⑴ 矩阵的秩有几种求法,或者说是有几种常见的情况,每种
矩阵秩的求法很多,一般归结起来有以下几种:
1)通过对矩阵做初等变换(包括行变换以及列变换)化简为梯形矩阵求秩。此类求解一般适用于矩阵阶数不是很大的情况,可以精确确定矩阵的秩,而且求解快速比较容易掌握。
2)通过矩阵的行列式,由于行列式的概念仅仅适用于方阵的概念。通过行列式是否为0则可以大致判断出矩阵是否是满秩。
3)对矩阵做分块处理,如果矩阵阶数较大时将矩阵分块通过分块矩阵的性质来研究原矩阵的秩也是重要的研究方法。此类情况一般也是可以确定原矩阵秩的。
4)对矩阵分解,此处区别与上面对矩阵分块。例如n阶方阵A,R分解(Q为正交阵,R为上三角阵)以及Jordan分解等。通过对矩阵分解,将矩阵化繁为简来求矩阵的秩也会有应用。
5)对矩阵整体做初等变换(行变换为左乘初等矩阵,列变换为右乘初等矩阵)。此类情况多在证明秩的不等式过程有应用,技巧很高与前面提到的分块矩阵联系密切。
⑵ 矩阵的秩怎么求,顺便告诉我下方法,谢谢
用初等行变换来求矩阵的秩,
A=
1 2 1
1 0 -1
0 1 1 第2行减去第1行
~
1 2 1
0 -2 -2
0 1 1 第1行加上第2行,第2行加上第3行×2,交换第2和第3行
~
1 0 -1
0 1 1
0 0 0
那么矩阵有两个非零行,所以矩阵的秩R(A)=2
而n阶方阵的秩
R(A)<n的时候,行列式值|A|一定是等于0的
⑶ 矩阵的秩怎么求
矩阵的秩计算公式:A=(aij)m×n。矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。
矩阵一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中,在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。
旋转矩阵在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。
旋转矩阵是世界上着名的彩票专家、澳大利亚数学家底特罗夫研究的,它可以帮助您锁定喜爱的号码,提高中奖的机会。首先您要先选一些号码,然后,运用某一种旋转矩阵,将你挑选的数字填入相应位置。
如果选择的数字中有一些与开奖号码一样,将一定会中一定奖级的奖,当然运用这种旋转矩阵,可以最小的成本获得最大的收益,且远远小于复式投注的成本。
⑷ 矩阵秩怎么算的
A=(aij)m×n。
矩阵的秩计算公式是A=(aij)m×n。矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。
⑸ 求矩阵的秩,除了我写的这种,还有什么方法啊
求秩有三种方法:
你给的例子 。用初等变换秩不变 然后讨论未知数情况;比较简单;
特殊行列式:用加边法、累加写出结果 ,用行列式值是否等于零与满秩的关系;
实对称针用多角化再判断。
矩阵的运算:矩阵的最基本运算包括矩阵加(减)法,数乘和转置运算。被称为“矩阵加法”、“数乘”和“转置”的运算不止一种。给出 m×n 矩阵 A 和 B,可定义它们的和 A + B 为一 m×n 矩阵,等 i,j 项为 (A + B)[i, j] = A[i, j] + B[i, j]。
举例:另类加法可见于矩阵加法。若给出一矩阵 A 及一数字 c,可定义标量积 cA,其中 (cA)[i, j] = cA[i, j]。 例如这两种运算令 M(m, n, R) 成为一实数线性空间,维数是mn.若一矩阵的列数与另一矩阵的行数相等,则可定义这两个矩阵的乘积。
如 A 是 m×n 矩阵和 B 是 n×p矩阵,它们是乘积 AB 是一个 m×p 矩阵,其中(AB)[i, j] = A[i, 1] * B[1, j] + A[i, 2] * B[2, j] + ... + A[i, n] * B[n, j] 对所有 i 及 j。
例如此乘法有如下性质:(AB)C = A(BC) 对所有 k×m 矩阵 A, m×n 矩阵 B 及 n×p 矩阵 C ("结合律").(A + B)C = AC + BC 对所有 m×n 矩阵 A 及 B 和 n×k 矩阵 C ("分配律")。C(A + B) = CA + CB 对所有 m×n 矩阵 A 及 B 和 k×m 矩阵 C ("分配律")。
要注意的是:可置换性不一定成立,即有矩阵 A 及 B 使得 AB ≠ BA。对其他特殊乘法,见矩阵乘法。