库或其它信息库中的大量的数据中“挖掘”有趣知识的过程。数据挖掘,又称为数据库中知识发现(Knowledge Discovery in Database,KDD),也有人把数据挖掘视为数据库中知识发现过程的一个基本步骤。知识发现过程由以下步骤组成:
①数据清理;②数据集成;③数据选择;④数据变换;⑤数据挖掘;⑥模式评估;⑦知识表示。数据挖掘可以与用户或知识库交互。数据挖掘就是为顺应这种需要应运而生发展起来的数据处理技术。在客户关系管理(CRM)中,数据挖掘的应用是非常广泛的。CRM中的客户分类,客户赢利率分析,客户识别与客户保留等功能都要借助数据挖掘来实现。
2.2数据挖掘在CRM中的应用
比较典型的数据挖掘方法有关联分析、序列模式分析、分类分析、聚类分析等。它们可以在以客户为中心的企业决策分析和管理的各个不同领域与阶段得到应用。
2.2.1 关联分析
关联分析,即利用关联规则进行数据挖掘。关联分析的目的是挖掘隐藏在数据间的相互关系,它能发现数据库中形如“90%的顾客在一次购买活动中购买商品A的同时购买商品B”之类的知识。
2.2.2 序列模式分析
序列模式分析和关联分析相似,但侧重点在于分析数据间的前后序列关系。它能发现数据库中形如“在某一段时间内,顾客购买商品A,接着购买商品B,而后购买商品C,即序列A→B→C出现的频度较高”之类的知识。序列模式分析描述的问题是:在给定交易序列数据库中,每个序列是按照交易时间排列的一组交易集, 挖掘序列函数作用在这个交易序列数据库上,返回该数据库中出现的高频序列。在进行序列模式分析时,同样也需要由用户输入最小置信度C和最小支持度S。
2.2.3 分类分析
设有一个数据库和一组具有不同特征的类别(标记),该数据库中的每一个记录都赋予一个类别的标记,这样的数据库称为示例数据库或训练集。分类分析就是通过分析示例数据库中的数据,为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,然后用这个分类规则对其它数据库中的记录进行分类。
2.2.4 聚类分析
聚类分析输入的是一组未分类记录,并且这些记录应分成几类事先也不知道,通过分析数据库中的记录数据,根据一定的分类规则,合理地划分记录集合,确定每个记录所在类别。它所采用的分类规则是由聚类分析工具决定的。采用不同的聚类方法,对于相同的记录集合可能有不同的划分结果。
3 结束语
应用数据挖掘技术,较为理想的起点就是从一个数据仓库开始。这个数据仓库,里面应保存着所有客户的合同信息,并且还应该有相应的市场竞争对手的相关数据。数据挖掘可以直接跟踪数据,辅助用户快速作出商业决策。用户还可以在更新数据的时候不断发现更好的行为模式,并将其运用于未来的决策当中。
E. 数据管理技术在客户关系管理中的应用有哪些
数据挖掘技术在客户关系管理中的典型应用
客户获取
客户获取的传统方式一般是通过大量的媒体广告、散发传单等方式吸引新客户。这种方式涉及面过广不能做到有的放矢而且企业投入太大。数据挖掘技术可以从以往的市场活动中收集到的有用数据(主要是指潜在客户反应模式分类)建立起数据挖掘模型。企业因此能够了解真正的潜在客户的特征分类,从而在以后的市场活动中做到有的放矢而不是传统的凭经验的猜想。
客户细分
细分就是指将一个大的消费群体划分成为一个个细分群体的动作,同属一个细分群体的消费者彼此相似,而隶属于不同细分群体的消费者是被视为不同的。比如将数据库中的数据按照年龄的不同来组织存放这样一个简单的动作就是细分。细分可以让用户从比较高的层次上来观察数据库中的数据,细分可以让人们用不同的方法对待处于不同细分群中的客户。数据挖掘中的分类、聚类等技术可以让用户对数据库中的数据按类别、年龄、职业、地址、喜好等企业感兴趣的属性进行客户细分。客户细分是企业确定产品和服务的基础.也是建立客户一对一营销的基础。
客户赢利能力分析
就企业的客户而言,企业的绝大部分利润是来自于小部分的客户,而对于企业来说很难确定哪些客户是高利润回报,哪些客户是低利润回报甚至是负利润回报的。数据挖掘技术能帮助企业区分利润回报不同的客户。从而可以将资源更多的分配在高利润回报的客户身上以产生更大的利润,同时减少低或负利润回报客户的投入。为此,在数据挖掘之前,企业应该建立一套计算利润回报的优化目标方法。可以是简单的计算,如某客户身上产生的收入减去所有相应的支出,也可以是较复杂的公式。然后利用数据挖掘工具从交易记录中挖掘相应的知识。
客户的保持
随着行业中竞争愈来愈激烈,人们普遍认识到获得一个新客户的开支比保持一个老客户的开支要大得多。所以如何保持原来老的客户,不让他们流失就成为crm的一个重要课题。在实际应用中,利用数据挖掘工具为已经流失的客户建立模型,然后利用这些模型可以预测出现有客户中将来可能流失的客户,企业就能研究这些客户的需求,并采取相应的措施防止其流失,从而达到保持客户的目的。
