1. 腐蚀的过程可以用什么公式计算公式
见网络文库的:土壤评价方法比较
金属材料的腐蚀速度常用金属腐蚀速度的重要指标、深度指标和电流指标表示.
金属腐蚀速度表示法是在要评价的土壤中埋设金属材料试样,经过一定时间后,测试出试样的重量变化或深度变化或电流变化,以此来评价土壤腐蚀性.
重量指标就是把金属因腐蚀而发生的重量变化,换算成相当于单位金属面积与单位时间内的重量变化的数值.它又分为失重法和增重法两种.用公式表示为:
式中v-—失重时的腐蚀速度,克/米2.小时;
v+—增重时的腐蚀速度,克/米2.小时;
Wo-—金属的初始重量,克;
W1—消除了腐蚀产物后金属的重量,克;
W2—带有腐蚀产物的金属的重量,克;
S—金属的面积,米2;
T—腐蚀进行的时间,小时.
金属腐蚀速度的深度指标是把金属的厚度因腐蚀而减少的量,以线量单位表示,并换算成相当于单位时间的数值.用公式表示为:
式中vL—腐蚀的深度指标,毫米/年;
p—金属的密度,克/厘米3.
金属腐蚀速度的电流指标是以金属电化学腐蚀过程的阳极电流密度的大小来衡量金属的电化学腐蚀速度的程度.可由法拉第(Faraday)定律把电流指标和重量指标联系起来.可用公式表示为:
式中ia—腐蚀的电流指标,即阳极电流密度,安培/厘米2;
A——原子量;
N——化合价;
气相色谱定量检测一般就两种,一个是外标法,一个是内标法,对于没有标准物质的,就只能靠面积归一法粗略定量。
外标和内标网络上有很多介绍,这里跟你讲一下对于没有标准物质的中间体该怎么通过气相色谱定量。
1.首先,要通过重结晶、过柱子、吸附等等方法先获得尽可能纯的产物;
2.然后烘干至恒重,注意要把结晶水也烘掉;
3.烘干以后,根据产物合成、纯化过程投加的各种物料,用气相色谱测残留溶剂,尽可能测全、测准;
4.测煅烧残渣:800℃在马弗炉里烧半个小时以上,测一下煅烧残渣,这些可能是夹杂在产物中的无机盐;
5.测水分,用溶剂把产物溶解掉,用微量水分测定方法测定产物中的水分,注意要扣除溶剂的空白值;
6.气相色谱检测产物:先通过调节分流比、汽化温度、柱温等,确认产物峰上没有毛刺或者坎肩峰;调检测条件,选一个峰形最好的条件,面积归一法定量;
7.计算:先扣除前面检测出来的残留溶剂、煅烧残渣和水分的含量,再乘以面积归一法的面积百分含量。
这样相对来说是比较准的定量方法了,面积百分含量越高的且其他残留越低的,定量越准。
3. 在腐蚀工程上,用来测量腐蚀速率的方法有哪些
用来测量腐蚀速率的方法有如下几种:重量法、容量法、极化曲线法。
重量法实验原理:
重量法是一种最常见测试方法之一,适用于实验室和现场挂片,可用于检测材料的耐蚀性能、评选缓蚀剂,改变工艺条件时检测防腐效果等。当金属表面上的腐蚀产物容易除净且不损坏金属本体时,用失重法;而腐蚀产物牢固附着金属本体时,采用增重法。金属受到均匀腐蚀时的腐蚀速度表示方法有两种:
一种是用在单位时间、单位面积金属失重或增重的质量表示。
d---按深度腐蚀计算的腐蚀速度,mm/a
ν---金属腐蚀速度,g/(m2·h)
ρ---金属材料的密度,g/cm3
步骤
(1)配溶液:用试剂和蒸馏水配制实验溶液,每种溶液800mL,分别盛在1L烧杯内【根据试样大小到时确认需要溶液量】。
注意:将硫酸稀释到水中,谨慎操作,注意安全。
(2)磨试样:试样表面状态要求均一、光洁,需要进行表面处理。制作试样时已经过机加工,试验前还需要用砂布打磨,以达到要求的光洁度。表面上应无刻痕与麻点。平行试样的表面状态要尽量一致。打磨时注意避免过热。
(3)量尺寸:用游标卡尺测量试样的长、宽、厚【25mm×50mm×2mm)】,计算腐蚀面积。测量时必须量几个部位,取其平均值,并将数据记录在表中。
(4)清洗去油:将试样表面残屑除尽,用浸丙酮的棉花球擦拭,除去表面油污,再用蒸馏水冲洗,滤纸吸干。用干净纸包好,然后用电吹风干燥(注意用冷风!)。清洗后的试样不能再用手拿取,需放在干净的滤纸上,试验时用镊子【玻棒代替】夹取。
(5)称初重:干燥后的试样用分析天平称取初重W0,准确到0.1mg,测量数据记录在表中。
(6)浸入试验溶液:试样称重后立即穿上塑料线,浸入试验溶液内(记下浸入时间)。每种试验溶液内挂3块平行试样。注意试样不能彼此接触,也不能与容器接触。试样浸入深度应大致相同。其上端距液面应大于2cm。观察并记录试样浸入溶液后发生的现象。
(7)试验时间:由于碳钢在不同浓度的硫酸溶液中的腐蚀速度相差很大,不同体系的试验时间应根据具体情况确定(如30min)。
(8)清除腐蚀产物:取出试样前应仔细观察试样表面和溶液中的变化。取出试样(记下时间)后观察试样表面腐蚀产物的形态和分布。将试样放在自来水流下冲洗,用毛刷刷去疏松的腐蚀产物,再次观察试样表面状态。
清除腐蚀产物所用的化学清洗方法:将试样放入18%HCl(浓盐酸37%)+1-2%六次甲醛四胺(乌洛托品)溶液10min (根据实验情况确认,如30-40s)。除膜操作应进行2次,以达到恒重(两次称重差别小于0.5mg)。
