❶ 如图电阻电容电路如何分析
这个问题的关键点是在 B 点处的总电荷为 0。为了说明方便,设左面从上到下两个电容为 C1 和 C2,水平电容为 C3。上端标号为 C,下端标号为 D。那么有:
Q1 = Q2 + Q3
当电路达到稳定以后,则有:
Uad = 20V * 1kΩ/(1kΩ+4kΩ) = 4V = Ua - Ud → Ua = 4+Ud
Uca = 16V = Uc - Ua
Q1 = Ucb * C1 = 3Ucb = 3(Uc - Ub)
Q2 = Ubd * C2 = 2Ubd = 2(Ub - Ud)
Q3 = Uba * C3 = 3Uba = 3(Ub - Ua)
那么:
3(Uc - Ub) = 2(Ub - Ud) + 3(Ub - Ua)
3Uc - 3Ub = 5Ub - 2Ud - 3Ua
3Uc = 8Ub - 2Ud - 3(4+Ud)
= 8Ub - 12 - 5Ud
= 8Ub - 8Ud - 12 + 3Ud
移项,得到:
3Uc - 3Ud = 8(Ub - Ud) - 12
3(Uc - Ud) = 8Ubd - 12
3*Ucd = 8Ubd - 12
8Ubd = 3*Ucd + 12 = 3*20 + 12 = 72
所以 Ubd = 9V
Uba = (Ub - Ua) = (Ub-Ud) - (Ua - Ud) = Ubd - Uad = 5V
Ucb = Ucd - Ubd = 20V - 9V = 11V
❷ 电路基础中对电阻电路的一般分析方法中节点电压法,为什么自导总为正,互导总为负
考虑一个节点,电压设为v1,另一个节点与它相连,电压设为v2,两节点间电阻设为R12.
节点电压法列方程是对每个节点列电流守恒方程.仅考虑R12之路的话,v1节点流出的电流为(v1-v2)/R12=(v1-v2)*G12=G12*v1-G12*v2
G12=1/R12,是1、2节点间的电导.这里可以看出自导永远是正的,互导永远是负的.因为正的v1永远对应于流出1节点的电流,而正的v2对应着向1节点注入电流.
如果还不明白,pm我.
❸ 分析电路的几种方法求解
求解电路方法从宏观上说有两种: 一是等效变换法,二是程序化方法。(一)利用等效变换,逐步化简电路,应用欧姆定律(VCR)和全电路欧姆定律计算 (包括简单KCL和KVL),最终求出未知的电流与电压。等效变换法有电阻的串联与并联,电阻Y-△变换,电源串联与并联,电压源与电流源等效变换、戴维南等值变换等,等效变换法改变了电路结构。(二)程序化方法不需要改变电路结构,分析电路有固定程式,对任何线性电路均适用,便于数学软件求解。以支路电流为例,①设定各支路电流的参考方向,②列写KCL、KVL方程及VCR关系式,列写受控电源的辅助方程,若微分方程再加初始值方程,③将方程组输入计算机的数学软件求出未知量 (或未知函数)。电阻电路对应实系数线性方程组,正弦稳态电路对应复系数线性方程组,时域电路对应线性微分方程组。■在计算机未普及的年代、在传统教学的版书运算中、在面对不太复杂电路时、在不允许使用计算机的场合 (如考试),通常采用电路的等效变换法。该方法将原电路转换为简单电路后使用欧姆定律较多,淡化了KCL和KVL的核心地位。大型电路无法使用等效变换法,只能采取程序化方法。程序化方法使我们真正感受到KCL、KVL、VCR(关联与非关联)在求解电路中的核心地位。
❹ 电路分析方法有哪些(定律、定理、步骤、原则)
电路:由金属导线和电气、电子部件组成的导电回路,称为电路。在电路输入端加上电源使输入端产生电势差,电路连通时即可工作。
电流的存在可以通过一些仪器测试出来,如电压表或电流表偏转、灯泡发光等;按照流过的电流性质,一般把它分为两种:直流电通过的电路称为“直流电路”,交流电通过的电路称为“交流电路”。
电路问题计算的先决条件是正确识别电路,搞清楚各部分之间的连接关系。对较复杂的电路应先将原电路简化为等效电路,以便分析和计算。识别分析电路的方法很多,现结合具体实例介绍十种方法。
