1. 基于多项式的图像配准的主要步骤包括哪些每个步骤在envi中是如何进行操作的
二值化在ENVI中可以通过bandmath来实现。bandmath是利用简单的算术表达式来解决波段运算的功能。二值化的实现,需要用到bandmath的逻辑运算功能,具体的表达式的书写,你可以查看帮助文件,或者找一本操作指南看看。举个例:将某一波段中灰度值大于等于100的像元赋予10,其他的赋予20。那么表达式就写为:(b1ge100)*20+(b1lt100)*10ge、lt分别表示“大于等于”和“小于”括号内是一个逻辑运算表达式,所以其返回值是0(假)和1(真)。那么,一旦某一像元灰度值大于等于100,第一个括号返回值为1,加号之前的运算的结果就为20;当然,此时该像元得灰度值代入到第二个括号内计算的返回值为0。这样,针对着一个像元,其最终输出之后为20。bandmath就是这样一个一个像元进行计算的。
2. 练习图像几何校正(Geometric Correction)
几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图坐标系统赋予图像数据的过程,称为地理参考(Geo-referencing)。由于所有地图投影系统都遵从于一定的地图坐标系统,所以几何校正过程包含了地理参考过程。
1.几何校正计算模型(Geometric Correction Model)
ERDAS提供的图像几何校正计算模型有10种,具体功能如表5-1所列。
表5-1 几何校正计算模型与功能
注:DPPDB——Digital Point Positioning Data Base。
以资源卫星图像校正为例,介绍的是以已经具有地理参考的SPOT图像为基础,进行Landsat TM图像校正过程。
2.图像几何校正步骤(Geometric Correction Process)
(1)显示图像文件
在Viewer #1中打开需要校正的Landsat TM图像:tmAtlanta.img;
在Viewer#2中打开作为地理参考的校正过的SPOT图像:panAtlanta.img,如图5-11所示。
图5-11 打开两幅图像后的窗口
图5-12 Set Geo Correction Input File对话框
(2)启动校正模块(Geometric Correction Tool)
在ERDASIMAGINE系统中进行图像几何校正,通常有两种途径启动几何校正模块。
ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction,打开Set Geo Correction Input File对话框(图5-12);
ERDAS图标面板工具条:点击DataPrep图标→Image Geometric Correction,打开SetGeo Correction Input File对话框(图5-12)。
图5-13 Viewer Selection Instiuctions指示器
点击Select Viewer,出现Viewer Selection Instiuctions指示器窗口(图5-13),左键点击Viewer #1窗口下打开的tmAtlanta.img文件,出现Set Geometric Model几何校正模型对话框(图5-14),选择Polynomial多项式变换(同时做投影变换)数学模型,同时出现Geo Correction Tools [图5-15(a)]和Polynomial Model Properties对话框[图5-15(b)],Polynomial Order改为2,定义投影参数(Projection)(略);点击Apply,close,出现GCPTool Reference Setup对话框(图5-16)。选择视窗采点模式:Existing Viewer,单击OK,自动打开Viewer Selection Instiuctions指示器(图5-13),在显示作为地理参考图像panAtlanta.img的Viewer#2中点击左键,打开Reference MapInformation提示框(图5-17)(显示参考图像的投影信息),点击 OK(关闭Reference Map Information提示框)。
整个屏幕将自动变化为如图5-18所示的状态:其中包含两个主视窗、两个放大窗口、两个关联方框(分别位于两个视窗中,指示放大窗口与主视窗的关系)、控制点工具对话框、几何校正工具等。表明控制点工具被启动,进入控制点采集状态。
图5-14 Set Geometric Model对话框