(9)称腐蚀后重:除膜后用蒸馏水冲洗,除去已变疏松的腐蚀产物,然后擦拭、干燥,用分析天平称重。恒重后的重量作为腐蚀后重W1,并记录在表中。
另一种是用单位时间内金属腐蚀的深度来表示。
4. 对一个未知物进行定性分析的依据是什么常用的方法有哪些
未知物定性分析方法:
多种试验技术可以用来帮助失效分析师确定失效原因。失效分析师根据专业知识,联合运用各种实验技术分析断裂源处的失效起因、材料异常、操作损害。为避免争论,通常有必要使用现代试验工具,寻找支持简单试验得出结果的进一步的证据。失效分析师的才能在于选择正确类型的测试和检查,开展这些测试和检查的顺序也很重要。
1、视觉检查
视觉检查是失效分析的第一步,也是很重要的一步。有经验的人员凭借肉眼仔细检查失效零部件的缺陷可以得到大量信息。可能通过研究断口表面首选大概确定失效类型(塑性、脆性、疲劳等等),也有可能通过研究断口形貌定位裂纹起源位置。
检查断口起源和纵剖面组织会提供引起裂纹萌生的异常或损伤的线索,常用体视显微镜和放大镜协助肉眼寻找细节线索。
2、无损检测
对失效部件进行无损检测,并结合未使用的部件的检测结果,可以提供缺陷类型信息、从部件生产阶段上遗留下来的缺陷和服役期间缺陷的产生。渗透检测、射线检测、超声检测是提供这些信息的有效技术。无损检测的目的是分析一些迹象,并且区分主要缺陷与二次损伤。若需要,残余应力测量也会给出有用的信息。
3、断口分析
扫描电子显微镜(SEM),由于具有大的景深和分辨率,因此是失效分析的重要工具并且被誉为失效分析师的眼睛。通过SME进行断口检查,失效模式、裂纹起源、引起失效的异常等等可以准确定义。在部件自由表面产生的缺陷,由于SEM具有高的景深,裂纹起源处和断裂特征可以同时检查以确定损伤类型和裂纹萌生处的异常。
4、显微分析
能谱分析设备,作为所有现代SEM可用的附件,可以用来分析失效件的材料成分,以确定可能在起源处出现的杂质、渣坑、腐蚀产物、外来沉积等物质的组成元素。在粗糙表面产生的分析信息应小心使用,根据EDS产生的成分信息的分析特点,如波谱分析(WDS)的互补技术可以用来分析EDS能谱中能级重合的元素,如含钼合金中的硫。电子探针(EPMA)是定量分析微观结构特征的极有用的技术。电子探针产生的感兴趣位置的X射线图像,如渣坑、腐蚀产物、氧化物等等,为定义感兴趣特征区域的源或机理的信息。俄歇电子谱(AES)是一项极好的技术,用于原位定义断口试样上的脆性特征。由磷、锡、砷、锑在原奥氏体晶界偏析引起的回火脆性和由硫在原奥氏体晶界处析出的脆性硫化物,是非常多可以用AES明显识别的情况中的两种。
5、化学分析
在材料成分与规定有一定程度偏差是主要失效原因的情况下,有必要精确确定失效组分的组成。有很多基于原子吸收和发射原理的分析方法都可以用于元素含量的估测,在含量为百分之几十至十亿分之几的范围内。
X射线荧光谱分析方法(XRF)用于工厂分析而控制熔体成分和原材料分析,因为这种方法容易同时分析一个固体样品上的大量元素。原子吸收光谱和它的现代变种广泛用于精确测试,特别是对于痕量元素的分析。氢、氧、氮通过真空和惰性气体熔融技术,碳和硫通过燃烧方法。
6、微观组织检测
失效件的微观组织提供了有价值的信息。众所周知微观组织决定了力学性能以及金属材料的断裂行为,这又与成分、热处理过程相关。通过仔细研究微观结构,可能找到成分设计、工艺、热处理的缺点。微观结构损害在很多情况下不是非常明显,因此一个失效分析师必须受训以确定他们。晶界薄膜和孔洞、不合适的第二相分布、脆性相的存在、表面损伤(由氧化、腐蚀、磨损和侵蚀)、非金属夹杂、缩孔等等,是可以较容易通过金相检查确定的缺陷中的一些。有时,可能有必要通过一些材料特定的测试,寻找所观察到不正常微观组织的支持和确定性的证据。失效分析过程中产生的一些情况,光学显微镜的分辨率和放大倍数不适合检查特别细小的微观组织细节。例如,残余奥氏体在板条边界处转化为碳化物引起时效马氏体脆性,或镍基高温合金涡轮叶片析出的γ′相在高的工作温度暴露,这些情况的学习有必要使用高分辨率技术例如透射电子显微镜(TEM)。SEM也可以用于研究细小的微观组织特征,当感兴趣区域的对比度可以通过背散射电子图像获取或者深腐蚀技术。
7、机械测试
尽管机械测试很少被当做失效分析过程中的一个需求,但特定的测试仍是有必要的,它可以用于产生支持案例失效分析的一些数据。硬度测量,操作简单并且对制样要求最低,可以提供因微观结构变化引起的性能变化的信息。感兴趣的微观结构特征处测量微观硬度对于失效分析是及其有用的。
8、实验数据的分析和解释
失效分析的最关键步骤是对使用各种实验技术产生的数据的解释。有必要(a)列出产生的所有数据,(b)基于科学原则分析数据,(c)在证据或确认实验的基础上消除貌似矛盾的原因,(d)考虑断裂模式的所有可能原因,(e)最终确认最可能的失效原因。一旦确认了失效原因,特定的补救方法也就比较明显,最合理的补救方法应被设计者、制造者和用户采用。
5. 定量分析主要有哪些方法
1、比率分析法。它是财务分析的基本方法,也是定量分析的主要方法。
2、趋势分析法。它对同一单位相关财务指标连续几年的数据作纵向对比,观察其成长性。通过趋势分析,分析者可以了解该企业在特定方面的发展变化趋势。