F. CRM中客户管理的工作原理是怎样的
CRM,不仅仅是记录客户信息,如果仅仅是记录信息,就不如用excel表格,既方便,又省钱。 所谓CRM,就是客户管理,以客户为核心,然后辐射与客户相关的所有业务,是一个立体的管理。最关键一点,就是与客户相关的销售管理,包括售前、售中、售后三大块的管理,每一个阶段,也不仅仅是记录客户信息,而是对客户跟进过程的一个管控与分析,客户跟进到哪个阶段了,在这个阶段应该做哪些事情,做了这些事情后,有什么效果,有没有推进,如果没有推进,原因是什么,等等...销售注重每一个管理细节,才能最到极致。 对成交客户,进行售后关系的维护,以促使产生新的销售机会,二次消费,甚至介绍客户,这就是从客户身上拓展客户,远比单独开发客户容易的多。还有就是数据的统计分析,为未来的市场规划和业务拓展提供基础的参考数据。除此之外,还包括对员工的管理,日常办公管理,财务管理等等
G. 怎样利用数据分析给客户提供合理的资产管理决策和方案
摘要:成功网络分析的关键在于数据和人力。从数据上讲要求分析必须精确和合理。数据可能是不完整的,或者在某种程度上是假设的,但是它不能违背整体研究方向,而且必须取得那些可能根据方案采取行动的管理者的信任。比数据更重要的是人。
一、网络分析概述
当我们决定设立一个工厂或配送中心的时候,必须考虑如何设计建筑结构,使用什么样的物料处理设备和系统,但是我们必须先回答一些基本的策略问题。我们应该建立一个新的仓库还是扩大原有的仓库?我们需要建几个?我们需要整合或关掉几个仓库吗?仓库应该建在什么地方?仓库需要处理什么样的产品?仓库要服务什么样的客户?类似这些的问题通常就是网络分析的一部分。
网络分析
简单的说网络分析就是用适当的实体设备(计划、产品线、配送中心)来支持给定供应链的决策过程。这个过程由一系列的成本因素和运作限制因素驱动。成本变量随着研究范围和本质的不同(制造vs.分销、单个仓库vs.多个仓库)而不同。但总体上成本的总类包括以下几种:
1、原材料采购成本
2、固定成本
3、可变成本
4、库存持有成本
5、安装与运输费用
6、外向运输费用
运作约束因素是那些不考虑成本的要求。运作约束有很多但大体上包括下来因素:
1、设施状态(锁定开启/锁定关闭)
2、设施能力(产品种类vs.负荷能力)
3、设施的存储和吞吐能力
4、顾客服务要求
5、采购要求(单一供应商vs.多个供应商)
6、最小和最大设施数量
网络分析也受到需求因素(需求数量、顾客所在位置、产品结构)和可选网络(设施备选地点、运输情况)的约束。
模型工具
除了最简单的网络,大量的特殊网络的存在、同时评估很多成本变量的需求,和满足运作约束的需求,使得用传统模型方法(计算器、电子数据表等)来解决问题变得越来越困难了。做出最优的选择(成本最小或一定程度上利润最大)需要使用网络模型工具。有很多可用的商业模型工具。大部分工具由3个基础部分组成:一个可以输入需求、成本、约束变量数据的用户界面;一个将这些数据转换成相应数学函数的转换器;和一个解析引擎,做出最后的解决方案。解决引擎通过强有力的建模工具使用专门的混合整数线性规划理论计算出真实最优解,因此被称为“优化器”。大多数工具也都具备统计数据和图形输出功能。
建模与分析
网络建模与网络分析通常被认为是同一的。事实上,网络建模是网络分析过程的一个部分,也是很重要的一个部分。我们之所以进行这种区分主要是因为通常会存在一种误解:一个完全模型的建立就能够决定一个真实最优的网络。但是,模型只是一个计算和优化在一系列约束条件和给定的数据下目标函数的数学工具。它应该还包括使用者进行大量的运营假设,并为每种假设情形输入相关数据,以及对模型结果的正确理解,而且还要考虑那些不能在模型中量化的因素(如风险管理、人为影响、销售及市场影响等)。
二、网络分析的好处
最先想到的网络分析的好处应该是带来的成本的节约。当然,还有其他很多好处。至少由此能够带来部门间很好的沟通和互动。
成本的节约
网络分析可能带来5%-15%的物流成本的节约。当然这会随着实际情况的不同而不同,而且假设当前的网络是次优的。它也同样取决于内部网络变革的能力。例如,根据条款的规定,某一特定的配送中心必须继续运营,或者家族的首脑要保护最初成立的工厂,这些都很难得到成本的节约。最后,成本的节约在于某些成本的避免而不仅是成本降低。通常网络分析是寻找新的设施来适应新的增长而不是整合现有设施来降低成本。这种情况下成本节约很难量化,因为没有明确的基准来衡量的解决方案。
其他好处