图5-15 (a)Geo Correction tools对话框
图5-15 (b)Polynomial Model Properties对话框
图5-16 GCP Tool ReferenceSetup对话框
图5-17 Reference Map Information对话框
图5-18 Reference Map Information窗口
说明:该实例是采用视窗采点模式,作为地理参考的SPOT图像已经含有投影信息,所以,这里不需要定义投影参数。如果不是采用视窗采点模式,或者参考图像没有包含投影信息,则必须在这里定义投影信息,包括投影类型及其对应的投影参数。
其中,多项式模型(Polynomia1)属于一种近似校正方法,在卫星图像校正过程中应用较多。校正时先根据多项式的阶数,在影像中选取足够数量的控制点,建立影像坐标与地面坐标的关系式,再将整张影像进行转换。在调用多项式模型时,需要确定多项式的次方数(Polynomial 0rder),一般多用低阶多项式(三次以下),以避免高阶方程数值不稳定的状况。此外各阶多项式所需控制点的数量,除满足要求的最少控制点数外,一般还需额外选取一定数量的控制点,以使用最小二乘平差求出较为合理的多项式系数。最少控制点数计算公式为(t+1)×(t+2)/2,其中t为次方数,即1次方方程最少需要3个控制点,2次方最少需要6个控制点,3次方需要10个控制点,依次类推。
此校正方式会受到影像面积及高程变化程度的影响,如果影像范围不大且高程起伏不明显,校正后的精度一般会满足需求,反之则精度会明显降低。因此多项式模型一般适用于平地或精度要求相对较低的校正处理。
(3)采集地面控制点(Ground Control Point)
在图像几何校正过程中,采集控制点是一项非常重要和相当繁重的工作,具体过程如下:
1)在GCP工具对话框中点击Select GCP图标
2)在GCP数据表中将输入GCP的颜色(Color)设置为比较明显的红色;
3)在Viewer#1中移动关联方框位置,寻找明显的地物特征点,作为输入GCP;
4)在GCP工具对话框中点击Create GCP图标
5)不断重复上述步骤,采集若干GCP,直到满足所选几何校正模型为止(图5-19)。
关于GCP工具对话框,还需要说明几点:
(a)输入控制点(Input GCP)是在原始文件视窗中采集的,具有原文件的坐标系统;而参考控制点(Reference GCP)是在参考文件视窗中采集的,具有已知的参考坐标系统,GCP工具将根据对应点的坐标值自动生成转换模型。
(b)在GCP数据表中,残差(Resials)、中误差(RMS)、贡献率(Contribution)及匹配程度(Match)等参数,是在编辑GCP的过程中自动计算更新的,用户是不可以任意改变的,但可以通过精确GCP位置来调整。
图5-19 GCP Tool对话框与GCP数据表
(c)每个IMG文件都可以有一个GCP数据集与之相关联,GCP数据集保存在一个栅格层数据文件中;如果IMG文件有一个GCP数据集存在的话,只要打开GCP工具,GCP点就会出现在视窗中。
(d)所有的输入GCP都可以直接保存在图像文件中(Save Iiput),也可以保存在控制点文件中(Save InputAs)。如果是保存在文件中,调用的方法如(c)所述,如果是保存在GCP文件中,可以通过加载调用(Load Input)。
(e)参考GCP也可以类似地保存在参考图像中(Save Reference)或 GCP文件中(Save Reference As),便于以后调用。
(f)本实验所选的控制点为6个,实际实验的时候可以选择3个控制点,学生容易在一节课之内完成,更多控制点的实现可以安排在课下作业。
(4)采集地面检查点
以上所采集的GCP的类型为Control Point(控制点),用于控制计算、建立转换模型及多项式方程。下面所要采集的GCP的类型均是Check(检查点),用于检验所建立的转换方程的精度和实用性。依然在GCP Tool对话框状态下:
1)在GCP Tool菜单条中确定GCP类型:Edit→Set Point Type→Check。
2)在GCP Tool菜单条中确定 GCP匹配参数(Matching Parameter):Edit→Point Matching→打开GCP Matching对话框(图5-20)。
图5-20 GCP Matching对话框
