导航:首页 > 研究方法 > 回归分析方法区别

回归分析方法区别

发布时间:2022-03-02 17:42:54

⑴ 回归分析法和相关分析法有什么区别

相关分析,是看2个因素之间的相关性,也就是2个因素之间是否有关联;
如果计算出来是1,那么2个因素是完全正相关,如果是0,那么说明这2个因素完全不相关,如果是负数,那么说明2个因素是负相关。
打个比方,身高和脚的大小,相关性就会比较高一些,而身高和头发长度,那么基本上就是不相关的。如果我们知道一个人个子高,那么我们可以比较有把握的认为他脚大,但不会认为他头发长。
像俗话说,头发长见识短,那么在这句话里面,头发长度,和见识的多少就是负相关。

回归分析也是分析不同因素之间的关系,回归的类型很多,在多元回归分析的时候,一般也有涉及到相关性。
比如一个产品的客户满意度可能来自于性能、价格、包装、品牌等等不同的因素,那么我们可以对这些因素进行分析,通过软件分析之后一般会有一个项目F校验,这个会反映每个变量对于最终结果(因变量)的相关程度。通过F校验,我们可以把一些与结果相关性不叫弱的变量剔除。

⑵ 方差分析和回归分析的异同是什么

一、方差分析和回归分析的区别与联系?(以双变量为例) 联系: 1、概念上的相似性 回归分析是为了分析变量间的因果关系,研究自变量X取不同值时,因变量平均值Y的变化。运用回归分析方法,可以从变量的总偏差平方和中分解出已被自变量解释掉的误差(解释掉误差)和未被解释掉的误差(剩余误差); 方差分析是为了分析或检验总体间的均值是否有所不同。通过对样本中自变量X取不同值时所对应的因变量Y均值的比较,推论到总体变量间是否存在关系。运用方差分析,也可以从变量的总离差平方和中分解出已被自变量解释掉的误差和未被自变量解释掉的误差。因此两种分析在概念上所具有的相似性是显而易见的。 2、统计分析步骤的相似性 回归分析在确定自变量X是否为因变量Y的影响因素时,从分析步骤上先对X和Y进行相关分析,然后建立变量间的回归模型。最后再进行参数的统计显着性检验或对回归模型的统计显着性进行检验。 方差分析在确定X是否是Y的影响因素时,是先从样本所的数据的分析入手,然后考察数据模型,最后对样本均值是否相等进行显着性检验。二者在分析步骤上也具有相似性。 3、假设条件具有一定的相似性 回归分析有五个基本假定,分别是:自变量可以是随机变量也可以是非随机变量;X与Y之间存在的非确定性的相关关系,要求Y的所有子总体,其方差都相等;子总体均值在一条直线上;随机变量Yi是统计独立的,即Y1的数值不影响Y2的数值,各Y值之间都没有关系;Y值的每一个子总体都满足正态分布。 方差分析的基本假定有:等方差性(总体中自变量的每一取值所对应因变量Yi的分布都具有相同方差);Yi的分布为正态分布。 二者在假设条件上存在着相同。 4、在总离差平方和中的分解形式和逻辑上的相似性 回归分析中,TSS=RSS+RSSR,而在方差分析中,TSS=RSS+BSS。二者均是以已解释掉的误差与未被解释掉的误差之和为总离差平方和。 5、确定影响因素上的相似性 为简化分析起见,我们假设只有一个自变量X影响因变量Y。在回归分析中,要确定X是否是Y的影响因素,就要看当X已知时,对Y的总偏差有无影响。如果X不是影响Y的因素,等同于只知变数Y的数据列一样,此时用Y去估计每个丫的值,所犯的错误(即偏差)为最小。如果因素X是影响Y的因素,那么当已知X值后 6、在统计显着性检验上具有相似性 回归分析的总显着性检验,是一种用R2测量回归的全部解释功效的检验。检验RSSR*(N-2)/RSS, 方差分析的显着性检验是一种根据样本数据提取信息所进行的显着性检验。它也是通过F检验进行的。 区别: 1、研究变量的分析点不同回归分析法既研究变量Y又研究变量X并在此基础上集中研究变量Y与X的函数关系,得到的是在不独立的情况下自变量与因变量之间的更加精确的回归函数式,也即判断相关关系的类型,因此需建立模型并估计参数。方差分析法集中研究变量Y的值及其变差而变量X值仅用来把Y值划分为子群或组,得到的是自变量(因素)对总量Y是否具有显着影响的整体判断,因此不需要建立模型和估计参数。 2、变量层次不同 回归分析的数据则要求是连续的,总量也要求是连续的,所以回归分析对连续性变量非常有效,回归分析研究的是定量因素自变量X对因变量Y的影响,变量Y与X均用定距尺度去测量。当然,在回归分析中也不是绝对排斥定性因素对应变数Y的影响,因为对定性因素可采用虚拟变数的处理方法。方差分析中的因素与总量的数据可以是定性的,计数的,也可以是计量的,或者说是离散的或连续的。尤其方差分析对于因素是定性数据也非常有效。变量Y用定距尺度去测量,变数X用定类尺度之测量。 3、 回归分析只能分析出变量之间关系比较简单的回归函数式,对比较复杂的关系无能为力。方差分析若得到因素与总量Y之间有显着性关系,但到底是怎样的关系做不出具体的回答,只能用回归分析来得到它们之间的回归函数关系式。方差分析不管变量之间(因素与总量Y)的关系有多么复杂,总能得到因素对总量Y的影响是否显着的整体判断。 4、确定Y均值方法不同 回归分析由于使用的对应顺序数据,即Xi只有一个Yi与之对应,因此Y无法由已知数据确定,它是通过建立回归方程求的。而方差分析因素Xi对应的Y是直接通过试验数据求得的。 5、所得结果提供的信息不同 回归分析可提供两种类型的信息:一是依据最小二乘法原则,建立X和Y的相关模型,并在X取不同值时影响对应的Y变量的数值,通过X取值可以对Y取值进行预估;二是因变量Y的总变差分解为相加的分量,用之进行F检定。而方差分析仅仅提供后一种。