3、结构分析法。它通过对企业财务指标中各分项目在总体项目中的比重或组成的分析,考量各分项目在总体项目中的地位。
4、相互对比法。它通过经济指标的相互比较来揭示经济指标之间的数量差异,既可以是本期同上期的纵向比较,也可以是同行业不同企业之间的横向比较,还可以与标准值进行比较。通过比较找出差距.进而分析形成差距的原因。
5、数学模型法。在现代管理科学中,数学模型被广泛应用,特别是在经济预测和管理工作中,由于不能进行实验验证,通常都是通过数学模型来分析和预测经济决策所可能产生的结果的。
以上五种定量分析方法,比率分析法是基础,趋势分析、结构分析和对比分析等方法是延伸,数学模型法代表了定量分析的发展方向。
6. 用分光光度法怎么测定锂离子电池里的铜含量
分光光度法是利用溶液中溶质对不同波段光吸收强弱来定性和定量分析的手段。
首先你要搞清楚题目中说的锂离子电池里面的铜是什么形式存在的?是负极材料吗?是金属合金还是氧化物或者其他?因为是集电极没必要用分光光度法
一般来说分光光度需要配置溶液,所以要把铜溶解的
7. 表面分析的分析方法
表面分析方法有数十种,常用的有离子探针、俄歇电子能谱分析和X射线光电子能谱分析,其次还有离子中和谱、离子散射谱、低能电子衍射、电子能量损失谱、紫外线电子能谱等技术,以及场离子显微镜分析等。
离子探针分析
离子探针分析,又称离子探针显微分析。它是利用电子光学方法将某些惰性气体或氧的离子加速并聚焦成细小的高能离子束来轰击试样表面,使之激发和溅射出二次离子,用质谱仪对具有不同质荷比(质量/电荷)的离子进行分离,以检测在几个原子深度、数微米范围内的微区的全部元素,并可确定同位素。它的检测灵敏度高于电子探针(见电子探针分析),对超轻元素特别灵敏,可检测10(克的痕量元素,其相对灵敏度达 10(~10(。分析速度快,可方便地获得元素的平面分布图像。还可利用离子溅射效应分析表面下数微米深度内的元素分布。但离子探针定量分析方法尚不成熟。
1938年就有人进行过离子与固体相互作用方面的研究,但直到60年代才开始生产实用的离子探针分析仪。离子探针分析仪的基本部件包括真空系统、离子源、一次离子聚焦光学系统、质谱仪、探测和图像显示系统、样品室等。离子探针适用于超轻元素、微量和痕量元素的分析以及同位素的鉴定。广泛应用于金属材料的氧化、腐蚀、扩散、析出等问题的研究,特别是材料氢脆现象的研究,以及表面镀层和渗层等的分析。
俄歇电子能谱分析
俄歇电子能谱分析, 用电子束 (或X射线)轰击试样表面,使其表面原子内层能级上的电子被击出而形成空穴,较高能级上的电子填补空穴并释放出能量,这一能量再传递给另一电子,使之逸出,最后这个电子称为俄歇电子。1925年法国的P.V.俄歇首先发现并解释了这种二次电子,后来被人们称为俄歇电子,但直到1967年俄歇电子能谱技术才用于研究金属问题。通过能量分析器和检测系统来检测俄歇电子能量和强度,可获得有关表面层化学成分的定性和定量信息,以及化学状态、电子态等情况。在适当的实验条件下,该方法对试样无破坏作用,可分析试样表面内几个原子层深度、数微米区域内除氢和氦以外的所有元素,对轻元素和超轻元素很灵敏。检测的相对灵敏度因元素而异,一般为万分之一到千分之一。绝对灵敏度达10(单层(1个单层相当于每平方厘米约有10(个原子)。可方便而快速地进行点、线、面元素分析以及部分元素的化学状态分析。结合离子溅射技术,可得到元素沿深度方向的分布。
俄歇电子能谱仪器的结构主要包括真空系统、激发源和电子光学系统、能量分析器和检测记录系统、试验室和样品台、离子枪等。
俄歇电子能谱分析在机械工业中主要用于金属材料的氧化、腐蚀、摩擦、磨损和润滑特性等的研究和合金元素及杂质元素的扩散或偏析、表面处理工艺及复合材料的粘结性等问题的研究。
X射线光电子能谱分析
X射线光电子能谱分析,以一定能量的X射线辐照气体分子或固体表面,发射出的光电子的动能与该电子原来所在的能级有关,记录并分析这些光电子能量可得到元素种类、化学状态和电荷分布等方面的信息。这种非破坏性分析方法,不仅可以分析导体、半导体,还可分析绝缘体。除氢以外所有元素都能检测。虽然检测灵敏度不高,仅达千分之一左右,但绝对灵敏度可达2×10(单层。
这种分析技术是由瑞典的K.瑟巴教授及其合作者建立起来的。1954年便开始了研究,起初称为化学分析用电子能谱(简称ESCA),后普遍称为X射线光电子能谱(简称XPS)。主要包括:真空系统、X射线源、能量分析器和检测记录系统、试验室和样品台等。这种分析方法已广泛用于鉴定材料表面吸附元素种类,腐蚀初期和腐蚀进行状态时的腐蚀产物、表面沉积等;研究摩擦副之间的物质转移、粘着、磨损和润滑特性;探讨复合材料表面和界面特征;鉴定工程塑料制品等。
8. HPLC法中定量分析方法大致有哪几种
气相色谱定量检测一般就两种,一个是外标法,一个是标法,对于没有标准物质的,就只能靠容面积归一法粗略定量。
通过对人类和环境有影响的各种物质的含量、排放量的检测,跟踪环境质量的变化,确定环境质量水平,为环境管理、污染治理等工作提供基础和保证。简单地说,了解环境水平,进行环境监测,是开展一切环境工作的前提。