在GCP Matching对话框中,需要定义下列参数:①匹配参数(Matching Parameters);②最大搜索半径(Max.Search Radius)为3;③搜索窗口大小(Search Window Size):X:5Y:5;④约束参数(Threshold Parameters):设相关阈值(Correlation Threshold):0.8;⑤删除不匹配的点(Discard Unmatched Point):Active。
3)在匹配所有/选择点(Match All/Selected Point)选项组中设从输入到参考(Reference from Input)或从参考到输入(Input from Reference)。
4)Close(关闭GCPMatching对话框)。
5)确定地面检查点:在GCP Tool工具条中选择Create GCP图标,并将Lock图标打开,锁住Create GCP功能,如同选择控制点一样,分别在Viewer #l和Viewer #2中定义5个检查点,定义完毕后点击Unlock图标,解除Create GCP功能。
6)计算检查点误差:在GCP Tool工具条中点击Compute Error图标,检查点的误差就会显示在GCP Tool的上方,只有所有检查点的误差均小于一个像元(Pixel),才能继续进行合理的重采样。一般来说,如果你的控制点(GCP)定位选择比较准确的话,检查点匹配会比较好,误差会在限差范围内。否则,若控制点定义不精确,检查点就无法匹配,误差会超标。
(5)计算转换模型(Compute Transformation)
在控制点采集过程中,一般是设置为自动转换计算模式,所以,随着控制点采集过程的完成,转换模型就自动计算生成,下面是转换模型的查阅过程:
1)在Geo-Correction Tools对话框中点击Display Model Properties图标
2)打开Polynomial Model Properties(多项式模型参数)对话框见图5-15(b);
3)在多项式模型参数对话框中查阅模型参数,并记录转换模型;
4)Close(关闭模型特性对话框,进入图像重采样阶段)。
(6)图像重采样(Resample the Image)
图像重采样简介(Introction to Image Resample)
重采样过程就是依据未校正图像像元值计算生成一幅校正图像的过程,原图像中所有栅格数据层都将进行重采样。ERDAS IMAGINE提供3种最常用的重采样方法:
1)Neatest Neighbor:邻近点插值法,将最邻近像元值直接赋予输出像元;
2)Bilinear Interpolation:双线性插值法,用双线性方程和2×2窗口计算输出像元值;
3)Cubic Convolution:立方卷积插值法,用立方方程和4×4窗口计算输出像元值;
图像重采样过程(Process of Image Resample)
1)首先,在Geo Correction Tool对话框中选择Image Resampl图标
2)打开Image Resample(图像重采样)对话框。
3)然后,在Image Resample对话框中,定义重采样参数:①输出图像文件名(Output File):rectify.img;②选择重采样方法(Resample Method):Nearest Neighbor;③定义输出图像范围(output Corners):ULX,ULY,LRX,LRY;④定义输出像元大小(Output CellSize):X:30.Y:30;⑤设置输出统计中忽略零值:Ignore Zero in Stats;⑥设置重新计算输出缺省值(Recalculate Output Default):SkipFactor.10。
4)单击OK(关闭Image Resample对话框,启动重采样进程)。
(7)保存几何校正模式(Save Rectification Mode)
在Geo Correction Tools对话框中点击Exit按钮,退出图像几何校正过程,按照系统提示选择保存图像几何校正模式,并定义模式文件(*.gm),以便下次直接使用。
(8)检验校正结果(Verify Rectification Result)
检验校正结果的基本方法是:同时在两个视窗中打开两幅图像,其中一幅是校正以后的图像,一幅是当时的参考图像,通过视窗地理链接(Geo Link/Unlink)功能及查询光标(Inquirecursor)功能进行目视定性检验。具体过程如下:
1)打开两个平铺视窗(Open and Tiletwo Viewer),视窗菜单条:File→Open→RasterOption→图像文件,ERDAS图标面板:Session→TileViewer→平铺视窗;