⑶ 在回归分析中,采用逐步回归法和强迫回归法的区别是什么

1、应用不同

①前者基于当前数据最大程度地解释因变量的变异;

②后者可以将全部变量纳入回归模型中全面分析。

2、要求不同

①前者将变量一个一个引入,每引入一个变量时要对已选入的变量进行逐个检验;

②后者将所有选定的自变量一起放入模型中,直接去计算包含所有自变量的整个模型。

3、表现不同

①前者在SPSS线性选项中确定逐步这个方法;

②后者在SPSS线性选项中确定进入这个方法。

⑷ 分析和回归分析的异同点

回归分析与相关分析的联系:研究在专业上有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题,需进行直线相关和回归分析。从研究的目的来说,若仅仅为了了解两变量之间呈直线关系的密切程度和方向,宜选用线性相关分析;若仅仅为了建立由自变量推算因变量的直线回归方程,宜选用直线回归分析。
从资料所具备的条件来说,作相关分析时要求两变量都是随机变量(如:人的身长与体重、血硒与发硒);作回归分析时要求因变量是随机变量,自变量可以是随机的,也可以是一般变量(即可以事先指定变量的取值,如:用药的剂量)。

在统计学教科书中习惯把相关与回归分开论述,其实在应用时,当两变量都是随机变量时,常需同时给出这两种方法分析的结果;另外,若用计算器实现统计分析,可用对相关系数的检验取代对回归系数的检验,这样到了化繁为简的目的。

回归分析和相关分析都是研究变量间关系的统计学课题,它们的差别主要是:

1、在回归分析中,y被称为因变量,处在被解释的特殊地位,而在相关分析中,x与y处于平等的地位,即研究x与y的密切程度和研究y与x的密切程度是一致的;

2、相关分析中,x与y都是随机变量,而在回归分析中,y是随机变量,x可以是随机变量,也可以是非随机的,通常在回归模型中,总是假定x是非随机的;

3、相关分析的研究主要是两个变量之间的密切程度,而回归分析不仅可以揭示x对y的影响大小,还可以由回归方程进行数量上的预测和控制。

⑸ 回归分析与相关分析的区别和联系

相关只是反映变量之间是否存在线性的关联,但无法说明精确的线性函数关系,回归则可以明确的确定变量之间的函数方程,从而能够用来进行预测。(南心网 相关和回归分析)

⑹ 回归分析与相关分析的区别与联系

【摘要】相关分析和回归分析是数理统计中两种重要的统计分析方法,在实际生活中应用非常广泛。两种方法从本质上来讲有许多共同点,均是对具有相关关系的变量,从数据内在逻辑分析变量之间的联系,但同时二者存在不同。相关分析可以说是回归分析的基础和前提,而回归分析则是相关分析的深入和继续。当两个或两个以上的变量之间存在高度的相关关系时,进行回归分析寻求其相关的具体形式才有意义。从本质分析了相关分析和回归分析,并比较两种之间的异同,结合生活中的例子,进一步讨论了利用相关分析和回归分析的前提并得出相关结论。
【关键词】数理统计 相关性 相关分析 回归分析
一、相关关系与相关分析
1.相关关系
在数理统计学中,回归分析与相关分析是两种常用的统计方法,可以用来解决许多生产实践中的问题,虽然二者之间关系密切,但在具体原理和应用上面有许多不同。首先从总体来说,两者均是对具有相关性的变量或具有联系的标志进行分析,可以借助函数和图像等方法。当一个变量固定,同时另一个变量也有固定值与其相对应,这是一种一一对应的关系,也叫做函数关系。而当一个变量固定,同时与之相对应的变量值并不固定,但是却按照某种规律在一定范围内分布,这两者之间的关系即为相关关系。这里函数关系与相