除了成本节约的机会外,一个成熟的网络模型可以给带来许多其他的好处。一个优化的网络可以通过缩短前置时间和提高订单满足率来提升客户服务水平。网络模型也是一个很好的预算工具,可以预测未来的资本和运营成本需求。它也是一个理想的测试工具,用来快速检验可选的运营情景,以及由收购、新产品和其他商业变化带来的影响。最重要的是,网络模型也是鼓励内部人员间沟通的催化剂。在构建和评估网络模型时,需要很多与讨论,包括战略规划、财务、销售和市场、客服、信息系统、采购、库存控制、生产制造、分销、运输以及其他影响物流网络变化或被物流网络变化影响的部门。由于这些人从组织整体的角度来发表他们的观点,这样就能形成一些新的视角和信息。最后,在收集和分析运营数据后,可能会出现一些新的改进机会。
三、建模要求
为了建立一个有效的模型,需要收集并验证大量的数据。网络分析有三个基本的驱动因素:需求、成本和约束。必须努力找到跟每种假设情景相关的数据。此外,必须考虑模型中的整体和代表性的数据。模型是在产品组的层面上(干货vs.冷冻,托盘拣选vs.拆零拣选)进行而不是SKU的层面,并且对分散的客户按照种类(大vs.小,vs.零售)和地理位置进行划分。
需求
需求数据描述了客户的基本信息并反映了订单特征。这些数据一般从历史客户购买数据中获得,最好是12个月的数据,以便抓住那些季节性的购买特征。数据按照产品、顾客种类、地理位置和运输模式(包裹配送、零担、整车等)来进行整理划分。
成本
成本数据的数量和类型取决于分析的范围。总体上,成本包括固定成本(与需求无关)和可变成本(是需求的函数)。固定成本包括设施和设备的资本,以及间接开支,如行政劳动力。可变成本一般等同于运营成本,如直接劳动力与运输。其他成本,如库存持有成本,可以说包含固定和可变成本两个部分,并以此来建模。模型的一个任务就是进行固定成本与可变成本的权衡分析。拿新建一个配送中心来举例,假设这个配送中心并不是运营上规定必须建的,只有当可变成本的节省能够弥补固定成本时就应该建。固定成本包括设施、设备、增加的行政人员以及相关的库存成本。它可能会降低对当地客户的外向运输费用。内向运输费用的增加或减少取决于整个网络,直接劳动力成本也是这样。如果可变费用的节省能弥补固定费用,那么就可以建这个配送中心,否则就不应该建。在某些情况下,成本数据不是那么容易拿到,特别是想要得到按产品组合或顾客分类划分的成本数据。一般制造和分销的成本可以从运营明细表、损益表及其他报表中获得,整体运输数据也一样。难点在于如何获得运输模式和路线的费率。在某些情况下,特别是包裹配送和零担配送,这些信息可以从公开的价目表中获得。但是对整车运输、铁路及其他模式下,获得这些信息需要花费大量的时间和精力。最后,确定在分析时要考虑或不考虑某些成本因素。那些不考虑的成本是不重要的,有些可能比较重要但仍然要排除在外,因为我们不想让它们对网络产生影响。最新的典型例子就是由第三方物流提供内向运输的成本。虽然这些成本是很重要的,但通常不予考虑,因为我们希望围绕顾客而不是供应商来设计网络。在这种情况下,一般用敏感性分析法来确定这些决策的影响。同样也用来评估方案的敏感性以便增加或减少不同的成本驱动因素。
约束条件
约束条件是使用者在不考虑成本的情况下加在模型上的因素。约束条件有很多种形式,最常见的有4种。首先是生产线、车间或配送中心的能力限制,其次是资格限制。资格限制可能使一个储存冷冻产品的仓库不能存储干货,使一条生产玻璃瓶的生产线不能生产易拉罐。第三是顾客服务的限制。服务水平的限制是的设施的建设不能只考虑成本。最后是开设/停业的限制。它限制了设施的最大或最小数量,和/或特定设施继续营业或停业。
挑战
成功的网络分析的两个最大挑战在于数据的不完整性和不能始终如一的贯穿研究的目标。后者是项目管理的问题。由于参与研究的大量人员缺乏相应的经验,网络分析很容易陷入不适当的数据收集和分析,并且有可能使过程转向其他的方向。
另一方面,数据问题也不是人为能控制的。在处理数据的不完整性时有三种解决方法。首先确定这些数据是必须的。在长远的战略分析中,非必要数据的不完整,也能得到方向正确的结果。其次是为缺失信息留有空间。这些空间有多种形式,一般是用最乐观的估计值代替具体信息。最后是对分析很关键的数据,要努力研究和分析得出有用的信息。
对一些国际性的模型来说这些挑战会更大。项目管理者的挑战也更大,包括语言障碍和时差。数据收集也由于某些原因变的很困难。最大的问题在于缺乏标准的运输价目表。例如,不像在美国,其他国家基本都没有零担运输价目表。此外,运输基础设施在不同国家的不同地方也有很大区别,使得很难估计运输时间和距离。区域劳动力和设施成本的差距也比美国更显着。当然还有不同国家和同一国家不同地区的税率及商业规则的不同。税收的考虑在很大程度上可以改变研究的方向。大多数情况下处理这些数据问题的最好方法就是依靠当地的专家意见,并花时间彻底研究那些有显着成本或限制影响的因素。