2)建立视窗地理链接关系(Geo Link two Viewer),在Viewer #1中:按住右键→快捷菜单→GeoLink/Unlink,在Viewer #2中:点击左键,建立与Viewer #1的链接;
3)通过查询光标进行检验(Check with Inquire Cursor),在Viewer #1中:按住右键→快捷菜单→InquireCursor→打开光标查询对话框,在Viewer #1中:移动查询光标,观测其在两屏幕中的位置及匹配程度,并注意光标查询对话框中数据的变化,如果满意的话,关闭光标查询对话框。
3. 数据处理
4.3.1 数据源情况
4.3.1.1 卫星影像数据情况
本项目数据源是由国土资源部信息中心提供的 2005~2007 年 SPOT 5_2.5 m 分辨率影像数据。覆盖工作区的 SPOT 5 卫星影像数据共计 79 景(图 4-2),所接收影像均有 4% 以上的重叠区域;影像信息丰富,无明显噪声、斑点和坏线;云、雪覆盖量均小于 10%,且未覆盖城乡结合部等重点地区;东部平原地区大部分影像覆盖有程度不同的雾或霾,但整体地类信息能够区分;影像数据接收侧视角一般小于 15°,平原地区不超过 25°,山区不超过 20°,基本满足技术规范对影像接收的要求。
图 4-2 河南省 SPOT 5 影像数据分布示意图
图 4-3 影像接收时间分布
由于本次 SPOT 5 卫星影像接收时间跨度大,时相接收差异大,79 景影像多集中于春季和秋季(图 4-3),但部分影像由于接收时间不是河南地区最佳季节,存在着这样或那样的问题,见表 4-1:
表 4-1 影像数据接收信息及数据质量评述表
续表
4.3.1.2 DEM 数据情况
覆盖河南全省的 1∶5 万数字高程模型(DEM)共计 464 幅。
首先,对 DEM 是否齐全及 DEM 的现势性等进行了全面检查;其次,对相邻分幅 DEM 是否有重叠区域以及重叠区域的高程是否一致、接边后是否出现裂隙现象等信息进行了检查;第三,项目组对每幅 DEM 是否有完整的元数据以及对数据的地理基础、精度、格网尺寸等信息是否齐全等进行了全面检查。
由于 1∶5 万 DEM 原始数据是 GRID 标准格式,数学基础为 1980 年西安坐标系,1985 年国家高程基准,6°分带。鉴于以上数据格式和项目实施方案要求,项目组对涉及工作区的 464 幅DEM,分别按照 19°带和 20°带进行镶嵌及坐标系转换,之后再进行拼接、换带及投影转换处理,得到覆盖河南全省的、满足对项目区影像进行正射校正需求的、中央经线为 114°、1954 北京坐标系、1985 年国家高程基准的河南省 1∶5 万 DE(M图 4-4)。
图 4-4 河南省 1∶5 万 DEM
经过对拼接好的 DEM 进行全面检查,本项目使用的 DEM 数据覆盖河南全省,不存在缺失、黑边等现象,基本满足本项目影像数据正射校正的需要。
4.3.2 数据配准
目前影像配准技术大致分为两大类,基于灰度的方法和基于特征的方法。大多数基于灰度的方法采用互相关技术或傅立叶变换技术来实现。影像配准采用的是 ERDAS 9.1 中的自动配准模块(AutoSync)。在自动检测结束后,将其在参考图像上寻找出来同样需要很大的工作量。在不能完全自动实现匹配的情况下,如果能够大致计算出需要寻找和精确调整标注的区域,同样能够减少很大工作量。通过使用多项式粗略计算出两张影像的对应关系就可以解决这一问题。
根据 ERDAS 系统要求,我们最少需要 3 个点就可以在两张卫星影像间建立一个粗略的对应关系。使用至少 3 个点建立起正算多项式模型后,便可以将自动检测出来的控制点迅速对应到参考影像上,只需要在很小的范围内调整就可以精确标注出其在参考影像上的位置。图 4-5 左侧为原始影像上自动检测点,右侧为参考影像上粗定位点,需要进行调整。
图 4-5 配准
虽然计算机的引入可以大量节约劳动,但是因为技术所限,并不能解决矫正和配准所有环节的全部问题,从而将测绘工作者彻底解放出来。
本次项目生产过程中,针对 SPOT 5_10 m 多光谱数据重采样成间隔为 2.5 m,重采样方法采用双线性内插法。以景为配准单元,以 SPOT 5_2.5 m 全色数据为配准基础,将 SPOT 5 多光谱数据与之配准。随机选择配准后全色与多光谱数据上的同名点,要求配准误差平原和丘陵地区不超过 0.5 个像元,山区适当放宽至 1 个像元。配准控制点文件命名使用“景号 + MULTI 和 PAN”,如“287267MULTI”。配准文件命名使用“景号 + MATCH”,如“287267MATCH”。
