㈠ 求三个数的平均数有那些计算方法
求三个数的平均数方法有以下三种。第一种:平均数=(a1+a2+…+an)/n
例如:2,3,4,3四个数的平均数,就用2+3+4+3/4=3,所以平均数就是3。
第二种:算术平均数
算术平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标。公式为:
平均数=(a1+a2+…+an)/n
如:3,4,5的平均数为:(3+4+5)/3=4
第三种:加权平均数
若n个数x1,x2,……xn的权分别为w1,w2,……wn,则这n个数的加权平均数是(X1W1+X2W2+……+XnWn)/(W1+W2+……+Wn)
㈡ 统计学中,求平均数的方法选择
统计学中,求平均数的方法:
简单算术平均数
加权算术平均数
简单调和平均数
加权调和平均数
简单几何平均数
加权几何平均数。
1、简单算术平均数是将各单位的标志值xi直接相加得出标志总量,再除以总体单位数n,就得到简单算术平均数。简单算术平均数运用条件:统计资料未分组时例:某公司下属各店职工按工龄分组情况。
2、加权算术平均数是具有不同比重的数据(或平均数)的算术平均数。就是将各组标志值乘以相应的各组单位数或权数求出各组标志总量,然后将其加总求得总体标志总量,同时把各组单位数或权数相加求出总体单位总量,最后用总体标志量除以总体单位总量。加权算术平均数主要用于处理经分组整理的数据。设原始数据为被分成K组,各组的组中的值为X1,X2,...,Xk,各组的频数分别为f1,f2,...,fk,加权算术平均数的计算公式为:M=(X1f1+X2f2+...+Xkfk)/(f1+f2+...+fk)。
3、简单调和平均数(Harmonic Average)又称倒数平均数,是总体各统计变量倒数的算术平均数的倒数。调和平均数是平均数的一种。但统计调和平均数,与数学调和平均数不同,它是变量倒数的算术平均数的倒数。由于它是根据变量的倒数计算的,所以又称倒数平均数。调和平均数也有简单调和平均数和加权调和平均数两种。在数学中调和平均数与算术平均数都是独立的自成体系的。计算结果前者恒小于等于后者。 因而数学调和平均数定义为:数值倒数的平均数的倒数。但统计加权调和平均数则与之不同,它是加权算术平均数的变形,附属于算术平均数,不能单独成立体系。且计算结果与加权算术平均数完全相等。 主要是用来解决在无法掌握总体单位数(频数)的情况下,只有每组的变量值和相应的标志总量,而需要求得平均数的情况下使用的一种数据方法。
4、加权调和平均数是先计算总体中变量值倒数的加权算术平均数,然后求其倒数。加权调和平均数适用于分组资料的计算,其计算公式为:平均数=(M1+M2+…+Mn)/(M1/X1+M2/X2+…+Mn/Xn)=∑Mi/∑(Mi/Xi)。具体计算方法(1)先计算出各个变量值的倒数,即1/X;(2)计算上述各个变量值倒数的算术平均数,即[∑(1/X)]/n;(3)再计算这种算术平均数的倒数,即n/[∑(1/X)],就是调和平均数。
5、根据统计资料的不同,几何平均数也有简单几何平均数和加权几何平均数之分。简单几何平均数是n个变量值连乘积的n次方根。
6、加权几何平均数适用于变量各值具有不同的权数的情况。加权几何平均数,是统计学中的一种动态平均指标,多是指社会经济现象的同质总体在时间上变动速度的平均数。加权几何平均数是各标志值fi次方的连乘积的次方根。当各个变量值的次数(权数)不相同时,应采用加权几何平均数 。
㈢ 计算平均数的方法
方法1:全部加起来除以7;
方法2:每个数中取出一个100,则剩下的数为:2,1,-1,-2,3,-2,-1。它们的平均数为0,则原来那些数的平均数为100+0=100!
㈣ 平均法怎么算
平均法就是运用几何平均数求出预测目标的发展速度,然后进行预测。它适用预测目标发展过程一贯上升或下降,且逐期环比率速度大体接近的情况。
是n个价格变量连乘积的n次方根。 在统计研究中常用以计算平均发展速度。在计算不同时期年度平均价格上涨幅度时,也用这种方法。
相关特点
1、几何平均数受极端值的影响较算术平均数小。
2、如果变量值有负值,计算出的几何平均数就会成为负数或虚数。
3、它仅适用于具有等比或近似等比关系的数据。
4、几何平均数的对数是各变量值对数的算术平均数。
以上内容参考网络-几何平均法
㈤ 平均算法是怎么算的
其计算公式如下:
MA =(C1 + C2 + C3 + ... + Cn)的/ N
[注释] C:一天的收盘价N:移动平均周期移动
>平均法:“平均”是指最近n天,该行的收盘价的算术平均值; “移动”是指在计算中,始终采用的价格数据的最后n天。因此,数组(最近n天的收市价格)随着交易日的新变化,一天一天起的平均值。在计算均线,最近n天的通常是收盘价。新阵列的收市价每日补充说,和第n +1个收市价着倒计时被摘了下来,然后,再由新n的总和计算,得到的平均值(n天平均值)的新的一天。
㈥ 数值平均数的计算方法有哪几种
算数平均法,加权平均法,移动平均法,和修剪平均法。
㈦ 求平均数的简便方法
抛砖引玉——求平均数的简便方法
冀教版第八单元统计第一节课教学平均数。根据求平均数的一般方法得出公式为:总数量÷总份数=平均数。其中求总数量需要把统计的各部分数据加起来,然后再用所的得的和除以总份数就等于平均数。
举例如下:2003年某市举办小学生篮球友谊赛,运动员的身高如下:153 、 138 、153 、 163、 165 、 158 、 166 、 168 、 158 。 (单位:厘米)运动员的平均身高是多少?