四、成功的关键
成功网络分析的关键在于数据和人力。从数据上讲要求分析必须精确和合理。数据可能是不完整的,或者在某种程度上是假设的,但是它不能违背整体研究方向,而且必须取得那些可能根据方案采取行动的管理者的信任。比数据更重要的是人。首先,一个成功的分析要求有一个不管是来自于内部还是外部的经验丰富的、善于分析的人,来处理数据、建立模型并领导整个过程。其次项目团队要由一批来自全国各地、能处理各种商业问题和影响分析的物流问题的人组成。通常项目经理进行整个团队的谐调工作。再次是高层管理者的支持。如果研究没有被很好的肯定,团队成员将不会参与,项目也会很快失去动力。最后,必须建立一定的目标,并严格向这个目标奋斗。网络模型分析很容易被误解为其他的东西,并做一些不必要的分析。这可以通过这些方法来避免,如前期解释网络分析的战略性质,明确网络模型的界限,明确分析的目的。
H. 做好客户管理需要对客户哪些数据分析
客户是企业的利润来源,客户管理对企业来说,可以说是发展之本,其重要性不言而喻。不过,客户管理可是有窍门的。在此,我作一些粗浅的分析,以期达到抛砖引玉之效。
第一步,明辨老客户的光环
在许多营销读本中,都提出开发一个新客户的成本是维持一个老客户的2~6倍。鼓励企业重视老客户的维护,以促成二次/多次销售,并带来新客户。但事实上,由于熟悉和“忠诚”,老客户往往会要求更多的价格优惠和服务项目,因而,在单笔业务上,老客户给企业带来的利润往往不及新客户。另一方面,如果企业做好老客户的维护工作,并且能够满足老客户不断增长的优惠需求,确实能带来新客户,并且成交率较高。但毕竟,由老客户介绍而来的新客户在整个客户群体中的比例是极小的。
在企业的业务过程中,都要面临一个客户范围扩张和收紧的过程,即前期大面积捕捉潜在客户,后期筛选高价值客户重点维护。经济学里有个着名的“二八定律”,即百分之二十的客户创造了百分之八十的利润。换言之,客户的价值是根据他的利润贡献率来衡量的。具体而言,有三方面的“指标”:购买时间(第一次购买时间和最近购买时间)、购买频率(在某一时间段内购买行为次数)、购买金额(历次消费额及总消费额)。这三大指标的价值在于,告诉你哪些老客户处于活跃期、哪些老客户处于休眠期,以及某个客户的活跃/休眠周期/增值空间等,便于“对症下药”。
从另一个方面来讲,新客户的价值辨别是没有依据可循的,唯一的依据就是我们的业务员能在第一时间抓住他的购买特征,并与之前的老客户进行类比,并据此进行有重点的拓展。
第三步,选择辅助工具
每个企业的客户数量,少则数百,多则成千上万,再加上各类销售数据……要把浩如烟海的数据梳理、分类整理完毕,决非易事。靠人工操作,明显是不现实的,这种情况下只能借助于IT技术。
Excel是许多企业电子化办公的第一步,也是企业极其熟悉的软件工具,但仅限于记录数据,其它功能有限。显然并不能满足企业客户维护的需求。这时候,企业需要借助专业的管理软件工具。以风语者为例,它的客户服务与销售分析功能,可以详细纪录客户信息,轻松跟踪所有联系信息、报价、订单、合同以及与客户有关系的利益相关者,自动抓取出A类客户。在服务过程的各个阶段,还能使用预测分析和历史服务纪录分析,以实时方式或在服务周期中评价客户满意度和可能产生的二次销售机会,实现客户的二次或多次开发,让企业的客户价值分析真正做到数据说话。对销售人员而言,算是一个不错的助力。
风语者之所以一面市就受到营销人员的欢迎,还在于它的自定义功能和知识库功能。营销人员在和客户沟通时,客户信息、过往案例、服务历史和支持知识等同步显示,为便捷的沟通提供可参考的依据。可不要小瞧这个小小的功能,想象一下,有一个几个月没联系的“老客户”今天联系他,打开软件就可以根据客户的实际情况和他天南海北地聊,既可以收集反馈意见,又能很快拉近和客户的距离,这可以说是用最小的维护成本轻松提升客户忠诚度的最好的办法。
第四步 客户管理的延续性
客户管理的延续性,不仅包含客户信息的延续,还包含客户维护和拓展经验、技能的延续。
在客户管理中,一个常见的问题让企业管理者头疼不已,即随着营销人员的岗位更替,老客户必须和接手的业务员重新磨合;如果磨合不好,轻则增加成本,重则客户流失,甚至成为竞争对手的客户。针对这种情况,企业更加需要风语者等管理软件来进行客户资料的收集和记录,变个人客户资源为公司客户资源。
许多企业在招聘销售人员的时候,不仅看重他以往的销售业绩,而且看重他在行业内的经验。新人顺利接手业务,不仅是客户信息的传递问题,还有更重要的一点,就是经验和技巧。现在,风语者等管理软件中,几乎能够提供业务员与客户沟通的全部资料,通话录音、E-mail、传真、来电详细记录等资料完全可以实现客观再现和共享,这样不仅便于老员工的交流和学习,更是新员工的宝贵学习资源。风语者知识库功能也为企业提供知识、文化传承的途径。