HPLC根据固定相和流动相的成分分为正相色谱和反向色谱。
正相色谱法
采用极性固定相(如聚乙二醇、氨基与腈基键合相);流动相为相对非极性的疏水性溶剂(烷烃类如正已烷、环已烷),常加入乙醇、异丙醇、四氢呋喃、三氯甲烷等以调节组分的保留时间。常用于分离中等极性和极性较强的化合物(如酚类、胺类、羰基类及氨基酸类等)。
9. 对物质进行定量分析主要有哪些方法
按测定原理和操作方法分类可分为化学分析法和仪器分析法.按分析对象分类可分为无机分析和有机分析.按被测组分的含量分类可分为常量组分分析、微量组分分析和痕量组分分析.按所取试样的量分类可分为常量分析、半微量分析、微量分析和超微量分析.
10. 高温、高压H2S腐蚀试验方法国际标准分析
李建平1陈长风2任玉林1李宗田1陈秋芬1唐萍1
(1.中国石化石油勘探开发研究院,北京100083;2.中国石油大学(北京),北京102249)
摘要 目前,国际上广泛使用的H2S服役环境下材料的试验和选用标准有3种,分别为NACE标准、EFC标准以及ISO15156 标准。本文对这3种标准之间的相互关系进行了分析,在讨论硫化物应力腐蚀开裂机理的基础上,分析了NACE标准和EFC标准的特点,对比了两种标准之间的主要区别。NACE标准注重选材的安全性,选材容易出现品质过剩;EFC标准强调因地制宜地选材,强调合理使用,最大限度地发挥材料的性能;NACE MR0175的材料性能以及耐蚀性方面的数据较为丰富,使用方便;相对来讲EFC17只是给出了选材的基本原则,对使用者自身的要求较高。ISO15156标准结合了上述两类标准的特点,取长补短,建立了既适合于使用,又注重安全的试验和选材标准,可用于高含硫气田开采的选材。
关键词 腐蚀 实验 H2S CO2SSC NACE MR0175 EFC16/EFC17 ISO15156
International Standard Analysis on H2 S corrosion Testing Method at High Temperature and High Pressure
LI Jian-ping1,CHEN Chang-feng2,REN Yu-lin1,LI Zong-tian1,CHEN Qiu-fen1,TANG Ping1
(1.Exploration & Proction Research lnstitute,SlNOPEC,Beijing100083;2.China University of Petroleum,Beijing102249)
Abstract Presently,there are three kinds of international standards for testing and choosing materials serving in H2S-containing environment,that is to say,NACE MR0175,EFC17 and ISO15156.The relationship of these three standards is analyzed in this paper.Basing on the mechanism of SSC,the features of NACE MR0175 and EFC17 and the difference between these two standards are also discussed.NACE MR0175 pays more attention to the safety in the selection of materials and easily results to an overplus in materials’ performance,while EFC17 emphasizes the reasonable selection of materials according to the local conditions and exerts the performance of materials furthest.NACE MR0175 provides abundant data of material’s performance and corrosion resistance,while EFC17 only presents the cardinal rule for material’s selection.By taking the strongpoint of above two standards,ISO15156 not only suits to use but also emphasizes the safety of the testing and choosing Materials,especialy in the high sulfurcoated gas field.