01特征识别法
串并联电路的特征是;串联电路中电流不分叉,各点电势逐次降低,并联电路中电流分叉,各支路两端分别是等电势,两端之间等电压。根据串并联电路的特征识别电路是简化电路的一种最基本的方法。
02
伸缩翻转法
在实验室接电路时常常可以这样操作,无阻导线可以延长或缩短,也可以翻过来转过去,或将一支路翻到别处,翻转时支路的两端保持不动;
导线也可以从其所在节点上沿其它导线滑动,但不能越过元件。这样就提供了简化电路的一种方法,我们把这种方法称为伸缩翻转法。
电流走向法
电流是分析电路的核心。从电源正极出发(无源电路可假设电流由一端流入另一端流出)顺着电流的走向,经各电阻绕外电路巡行一周至电源的负极,凡是电流无分叉地依次流过的电阻均为串联,凡是电流有分叉地分别流过的电阻均为并联。
等电势法
在较复杂的电路中往往能找到电势相等的点,把所有电势相等的点归结为一点,或画在一条线段上。当两等势点之间有非电源元件时,可将之去掉不考虑;当某条支路既无电源又无电流时,可取消这一支路。我们将这种简比电路的方法称为等电势法。
❺ 电路分析的基本方法
在分析电路原理时,要搞清楚电路中的直流通路和交流通路。直流通路是指在没有输入信号时,各半导体三极管、集成电路的静态偏置,也就是它们的静态工作点。交流电路是指交流信号传送的途径,即交流信号的来龙去脉。
在实际电路中,交流电路与直流电路共存于同一电路中,它们既相互联系,又互相区别。
直流等效分析法,就是对被分析的电路的直流系统进行单独分析的一种方法,在进行直流等效分析时,完全不考虑电路对输入交流信号的处理功能,只考虑由电源直流电压直接引起的静态直流电流、电压以及它们之间的相互关系。
直流等效分析时,首先应绘出直流等效电路图。绘制直流等效电路图时应遵循以下原则:电容器一律按开路处理,能忽略直流电阻的电感器应视为短路,不能忽略电阻成分的电感器可等效为电阻。取降压退耦后的电压作为等效电路的供电电压;把反偏状态的半导体二极管视为开路。
2、交流等效电路分析法:
交流等效电路分析法,就是把电路中的交流系统从电路分分离出来,进行单独分析的一种方法 。
交流等效分析时,首先应绘出交流等效电路图。绘制交流等效电路图应遵循以下原则:把电源视为短路,把交流旁路的电容器一律看面短路把隔直耦合器一律看成短路。
3、时间常数分析法
时间常数分析法主要用来分析R,L,C和半导体二极管组成电路的性质,时间常数是反映储能元件上能量积累快慢的一个参数,如果时间常数不同,尽管电路的形式及接法相似,但在电路中所起的作用是不同的。常见的有耦合电路,微分电路,积分电路,钳位电路和峰值检波电路等
❻ 如何分析电路:
要想设计电路,就得先学会分析电路。
分析电路图最重要的是了解信号流程(电流走势),即主信号的走向,或者说信号从哪里来去向是哪里。根据这个原理去了解到这张原理图的功能是什么。
再把原理图细分成若干部分,仔细了解每一单元的功能,你就会对整个功能有个大体了解。当然首先你应对单元功能电路有比较多地了解,然后去是整机的工作流程。
“化整为零、还原系统”:现代高科技电子产品,大都由若干基本模块(单元)组成,而每个模块一般由一块电路板实现(较大模块可以再分成小的模块,直到可由一块电路板实现),每个电路板电路一般可以细划出若干个基础电子学课程(模拟电子技术或数字电子技术)中大家比较熟悉的基本电路。因此,所谓的“化整为零”,就是指将整机电路细分成上述基本电路的过程;而“还原系统”就是一个相反的过程,即按“某个线索”由基本电路逐渐拼接形成基本模块直到整机原理电路,也就是说最终要形成整机的概念。“化整为零”是手段,“还原系统”才是真正的目的。
对于单元电路,是指某一级控制器电路,或某一级放大器电路,或某一个振荡器电路、变频器电路等,它是能够完成某一电路功能的最小电路单位。从广义角度上讲,一个集成电路的应用电路也是一个单元电路。