I. 数据挖掘技术在客户关系管理中的应用
数据挖掘技术在客户关系管理中的应用
随着计算机技术、网络技术、通讯技术和Internet技术的发展,电子商务中 企业内部会产生了大量业务数据,如何从丰富的客户数据中挖掘有价值的信息,为企业管理者提供有效的辅助决策,是企业真正关心的问题。其中,客户分类是分析 型客户关系管理的重要功能之一。通过客户分类,区分客户的霞要程度,并针对不同霞要级别的客户制定专门的营销方案和客户关系管理策略,可以帮助企业降低营 销成本,提高利润和企业竞争力。客户也可从食业制定的专门的营销方案和客户关系管理策略中获得适合的交易体验。数据挖掘是分析型CRM实现其“分析”功能 的必要手段,也是实现客户分类的有效工具。
1 客户关系管理(CRM)
CRM(Customer Relation Managemen)是一种旨在改善企业与客户之间关系的新型管理机制,它实施于企业的市场营销、销售、服务与技术支持等领域,它的目标是提供更优质、更快捷的服务吸引并保持客户,通过业务流程的全面管理降低仓业成本。
在电子商务环 境下,CRM使网站企业在所有的业务环节下更好地满足客户需求以及提供更优质的服务,从而使站点企业在这种不存在时空差异的新型商务环境中保留现有客户和 发掘潜在客户。以提高市场竞争力。同时CRM又可以提供客户需求、市场分布、回馈信息等重要信息,为企业和经营活动提供智能化分析的依据,因此,CRM为 企业带来了成功实现电子商务的基础。
个性化服务是增强竞争力的有力武器,CRM就是以客户为中心并为客户提供最合适的服务。互联网成为 实施客户关系管理应用的理想渠道,记住顾客的名字及他们的偏好,根据顾客的不同而提供不同内容,顾客再次光顾的可能性会大大增加。CRM可以增加客户忠诚 度,提高购买比率,使每个顾客产生更多的购买需求,及更长时间的需求,并提高顾客满意度。
2 数据挖掘技术
如何对这些海量的数据进行分析发现,为商业决策提供有价值的信息,使企业获得利润,强有力的工具就是数据挖掘。
在分析型CRM系统中,数据挖掘是其中的核心技术,数据挖掘是从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。对于企业而言,数据挖掘 可以有助于发现业务发展的趋势,揭示已知的事实,预测未知的结果,并帮助企业分析出完成任务所需的关键因素,以达到增加收入、降低成本,使企业处于更有利 的竞争位置的目的。
2.1 数据挖掘常用的算法
(1)决策树(decision tree)决策算法。决策树是一个类似于流程图的树结构。其中每个内部节点表示在一个属性上的测试,每个分枝代表一个测试输出,而每个树叶节点代表类或类 分布。决策树算法包括树的构造和树的剪枝,有两种常用的剪枝方法:先剪枝和后剪枝。
(2)神经网络(Neural Network)。神经网络是一组连接的输入,输出单元,其中每个连接都与一个权相连,在学习阶段,通过调整神经网络的权,使得能够预测输入样本的正确类标号来学习。
(3)遗传算法(Genetic Algorithms)。遗传算法根据适者生存的原则,形成由当前群体巾最适合的规则组成新的群体,以及这些规则的后代。遗传算法用于分类和其他优化问题。
(4)粗糙集方法。粗糙集方法基于给定训练数据内部的等价类的建立。它将知识理解为对数据的划分,每一被划分的集合称为概念,利用已知的知识库来处理或刻臧不精确或不确定的知识。粗糙集用于特征归约和相关分析。
(5)模糊集方法。基于规则的分类系统有一个缺点:对于连续属性,他们有陡峭的截断。将模糊逻辑引入,允许定义“模糊”边界,提供了在高抽象层处理的便利。
其它还有贝叶斯网络、可视化技术、临近搜索方法和公式发现等方法。
2.2 数据挖掘常用的分析方法
(1)分类和预测。主要用于客户细分(分群)处理,如价值客户群的分级,分类和预测是两种数据分析形式,可以用于提取描述重要数据类的模型或预测未来的 数姑趋势。数据分类(data elassfication)是一个两步过程,第一步,建立一个模型,描述预定的数据类集或概念集,通过分析有属性描述的数据库元组来构造模型。第二步, 使用模型进行分类。首先评估模犁的预测准确率,如果认为模型的准确率可以接受,就可以用来对类标号未知的数据远祖或对象进行分类。
预测 技术,主要用于对客户未来行为的发现,如客户流失分析中,用神经元网络方法学习各种客户流失前的行为变化,进而预测(预警)可能出现的存价值客户的流失。 预测足构造和使用模型评估无标号样本类,或评估给定样本可能具有的属性值或值区间。分类和预测具有广泛的应用,如信誉证实、医疗诊断、性能预测和选择购 物。分类和预测常用的算法包括决策树归纳、贝叶斯分类、贝叶斯网络、神经网络、K-最临近分类、遗传算法、粗糙集和模糊集技术。