基本解法:(153 + 138 +153+ 163+ 165+ 158+ 166 + 168+ 158)÷9
=1422÷9
=158(厘米)
学生试算时,我巡视发现对于较复杂的数据之和的计算过程比较繁琐,很容易出错。针对这种情况,我提倡学生用简便解法,学生有利用加法交换律凑整十整百的,还有的学生把众多数据中相同的数提出来用乘法计算的,但毕竟不是所有的数据都具备简算的特征,所以学生感觉还是计算繁琐枯燥。那么有没有更简便的计算方法?对于这样比较大的数据怎样才能从根本上解决问题呢?首先让学生观察数据的特点:每个数都是大于大于100的数,都包含100,
能不能求出后两位数的平均数,求出的这个平均数与原数的大小有什么关系?这样抛砖引玉,引导学生简便计算如下:
(53 + 38 +53+ 63+ 65+ 58+ 66 + 68+ 58)÷9+100
=522÷9+100
=58+100
=158(厘米)
由此得出对于较复杂的数据求平均数的简便方法为:求出后几位数的平均数再加上各原始数据原有的整数部分。
为了加强对这种计算方法的巩固,课堂上继续让学生计算本次期中考试的几位学生的平均成绩,这几位学生的期中考试的成绩分别是93 95 94 99 99 96,学生出现如下计算过程:
(3+5+9+9+6)÷6+90
=36÷6+90
=6+90
=96
对于已经变化了特征的数字,学生能够举一反三,顺利解答。同时这种求平均数简便方法的探索,为学生接触到负数和以后进一步的学习做了铺垫。
数学冲浪
6名同学参加踢毽子比赛,王小波在计算平均成绩时,忘掉了自己和自己踢的84下,计算结果为平均每人踢了72下。你能算出这6名同学平均每人踢了多少下吗?
72下是5个人平均每人踢的,那5个同学一共踢72×5=360下,6名同学踢(360+84)下,则这6名同学平均每人踢(72×5+84)÷6=74下。
简便算法:84和72都含有整十数70,按前面的简便方法可以先求出70以外的数的平均数,在加上70就是这6名同学的平均数:(2×5+14)÷6+70=(10+14)÷6+70=24÷6+70=4+70=74
㈧ 平均数的计算方法
算术平均数
arithmetic mean
算术平均数是指在一组数据中所有数据之和再除以数据的个数。它是反映数据集中趋势的一项指标。
把n个数的总和除以n,所得的商叫做这n个数的算术平均数。[1]
公式:
几何平均数
geometric mean
n个观察值连乘积的n次方根就是几何平均数。根据资料的条件不同,几何平均数分为加权和不加权之分。[1]
公式:
调和平均数
harmonic mean
调和平均数是平均数的一种。但统计调和平均数,与数学调和平均数不同。在数学中调和平均数与算术平均数都是独立的自成体系的。计算结果两者不相同且前者恒小于后者。
因而数学调和平均数定义为:数值倒数的平均数的倒数。但统计加权调和平均数则与之不同,它是加权算术平均数的变形,附属于算术平均数,不能单独成立体系。且计算结果与加权算术平均数完全相等。 主要是用来解决在无法掌握总体单位数(频数)的情况下,只有每组的变量值和相应的标志总量,而需要求得平均数的情况下使用的一种数据方法。[1]
公式:
加权平均数
weighted average
加权平均数是不同比重数据的平均数,加权平均数就是把原始数据按照合理的比例来计算,若 n个数中,x1出现f1次,x2出现f2次,…,xk出现fk次,那么
叫做x1、x2、…、xk的加权平均数。f1、f2、…、fk是x1、x2、…、xk的权。
公式:
,其中
。f1、f2、…、fk叫做权(weight)。
平均数是加权平均数的一种特殊情况,即各项的权相等时,加权平均数就是算术平均数。[1]
平方平均数
平方平均数是n个数据的平方的算术平均数的算术平方根。
公式:
指数平均数
指标概述
指数平均数[EXPMA],其构造原理是对股票收盘价进行算术平均,并根据计算结果来进行分析,用于判断价格未来走势得变动趋势。
EXPMA指标是一种趋向类指标,与平滑异同移动平均线[MACD]、平行线差指标[DMA]相比,EXPMA指标由于其计算公式中着重考虑了价格当天 [当期]行情得权重,因此在使用中可克服其他指标信号对于价格走势得滞后性。同时也在一定程度中消除了DMA指标在某些时候对于价格走势所产生得信号提前性,是一个非常有效得分析指标。[1]
中位数
中位数(median)
是刻划平均水平的统计量,设
是来自总体的样本,将其从小到大排序为
则中位数定义为:
n为奇数时,
n为偶数时,