Key words Corrosion Test H2S CO2SSC NACE MR0175 EFC16/EFC17 ISO15156
在石油天然气的开采过程中,H2S腐蚀往往导致突发性的灾难事故,造成人员和财产的重大损失。美国NACE 协会在1975年颁布了《油田用耐硫化物应力腐蚀开裂金属材料》,即NACE MR0175[1]。到目前为止,NACE MR0175已经经过了25次修改,对其中的内容进行了较大的修改和补充。
NACE MR0175建立了硫化氢临界分压值,当硫化氢的分压超过该界限值后,就需要考虑SCC的威胁;同时还提供了选材的指导方针及耐蚀合金的应用界限和条件,例如溶液组成、pH、温度、H2S分压等。NACE TM 0177[2]和NACE TM284[3]两个试验标准是对NACE MR0175的进一步补充和完善。
欧洲腐蚀协会分别在1995年和1996年单独出版了EFC16(含《H2S环境条件下碳钢和低合金钢的选材准则》)和EFC17(《石油天然气开发用耐蚀合金:H2S服役条件下选材和测试方法》)两个规范,这两个规范尽管在出发点和内容上与NACE标准有所不同,但仍然被认为是NACE标准的重要补充。
之后,NACE和EFC合作,由国际标准协会ISO/TC 67成立了第七工作组,收集和整理合适的、公开发表的硫化氢环境下金属材料开裂的现场和实验室测试数据,出版了ISO/15156[4~6](《石油天然气工业——含H2S环境油气生产用材料》)标准。ISO15156标准可以看成是NACE MR0175和EFC16及EFC17[7,8]的合并版本,综合了NACE和EFC两类标准的重要内容。上述3个标准已经成为硫化氢环境下设备用材选择与试验的重要依据。本文主要是分析NACE和EFC标准之间的差异,探讨高含H2S、CO2环境用材的试验方法。
1 材料H2S环境下的应力腐蚀特征
硫化氢腐蚀主要有两种形式,一是电化学腐蚀失重;二是腐蚀开裂。前者,腐蚀产物FeS对腐蚀速率和形态有显着的影响,导致均匀腐蚀和局部腐蚀。相对于CO2腐蚀,H2S腐蚀失重速率较小,因此对于硫化氢腐蚀,人们更关注腐蚀开裂问题,这是许多突发事故的原因。
硫化氢溶于水后电离形成的H+和HS-发生阴极还原反应,形成氢原子。对于CO2腐蚀,阴极反应生成的氢原子会在金属表面结合成氢分子,随后溶入液体中,但在含硫化氢系统中,硫化物离子将会减慢金属表面氢原子复合成氢分子的速率,这样会造成金属表面氢分子的积累,为氢原子扩散进入金属提供了足够的驱动力,从而导致硫化物应力开裂(SSC)、氢致开裂(HIC)。另外,局部阳极溶解与应力耦合作用导致应力腐蚀开裂(SCC)。
低碳钢和低合金钢H2S腐蚀后表面容易形成FeS膜,这层腐蚀产物膜虽然对基体金属有一定的保护作用,但是阴极还原的氢原子很容易穿过FeS膜扩散到金属基体,导致开裂。耐蚀合金表面会形成致密的Cr2O3-NiO钝化膜,这层钝化膜对氢原子的扩散阻碍作用明显,从而抑制了腐蚀裂纹的产生。随着耐蚀合金中Cr和Ni含量的增加,钝化膜的完整性、致密性也增加,对金属基体的保护性增大。
耐蚀合金的SSC是碳钢和低合金钢SSC 的扩展,是氢脆现象。其本质是阴极过程,也就是说开裂受控于阴极极化。耐蚀合金的SSC对材料表面钝化膜的稳定性非常敏感,因此也就对溶液的 pH 值以及 Cl-的含量敏感。溶液的酸性增加,钝化膜溶解性增加;Cl-的侵蚀性较强,容易穿透钝化膜,破坏钝化膜的结构。
耐蚀合金在H2S中的SCC是人们广泛熟知的耐蚀合金在卤水中的SCC问题的扩展,它是局部腐蚀的一种,是阳极过程,也就是说可以通过阴极极化来抑制。与SSC一样,SCC对材料表面钝化膜的稳定性非常敏感,因此就对溶液的pH值以及Cl-的含量敏感。另外,H2S的含量会显着地影响到产生SCC的门槛值。
对于SCC,裂纹在耐蚀合金表面萌生的机制与机械辅助去钝化有关,也就是说材料外加载荷与本身的残余应力耦合,导致变形,局部会产生微蠕变和应力松弛,这样容易破坏或削弱钝化膜,使局部基体金属受到侵蚀溶解,同时在应力的耦合作用下,产生裂纹。
耐蚀合金通常在高的温度下容易产生应力腐蚀裂纹,在室温下更容易产生SSC。然而,随着载荷、钝化膜、微蠕变、氢的还原以及扩散等多方面交互作用,将使有些耐蚀合金,例如双相不锈钢应力腐蚀和硫化物应力腐蚀的敏感温度分布在中温区(80~120℃)。相对而言,对于碳钢和低合金钢硫化物应力腐蚀最大的敏感温度在25℃。
铁素体以及马氏体耐蚀合金组织自然微蠕变非常小,对SSC敏感而对SCC不敏感,当然,应力大于或等于屈服强度也容易出现裂纹;相反,奥氏体组织本质上自然微蠕变非常大,对SSC不敏感而对SCC敏感;而双相不锈钢会遭受SCC和SSC,这主要取决于腐蚀环境的特征。