(2) 聚类分析。聚类是将数据对象分组成为多个类或簇(cluster),在同一个簇中的对象之同具有较高的相似度,而不周簇中的对象差别较大。作为统计学的一 个分支,聚类分析已被广泛的研究了许多年,现在主要集中在基于距离的聚类分析,基于k-means(k-平均值)、k-medoids(k-中心点)和其 他的一些聚类分析工具也有不少的应用。
(3)关联规则。关联规则挖掘给定数据集中项之间的有趣联系。设I={i1,i2,…im}是项 的集合,任务相关的数据D是数据库事务的集合,其中每个事务T是项的集合,使得T包含于I。关联规则是形如A=>B的蕴涵式,其中A∈I,B∈I, 并且A∩B为空。关联规则的挖掘分成两步:①找出所有频繁项集,这些项集出现的频繁性至少和预定义的最小支持计数一样。②由频繁项集产生强关联规则。这些 规则必须满足最小支持度和最小置信度。
(4)序列模式。序列模式分析和关联规则分析类似,也是为了挖掘数据项之间的联系,不过序列模式分析的是数据项在时间维上的先后序列关系,如一个顾客在购买了计算机半年后可能再购买财务分析软件。
(5)孤立点分析。孤立点是度量错误或固有的数据变异性的结果。许多数据挖掘算法都试图使孤立点的影响最小,或排除它们。一个人的噪声可能是另一个人的 信号,在有些时候。孤立点是非常有用的。孤立点挖掘可以描述如下:给定一个n个数据点或对象的集合,以及预期的孤立点的数目k,发现与剩余的数据相比是显 着相异的或不一致的头k个对象。孤立点探测方法可分为三类:统计学方法,基于距离的方法和基于偏移的方法。
3 应用方法
3.1 了解业务
最初的阶段,着眼于了解业务特点,并把它还原成为数据分析的条件和参数。例如:在零售行业中,我们的第一个步骤是了解客户购买的频率,购买频率和每次消费金额之间是否有明显的相关关系。
3.2 分析数据
这个阶段着眼于对现有的数据进行规整。我们发现,在不少行业中,可分析的数据和前面提出的分析目标是不匹配的。例如:消费者的月收入水平可能与许多购买 行为相关,但是,原始的数据积累中却不一定具备这螳数据。对这一问题的解决方法是从其它的相关数据中进行推理,例如,通过抽样调查,我们发现,一次性购买 大量卫生纸的客户,其月收入水平集中在1000-3000RMB的档次,如果这一结论基本成立。我们可以从消费习惯中推理出现有客户有多大的百分比是月收 入水平在这个档次中的;另外,可以根据抽样调查的方法。在问卷调查的基础上推理整个样本人群的收入水平曲线。
3.3 数据准备
这个阶段的着眼点是转换、清理和导入数据,可能从多个数据源抽取并加以组合,以形成data cube。对于缺失的少量数据,是用均值补齐,还是忽略,还是按照现有样本分配,这是在这个阶段需要处理的问题之一。
3.4 建模
现在已经有各种各样的模型方法可以利用。让最好的一种应用于我们要着眼的主要问题中。是这个阶段的主要任务。例如,对于利润的预测是否应当采用回归方式预测,预测的基础是什么等,这些问题需要行业专家和数据分析专家协商并达成共识。
3.5 评估与应用
优秀的评估方法是利用不同的时间段,让系统对已经发生的消费情况进行预测,然后比较预测结果和实际状况,这样模型的评估就容易进行了。完成了上述的步骤 之后,多数的分析工具都支持保存并重复应用已经建立起来的模型。更为重要的是,在这个过程中,对数据分析的方法和知识应当已经由客户方的市场分析人员或决 策者所了解,我们提供的,不仅仅是最终结果,而且是获得这一结果的方法。“要把金针度与人”正是TurboCRM咨询服务不同于单纯的软件提供商的区别所 在。
最后,在软件架构方面,分析数据库与运营数据库应当是分离的,避免影响运营数据库在操作方面的的实时响应速度。
4 结束语
数据挖掘可以把大量的客户分成不同的类,在每个类里的客户拥有相似的属性,而不同类里的客户的属性也不同,可以给这两类客户提供完全不同的服务来提高客户的满意度,细致而切实可行的客户分类对企业的经营策略有很大益处。
J. 如何将数据挖掘技术应用到客户内在需求管理
客户内在需求管理是以客户为中心(而不是以产品为中心)、以企业与外部的业务交流为主导(而不是局限于企业内部的事务)、以企业的前端业务应用为主(而不是以企业的后端业务处理为主)的管理模式。
一、客户内在需求管理需要数据挖掘
当今社会,客户的价值已经越来越多地影响着企业的价值,客户内在需求管理(CRM)正是通过建立长期而系统的客户内在需求来提升单个客户价值的战略,其要旨在于帮助企业通过运用适合的技术以及合理的人力资源洞察客户的行为和他们的价值,以便企业能够迅速有效地对客户的需求进行回应。