单元电路图是学习整机电子电路工作原理过程中,首先遇到具有完整功能的电路图
单元电路图具有下列一些功能:
①单元电路图主要用来讲述电路的工作原理。
②它能够完整地表达某一级电路的结构和工作原理,有时还全部标出电路中各元器件的参数,如标称阻值、标称容量和三极管型号等。
③它对深入理解电路的工作原理和记忆电路的结构、组成很有帮助。
单元电路图具有下列一些特点:
① 单元电路图主要是为了分析某个单元电路工作原理的方便而单独将这部分电路画出的电路,所以在图中已省去了与该单元电路无关的其他元器件和有关的连线、符号,这样单元电路图就显得比较简洁、清楚,识图时没有其他电路的干扰。单元电路图中对电源、输入端和输出端已经加以简化
②单元电路图采用习惯画法,一看就明白,例如元器件采用习惯画法,各元器件之间采用最短的连线,而在实际的整机电路图中,由于受电路中其他单元电路中元器件的制约,有关元器件画得比较乱,有的在画法上不是常见的画法,有的个别元器件画得与该单元电路相距较远,这样电路中的连线很长且弯弯曲曲,造成识图和电路工作原理理解的不便。
③单元电路图只出现在讲解电路工作原理的书刊中,实用电路图中是不出现的。对单元电路的学习是学好电子电路工作原理的关键。只有掌握了单元电路的工作原理,才能去分析整机电路。
单元电路图识图方法
(1)有源电路识图方法
所谓有源电路就是需要直流电压才能工作的电路,例如放大器电路。对有源电路的识图首先分析直流电压供给电路,此时将电路图中的所有电容器看成开路(因为电容器具有隔直特性),将所有电感器看成短路(电感器具体通直的特性)。直流电路的识图方向一般是先从右向左,再从上向下。
(2)信号传输过程分析
信号传输过程分析就是信号在该单元电路中如何从输入端传输到输出端,信号在这一传输过程中受到了怎样的处理(如放大、衰减、控制等)。信号传输的识图方向一般是从左向右进行。
(3)元器件作用分析
元器件作用分析就是电路中各元器件起什么作用,主要从直流和交流两个角度去分析。
(4)电路故障分析
电路故障分析就是当电路中元器件出现开路、短路、性能变劣后,对整个电路工作会造成什么样的不良影响,使输出信号出现什么故障现象(如没有输出信号、输出信号小、信号失真、出现噪声等)。在搞懂电路工作原理之后,元器件的故障分析才会变得比较简单。
整机电路中的各种功能单元电路繁多,许多单元电路的工作原理十分复杂,若在整机电路中直接进行分析就显得比较困难,通过单元电路图分析之后再去分析整机电路就显得比较简单,所以单元电路图的识图也是为整机电路分析服务的。
❼ 电阻电路的一般分析方法
电路节点有很多支路是正常现象,分析是一样的,跟图画成上下左右还是斜着画没有关系。
❽ 电路分析。求电阻
你给出的图即是这里附上的图。
图中看出,这5个电阻组成了一个电桥,
当a,b间施加电压U时,对于2,3两点间的R5(300Ω),设R5两端电压为U1
由于R1/R3=R2/R4=300/300=1
那么电桥是平衡的,
这时U1=0
那么可以忽略R5这个电阻
这时你把图中R5去掉
则电路等效为
(R1与R3串联) 与 (R2和R4串联)再并联的电路
此时1/Rab=1(R1+R3)+1/(R2+R4)
1/Rab=1/600+1/600=1/300
故Rab=300Ω
❾ 电路或电子系统的建模与分析方法有哪些
电路可看作两部分:线性部分→输出u0,输入ui;非线性部分(开关网络) →输出ui,输入ur(调制波)。
分析:ui有两种电平,当S1、S4导通时,ui=E;
当S2、S3导通时,ui=-E;
(1)
由于开关函数S的存在,使得ui的幅值变化不连续,故对上式取开关周期平均值;
(2)
假设采用如图所示规则采样,则D(t)可推导如下(设载波频率为fW,对应周期为T
建模
建模就是建立模型,就是为了理解事物而对事物做出的一种抽象,是对事物的一种无歧义的书面描述。 建立系统模型的过程,又称模型化。建模是研究系统的重要手段和前提。凡是用模型描述系统的因果关系或相互关系的过程都属于建模