⑺ 回归分析与相关分析的区别

相关分析与回归分析的研究目的不相同,相关分析用于描述变量之间是否存在关系,而回归分析则是研究影响关系情况,反映一个X或者多个X对Y的影响程度。

相关分析可以不区分自变量和因变量,而回归分析一定需要确定好哪个是因变量,哪个是自变量。

⑻ 相关分析与回归分析的相似与区别

这两种分析是统计上研究变量之间关系的常用办法。
相同点:他们都可以断定两组变量具有统计相关性。
不同点:相关分析中两组变量的地位是平等的,不能说一个是因,另外一个是果。或者他们只是跟另外第三个变量存在因果关系。而回归分析可以定量地得到两个变量之间的关系,其中一个可以看作是因,另一个看作是果。两者位置一般不能互换。

⑼ 什么是回归分析法

回归分析(英语:Regression Analysis)是一种统计学上分析数据的方法,目的在于了解两个或多个变量间是否相关、相关方向与强度,并建立数学模型以便观察特定变量来预测研究者感兴趣的变量。

回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。回归分析法预测是利用回归分析方法,根据一个或一组自变量的变动情况预测与其有相关关系的某随机变量的未来值。进行回归分析需要建立描述变量间相关关系的回归方程。根据自变量的个数,可以是一元回归,也可以是多元回归。根据所研究问题的性质,可以是线性回归,也可以是非线性回归。非线性回归方程一般可以通过数学方法为线性回归方程进行处理。

⑽ 相关分析与回归分析有何区别与联系

回归分析与相关分析的联系:研究在专业上有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题,需进行直线相关和回归分析.从研究的目的来说,若仅仅为了了解两变量之间呈直线关系的密切程度和方向,宜选用线性相关分析;若仅仅为了建立由自变量推算因变量的直线回归方程,宜选用直线回归分析.
从资料所具备的条件来说,作相关分析时要求两变量都是随机变量(如:人的身长与体重、血硒与发硒);作回归分析时要求因变量是随机变量,自变量可以是随机的,也可以是一般变量(即可以事先指定变量的取值,如:用药的剂量).
在统计学教科书中习惯把相关与回归分开论述,其实在应用时,当两变量都是随机变量时,常需同时给出这两种方法分析的结果;另外,若用计算器实现统计分析,可用对相关系数的检验取代对回归系数的检验,这样到了化繁为简的目的.
回归分析和相关分析都是研究变量间关系的统计学课题,它们的差别主要是:
1、在回归分析中,y被称为因变量,处在被解释的特殊地位,而在相关分析中,x与y处于平等的地位,即研究x与y的密切程度和研究y与x的密切程度是一致的;
2、相关分析中,x与y都是随机变量,而在回归分析中,y是随机变量,x可以是随机变量,也可以是非随机的,通常在回归模型中,总是假定x是非随机的;
3、相关分析的研究主要是两个变量之间的密切程度,而回归分析不仅可以揭示x对y的影响大小,还可以由回归方程进行数量上的预测和控制.
望采纳

阅读全文

与回归分析方法区别相关的资料

热点内容
魅蓝拦截的信息在哪里设置方法 浏览:402
雕刻牛字最简单的方法 浏览:33
武汉恋爱挽回方法操作步骤 浏览:430
戒掉手机的四个方法 浏览:574
快速有效治疗尖锐湿方法 浏览:226
最简单的方法画hellokitty 浏览:844
反渗透膜解决方法 浏览:485
扯面的正确方法和技巧 浏览:494
文彦博树洞取球方法好在哪里 浏览:854
四川泡洋姜的正确泡水方法 浏览:497
黑檀手串的鉴别方法图解 浏览:818
延迟满足实验研究方法 浏览:161
种植业污染解决方法 浏览:894
论文的研究方法有那些 浏览:124
孩子学习方法不对该如何 浏览:838
艾莱依真假鉴别方法 浏览:799
在家怎么制作果冻方法 浏览:50
关于氮和硫的化学计算方法 浏览:627
手环核酸检测方法 浏览:417
高层窗户封闭的安装方法 浏览:127