客户内在需求管理(CRM)的核心是“了解客户,倾听客户”,客户内在需求管理的目标可以概括为“吸引潜在客户进入,提高现有客户满意度和忠诚度,降低客户流失”,总之一切的最终目的都是为了提高收益。
在企业关注客户内在需求管理的同时,信息技术的飞速发展为客户内在需求管理(CRM)的高效实施提供了技术保证,通过数据挖掘技术对客户内在需求进行深入分析可以满足企业对个体细分市场的客户内在需求管理需求(具体可查看马海祥博客《如何以客户为中心进行数据挖掘与分析》的相关介绍)。
数据挖掘主要是找寻隐藏在数据中的信息,例如发现趋势、特征及相关性的过程,也就是从数据中发掘出信息或知识。
二、数据挖掘技术及常用方法
数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据集中识别有效的、新颖的、潜在有用的,以及最终可理解的模式的非平凡过程。
它是一门涉及面很广的交叉学科,包括机器学习、数理统计、神经网络、数据库、模式识别、粗糙集、模糊数学等相关技术,数据挖掘技术是客户内在需求管理的关键技术。
常用的数据挖掘技术包括关联分析、序列分析、分类分析、聚类分析、预测、孤立点分析等。
事实上,解决一个已给的业务问题时,数据挖掘一般混合使用两种及两种以上的技术类别。
1、关联分析
关联分析主要用于发现不同事件之间的关联性,即一个事件发生的同时,另一个事件也经常发生,关联分析的重点在于快速发现那些有实用价值的、关联发生的事件。
2、序列分析
序列分析技术主要用于发现一定时间间隔内接连发生的事件,这些事件构成一个序列,发现的序列应该具有普遍意义,其依据除了统计上的概率之外,还要加上时间的约束。
3、分类分析
分类分析通过分析具有类别的样本的特点,得到决定样本属于各种类别的规则或方法,利用这些规则和方法对未知类别的样本分类时应该具有一定的准确度,其主要方法有基于统计学的贝叶斯方法、神经网络方法、决策树方法以及support vector machines等。
在马海祥看来,利用分类技术,可以根据顾客的消费水平和基本特征对顾客进行分类,找出对商家有较大利益贡献的重要客户的特征,通过对其进行个性化服务,提高他们的忠诚度。
4、聚类分析
聚类分析是根据物以类聚的原理,将本身没有类别的样本聚集成不同的组,并对每一个这样的组进行描述的过程,其主要依据是聚到同一个组中的样本应该彼此相似,而属于不同组的样本应该足够不相似(具体可查看马海祥博客《聚类分析的方法及应用》的相关介绍)。
5、预测
预测与分类类似,但预测是根据样本的已知特征估算某个连续类型的变量的取值的过程,而分类则只是用于判别样本所属的离散类别而己。
马海祥认为预测模型可以使用较为传统的统计回归技术,也可以使用新的分类技术,目前最通用的是决策树归纳技术。
6、孤立点分析
数据库中可能包含一些数据对象,它们与数据的一般行为或模型不一致,这些数据对象称为孤立点,对这些数据的挖掘分析可以用于处理一些罕见事件,比如信用卡欺诈等。
三、数据挖掘技术在客户内在需求管理中的应用
一般来说,在企业管理客户生命周期的各个阶段都会用到数据挖掘技术,数据挖掘能够帮助企业确定客户的特点,从而可以为客户提供有针对性的服务。
企业通过数据挖掘,可以发现使用某一业务的客户的特征,从而可以向那些也同样具有这些特征却没有使用该业务的客户进行有目的的推销,还可以找到流失的客户特征,在那些具体相似特征的客户还未流失之前,采用针对性的措施。
目前,数据挖掘技术在客户内在需求管理关系中的应用有以下几个方面:
1、客户盈利能力
计算客户盈利能力有助于挖掘有价值客户,公司各个部门之间对客户盈利能力可能有不同理解,分析顾客的忠诚度,可以利用数据挖掘来挖掘忠诚度高的客户;可以通过数据挖掘技术可以有效计算客户盈利能力;还可以利用数据挖掘预测未来的客户盈利能力。
在马海祥看来,利用数据挖掘技术来预测客户盈利能力需要的两个因素:
①、记录潜在客户行为特征和发展成为客户行为特征的历史数据。
②、计量客户盈利能力的标准。
使用数据挖掘技术后可以增加客户盈利能力,增加客户盈利能力指客户在获得提升后,增加的盈利能力,如:客户得到某种优惠促销而增加部分开支去销售,则增加部分的开支给公司带来的利润即增加的客户盈利能力。
2、客户的保持和流失
企业的增长和发展壮大需要不断获得新的客户并维持老的客户,不论企业希望得到的是哪类客户,数据挖掘都能帮助识别出这些潜在的客户群,并提高市场活动的回应率,做到有的放矢。
现在各个行业的竞争都越来越激烈,企业获得新客户的成本正在不断上升,因此建立客户流失预测模型,得出即将流失的客户,对他们采取有效措施进行挽留,从而有效减少客户流失就显得越来越重要,数据挖掘可以帮助发现打算离开的客户,以使企业采取适当的措施挽留这些客户。