为了有效地利用材料,同时提高材料使用的经济性,除了应了解硫化物应力开裂(SSC)和应力腐蚀开裂(SCC)两种开裂方式的不同机制,更重要的是如何选材和评价。
2 NACE 标准特征
2.1 NACE TM0177-96
NACE TM0177推荐了4种试验方法:拉伸、三点弯曲、C形环和悬臂梁拉伸法。试验可以在常温常压下进行,也可以在较高的温度和压力下进行,推荐的测试溶液浓度较高、pH值较低,属于加速试验,是比较苛刻的试验标准。采用高温高压试验的原因,一是由于材料不同,产生裂纹的敏感温度也不同;二是要更好地模拟材料实际服役环境,预见最差的服役条件。高温高压的试验结果最好与常温常压试验结果进行对比。
NACE TM0177提醒需要注意以下几点:
(1)这种加速试验方法使得试验数据的处理变得比较困难,试验过程中总有一些其他的影响因素会影响到重现性。例如:低强度钢在推荐的测试环境中容易产生HIC或氢鼓泡失效,但这种材料通常不容易遭受SSC,因此对于试验结果需要区别是何种机制导致的裂纹。另外,一些合金在这种试验环境下容易受到侵蚀,导致开裂,而在油田服役环境下则不会出现这种情况,马氏体和沉淀硬化不锈钢就容易出现这种问题。
(2)测试方法、材料的织构与流线、不同合金之间的电偶腐蚀、测试温度对开裂的敏感性影响、试样选择区域、材料的非均匀性(例如焊接)、试验时间和试样数量等等一些因素都会对试验结果产生影响。
EFC标准中将三点弯曲试验法改为四点弯曲试验法,ISO15156采用了这一修改。
2.2 NACE MR0175
NACE MR0175是依据材料的现场使用数据和试验数据,建立起来的H2S服役条件下材料的选择标准,包括碳钢、低合金钢和耐蚀合金的选择,新版本增加了合金使用环境的限制。由于SSC受到应力、H2S分压、元素硫、矿化度、pH值及合金的冶金条件等众多条件影响,因此NACE MR0175无法就每一种合金都给出确切的环境使用界限,材料的使用者有责任根据试验室数据的准确程度以及现场经验来确定材料将来使用的安全性。NACE MR0175承认一些在NACE TM0177标准试验中被证明容易开裂的合金在实际服役环境中的表现却很好,同时标准所推荐的材料对SSC具有抑制能力,但却不能在所有的环境下阻止SSC,因此一定要考虑实际的应用环境。
NACE MR0175定义了H2S应力腐蚀环境范围,帮助使用者确定材料服役环境是否在该范围之内(图1)。
图1 NACE MR0175定义的SSC环境敏感区域
a—气相环境;b—油气两相
图1只表明了总压和分压,没有显示出溶液的pH值对SSC的影响;另外,对于碳钢和低合金钢满足了NACE TM0177的测试,但能否在6~7MPa的H2S分压下服役还是需要慎重考虑的问题。在EFC16 中,将碳钢或低合金钢在H2S环境分为了3个区域(图2)。这3个区域的应力腐蚀敏感性划分成非酸性环境、过渡区和酸性环境。图2 只是针对P110以上强度钢级建立的,其他材料或有焊缝的情况需要重新建立应力腐蚀敏感图。ISO15156采纳了EFC16观点,未采用NACE对SSC敏感区域的划分方式。值得注意的是,图2所包含的H2S分压区域最高只有1MPa,这就限定了碳钢和低合金钢可以使用的范围。
另外,NACE MR0175为新的合金材料或新工艺处理的材料给出了7个等级的试验条件,前3个等级属于NACE TM0177试验范畴,主要是针对碳钢和低合金钢;后4个等级试验温度和压力较高,同时通有CO2,是专门针对奥氏体不锈钢、双向不锈钢、Ni合金以及Ti合金推荐的试验条件,以确定这些合金的耐SSC性能。
图2 EFC16和ISO15156定义的SSC环境敏感区
① 1bar=105Pa
NACE MR0175标准仍然是比较严格。例如,对应用于酸性环境下的碳钢和低合金钢的硬度要求为小于22HRC,材料硬度大于该值则不在标准所规定的范围之内,需要另外严格测试。
3 EFC标准特征
EFC 标准的一个重要特点是为了保证设备选材在实际工况条件下的安全性,同时又符合经济性原则,试验环境溶液应选用与实际工况条件相同的环境溶液,而不是NACE规定的溶液,即采用合于使用原则(Fitness for Service),也就是说试验条件的选择要反映服役条件。这样就有可能避免一些材料现场使用情况良好,却无法通过NACE标准试验这一现象的发生。
EFC 标准总结了近年来关于环境条件与材料开裂方面的研究成果,认为可以适当放宽试验的苛刻程度,这样会大大地节省费用,同时还不会带来风险。因此EFC准则比较实用,对石油、天然气工业具有较高的指导性。
3.1 EFC16