3、客户获得
在没有利用数据挖掘技术时,客户获取的传统方法就是选出一些感兴趣的人口调查其属性,获取这些人口的特征即可,但随着数据量的增大,传统的方法具有不可实现性。
利用数据挖掘在扩展客户市场活动时,利用数据挖掘技术挖掘出潜在的客户名单,在客户名单上列出可能对某些产品感兴趣的客户信息,便可更方便的获取更多的客户。
4、客户细分
客户市场细分指的是将客户划分成互不相交的类别,客户作为企业宝贵的资源,每一次与客户接触既是了解客户的过程,也是客户体验企业的机会。
因此,真正关心客户,为每位客户提供与客户内在需求一致的、个性化的服务,才能让客户体会到企业的价值。
近年来,一对一营销正在被众多的企业所青睐,一对一营销是指了解每一个客户,并同其建立起持久的关系。
数据挖掘可以把大量的客户分成不同的类,在每一个类里的客户具有相似的属性,而不同类里的客户的属性也不同,像聚类分析这样的数据挖掘技术,可以辅助企业进行客户细分(具体可查看马海祥博客《收集客户关系管理数据的策略和需求分析》的相关介绍)。
例如,化装品企业的客户分为:少儿、青年、中年和老年或者按性别分为男、女,通过数据挖掘可以了解其不同客户的爱好,通过提供有针对性的产品和服务,来提高不同类客户对企业和产品的满意度。
5、交叉营销
交叉营销是指在向现有客户提供新的产品和服务的营销过程,如那些购买了婴儿尿布的客户会对你的其他婴儿产品感兴趣。
交叉营销的升级形式为:升级营销,指向客户提供与他们已购买的服务相关的新服务。
数据挖掘技术在交叉营销中的应用首先表现为,分析现有客户的购买行为数据,进行交叉营销分析,具体数据挖掘过程包含三个独立步骤,即对个体行为进行建模;用预测模型对数据进行评分;对得分矩阵进行最优化处理。
然后进行建模阶段,利用上述建模的方法。
接下来就是评分阶段,对所建立的模型进行评定。
最后一个阶段就是优化阶段,通常有四种方法:质朴的方法、平均效益方法、个人效益方法、有约束条件的优化方法。
6、客户欺诈风险分析
在客户内在需求管理中,客户的信用分析和诈骗识别是非常重要的,因为一旦发生信用风险和欺诈行为,企业将面临管理活动的失败、市场份额的丧失和营销活动的失败,导致企业失去市场、顾客、竞争力和信誉。
根据马海祥博客收集的统计资料表明,企业间的欺诈行为是非常普遍的,而且一旦发生,给企业带来的损失是巨大的,如何准确、及时、有效地预测到企业可能发生的欺诈风险是非常有意义的,数据挖掘技术能够很好地解决此问题。
可以利用数据挖掘中的意外规则的挖掘方法、神经网络方法和聚类方法,对客户数据仓库中的数据进行分析和处理,分析欺诈为什么会发生?哪些因素容易导致欺诈?欺诈风险主要来自于何处?如何预测到可能发生的欺诈?采取何种措施可以减少欺诈的发生?以便分析和评价欺诈风险的严重性和发生的可能性,准确、及时地对各种欺诈风险进行监视、评价、预警和管理,进而采取有效的回避和监督措施,在欺诈风险发生之前对其进行预警和控制。
7、市场策略分析
利用数据挖掘技术可以对市场进行如下几种分析:预测客户生命期的价值;预测客户潜在价值;预测客户潜在生命期价值。
根据数据挖掘得出的结果,进行市场策略分析,充分发挥客户的现有价值和他的潜在价值。
对现有价值和潜在价值进行策略分析时,当客户的现有价值与潜在价值一样,则维持的最低费用,当客户的潜在价值高于现有价值,则发挥其潜在价值的最低费用。
在此,马海祥还要提醒大家一点:如果利用数据挖掘不能增加的客户现有价值或潜在的价值,则应停止推销等活动,否则,就要加大或继续。
8、客户忠诚度
客户忠诚被认为是企业取得盛器利润增长的途径,客户内在需求管理需要培养和选择忠诚客户,使之与公司保持长期关系,但不是所有客户都愿意与公司保持联系,一些客户的购买决策只受价格、方便等因素的影响。
不论公司如何以诚相对,提供高的顾客让渡价值,客户一旦发现其他公司有更低价格的商品,便马上离开转向该公司,也有一些顾客更关心商品的质量、价值、服务、节约时间等,当他用本公司的产品感到满意以后,就会成为公司的忠诚顾客。
通过对许多客户资料进行分析表明,公司80%的利润来自20%的客户。
因此,忠诚客户对公司所带来的利润是巨大的,数据挖掘技术,可以通过对数据库中的大量数据进行分析,以确定消费者的购买习惯、购买数星和购买频率,分析客户对某个产品的忠诚程度、持久性、变动情况等,以确定忠诚客户,并为他们提供“一对一”的个性化服务,增强客户的忠诚度,最大限度地挖掘客户对企业的终生价值,为企业创造更大的利润。
数据挖掘中的差异性分析可用于发现客户的欺诈行为,分析客户的诚信度,从而获得诚信较好的客户。
转载