EFC16标准主要是针对碳钢、低合金钢在含H2S环境下的服役性能,全面考虑此类材料暴露在硫化氢环境下所有的可能裂纹类型,并根据裂纹产生的环境,通过合理的材料选择来避免这些裂纹。EFC首次提出的合于使用(Fitness-for-Purpose)原则已经广泛被接受,目前,NACE年会已经有越来越多的文献报道了基于此原则开展的材料耐蚀性能研究。
影响渗氢的主要因素为:H2S的浓度、pH和温度等,EFC16建立了P110以上钢级的pH-H2S分压SSC敏感图(图2),其他的钢级以及具有焊缝的钢需要重新建立。图2中,①区属于非酸性环境,对材料冶金的质量没有要求;②区为过渡区,需要控制冶金质量,如硬度、S含量等,在一些环境下,材料冶金质量及控制不需要非常严格;③区则容易发生SSC,需要严格按照EFC16标准选材。需要注意的是pH低于3.5服役环境在油田现场很少出现,因此图2中对这部分未做出分类。当材料满足EFC16 标准规定时就可以良好地抑制区域②和③的SSC腐蚀。材料不能满足上述要求可能也能够良好地抑制SCC,但是需要按照合于使用的原则来评估。
碳钢和低合金钢可以通过测量硬度来检查强度,要求均匀的显微组织,这样可以通过限制强度、消除有害的裂纹敏感微观组织来抑制SSC。
出现SSC的硬度与环境的苛刻程度有关。EFC16 所允许的硬度水平比较宽松,同时提供了合适的测试方法来证明材料可以抑制SSC。
对于淬回火管材:硬度≤250 HV30(22 HRC),C90 和T95 可以到270 HV30,同时要求组织均匀,没有未回火马氏体。高于65℃时可以使用N80Q,C95;高于80℃可以使用API 5 CT C95,N80,P105和P110系列;高于110℃可以使用API 5 CT Q125。也就是说温度越高,相同腐蚀条件下可以使用的钢级越高,充分体现了适合于使用的原则。Q+T低合金钢可接受的最大硬度为275HV30(26HRC)。管线、压力容器以及其他焊接设备材料母材硬度不超过250 HV30。
对于不能满足上述冶金要求的材料,EFC16要求使用附录A推荐的方法进行测试,附录A给出了测试方法、测试溶液以及评定标准。EFC推荐使用模拟实际的服役环境进行试验,从而获得材料的真实服役性能,另外,对于服役环境不明确的情况,EFC16推荐的测试环境也不苛刻。
众所周知,如果材料满足了硬度、组织等要求,就很难满足力学使用要求,对于这一矛盾,EFC16建议还是根据合于使用原则,通过仔细试验研究来解决。使用的测试环境要与服役环境相似,应力/应变水平代表服役载荷。
3.2 EFC17
耐蚀合金(CRA)已经越来越广泛地应用于含硫油气田的开发,由于H2S服役环境下的油田设备用耐蚀合金(CRA)的试验和选择标准不统一,这就给评定耐蚀合金的质量带来了很大困难和高昂的费用。另外针对碳钢所建立的评定方法不能应用于CRA。
EFC17就是根据上述问题,建立了测试和评价CRA的标准,标准中包括选择、评价耐蚀合金的基本原则,即合于使用原则;标准提供了评估临界环境开裂条件的测试方法和使用该方法的原理、测试方法的重要性以及如何选择CRA。
EFC17的核心就是材料应该在最苛刻的环境和力学条件下评估,这一试验环境应该是服役环境的最苛刻状态,而不是标准的最苛刻的试验条件。用于测试的环境应该反映出服役失效结果。耐蚀合金并不是固有的能够抑制SSC/SCC,EFC17 标准的目标是让选定的耐蚀合金在一定范围的力学和环境条件下能够可靠使用,同时还经济。为了达到这一目标,选用的测试方法可以确定材料应用的界限,而不是简单地在极端条件下测试,然后就淘汰一些所谓应力敏感的合金。
首先,EFC17规定了如何选择测试环境。对于耐蚀合金,严重腐蚀通常是出现在最高的服役温度,因此测试耐蚀性要求模拟该温度下的环境参数。通常CRA的耐蚀性较好,使得短期试验很难有所结果,这样需要比较保守的长期的试验,这样试验条件往往与实际不符,比较苛刻。但是,耐蚀合金倾向于表现出明显的环境参数临界线,因此增大一个或几个参数在加速试验中可能会导致严重的腐蚀,从而会排斥有潜力的良好合金。
耐蚀合金的试验可以环境模拟服役环境,也可以等同于服役环境或比服役环境苛刻。为了减少特殊测试次数,可以在适当的标准环境下测试数据,EFC17推荐了3类,包括典型天然气生产环境有地层水和典型原油生产环境的状况。这种测试属于材料的定级试验,有助于确定合金的特殊使用环境。
除了确定测试环境条件外,还要明确最坏状态下材料的成分和组织对腐蚀的影响。耐蚀合金还要考虑局部腐蚀和缝隙腐蚀,试样的表面状态,例如抛光、研磨、机械加工以及焊接状态等。
另外,还需要认真考虑材料的应力状态。通常,相同的环境参数决定了耐蚀合金的环境断裂,然而,局部应力的大小和性质、材料的条件是附加的裂纹控制参数。但是,试验过程中所加载的应力或应变无论如何也不能精确地模拟服役条件,真实地服役应力包括了制造过程中的残余应力和服役应力之和,真实服役应力还包括:静态、瞬态和动态;外加或残余应力;范围较广的和局部应力。
EFC17标准所确定的试验方法仍然存在有局限性:①测试的时间有可能比裂纹孕育期短,测试时间内没有发现裂纹,并不能说明延长测试时间后材料不失效;②测试的应力并不能完全模拟现场实际,有可能材料在实际服役下出现塑性变形,但是正常的加载无法满足上述条件。
针对上述问题,EFC17建议可以通过延长加载时间和给定塑性变形来研究。另外,有报道说长时间的浸泡会改变钝化膜的结构,容易导致点蚀,裂纹可以从点蚀处萌生,这些问题还需要深入研究。
4 结论
NACE标准非常注重选材的安全性,这样就出现了不能通过NACE标准试验的材料反而还可以在油田现场仍然有良好的使用的现象,也就是说选材容易出现品质过剩。
EFC标准强调因地制宜地选材,最大限度地发挥材料的性能,但是,由于现场实际环境差别较大,采用EFC标准的试验工作量较大,同时对于高含H2S/CO2环境,开展模拟试验的难度也较高。
NACE MR0175总结了较为丰富的材料性能以及耐蚀性方面的数据,方便使用者对比评价,可以预计,随着研究的深入,这方面的数据积累会越来越丰富;相对来讲EFC17只是给出了选材的基本原则,对使用者自身的要求较高。
ISO15156标准正是结合上述两类标准的特点,取长补短,建立了既要合于使用,同时也要注重安全的试验和选材标准。
应该看到,材料的实际服役行为往往比较复杂,标准只是给出了试验和选材的指导方针,实际存在的问题还需要细致试验和研究才能解决。
参考文献
[1]NACE MR0175-2001.Sulfide stress cracking resistant metallic materials for oilfield equipment.
[2]NACE TM0177-1996.Laboratory testing of metals for resistance to sulphide stress cracking in H2S environments.
[3]NACE TM0284.Evaluation of pipeline and pressure vessel steels for resistance to hydrogen inced cracking.
[4]ISO 15156-1:2001.Petroleum and natural gas instries-materials for use in H2S—containing environments in oil and gas proction—part 1:general principles for selection of cracking-resistant materials.
[5]ISO 15156-2:2003.Petroleum and natural gas instries—materials for use in H2S—containing environments in oil and gas proction—Part 2:Cracking-resistant carbon and low alloy steels,and the use of cast irons.
[6]ISO 151 56-3:2003.Petroleum and natural gas instries-materials for use in H2S—containing environments in oil and gas proction-Part 3:Cracking-resistant CRAS(corrosion-resistant alloys)and other alloys.
[7]EFC Publications No.16.Guidelines on materials requirements for carbon and low alloy steels for H2S—containing environments in oil and gas proction,ISBN 0-901716-95-2.
[8]EFC Publications No.17.Corrosion resistant alloys for oil and gas proction:guidelines on general requirements and test methods for H2S service.