影像配准采用的是 ERDAS 9.1 中的自动配准模块(AutoSync)。首先,在单景影像的四角部位手动选取四个配准控制同名点,然后由软件生成自动配准控制点,剔除其中误差较大的控制点后,进行自动配准(图 4-6)。配准完成后,采用软件提供的“拉窗帘”的方式对整景影像自上而下、自左至右进行配准精度检查(图 4-7)。
总结配准的工作,可以看到基本上分为如下几步:①标注至少 3 个粗匹配控制点;②设置检测参数;③进行自动检测;④人工调整和保存控制点;⑤进行配准。其中第 4 步仍然需要人工参与,主要的问题在于两点:一是精度是否真正是人感官上的特征点方面存在问题;二是参考图像上的控制点仅仅是粗略对应标注,人工无法手动调整至精确对应位置,因此,暂时的配准工作仅仅部分减轻了人工工作量,但不可能完全由计算机完成配准工作。
图 4-6 影像配准
图 4-7 影像配准精度“拉窗帘”检查
4.3.3 数据融合
4.3.3.1 融合前数据的预处理
获取完整项目区的卫星影像数据时,由于接收时间跨度较大,数据时相差别较大,加上空中云、雾或霾的干扰以及地面光照不均匀等因素,造成景与景之间的影像光谱和纹理特征差别较大。为使影像纹理清晰,细节突出,提高目视解译精度等,在数据融合前必须对数据进行预处理。
SPOT 5 全色波段数据处理的目的是增强局部灰度反差、突出纹理、加强纹理能量和通过滤波来提高纹理细节。
(1)线性变换。经过线性拉伸处理的影像数据,既增强局部灰度反差又保持原始灰度间的相对关系。
图 4-8 线性变换
设A1、A2为输入影像的嵌位控制值,B1、B2为变换后影像最低、最高亮度值(图4-8),输入影像的亮度值A1~A2被拉伸为B1~B2范围,其中输入亮度0~A1及A2~255分别被变换为B1、B2,如果赋值B1=0、B2=255,则拉大了输入影像的动态范围,从而反差得到增强,保持了输入影像灰度间的线性关系。通过线性拉伸将位移A1变换为0,而将A2变为255;这样既没有改变A1到A2之间灰度值的相对关系,又扩展了直方图的动态范围,从而增强影像结构的细微突变信息。
(2)纹理增强。纹理能量增强目前主要靠高通滤波来实现,在空域增强中滤波器选择是关键。不同影像地貌、地物选择的滤波核各异。一般地,在地形高起伏地区,地理单元比较宏观,采用的滤波器一般较大,能够反映地理单元的宏观特点,选择较小的滤波核会破坏整体的地貌外形。在地理单元分布细碎,地貌细腻,选择滤波器相对应较小,否则无法表现细碎的纹理结构。在纹理能量增强时应该避免增强过剩,否则影像细节会过于饱和,使纹理丧失,达不到增强细节的目的。以下滤波核是本次用到的边缘增强滤波算子,应用效果比较好。如图4-9所示。
图 4-9 滤波增强
(3)多光谱数据处理。在融合影像中,多光谱数据的贡献是其光谱信息。融合前主要以色彩增强为主,调整亮度、色度、饱和度,拉开不同地类之间的色彩反差,对局部的纹理要求不高,有时为了保证光谱色彩,还允许削弱部分纹理信息。
4.3.3.2 影像融合
目前用于多源遥感数据融合的方法很多,从技术层次来分,可以包括像元级融合、特征级融合和决策级融合三个层次。像元级融合有HIS变换、主分量变换、假彩色合成、小波变换、加权融合等方法;特征级融合有Bayes、决策法、神经网络法、比值运算、聚类分析等方法;决策级融合有基于知识的融合、神经网络、滤波融合等方法。从融合算法上分,可分为对图像直接进行代数运算的方法,如加权融合法、乘积融合法、Brovey变换融合法等;第二种是基于各种空间变换的方法,如HIS变换融合法、PCA变换融合法、Lab变换融合法等;第三种是基于金字塔式分解和重建的融合方法,如拉普拉斯金字塔融合法、小波变换融合法。
本项目所使用数据为SPOT5数据,缺少蓝波段多光谱,对数据采用了自然色模拟方法,在土地利用资源调查中,多光谱信息可以突出地反映土地利用类型的要素信息,提高影像的可判读性,便于从图形、纹理特征及光谱特征进行综合判别分析。一般遥感卫星多光谱传感器波谱范围覆盖整个可见光部分,即蓝、绿、红波段。而SPOT系列遥感卫星其多光谱覆盖范围在可见光部分仅从绿到红波段,缺少蓝波段。在利用遥感卫星影像进行土地利用资源调查时,多光谱信息要求必须以人眼可见的自然色表达,而不允许用伪彩色和红外彩色模拟,以便于非遥感测绘人员的判读与实地调查。对于通常的SPOT系列遥感卫星的自然色模拟方法,往往仅靠不同波段组合,以人眼目视判别、感知来调整色调。作业人员的先验知识作色调调整,作业人员经验欠缺时,色调调校失真较大;二是标准难以定量统一,不同调校时间、人员,不同景影像的拼接,由于感知的差异都难以达到同一或近似的标准。通过分析全省SPOT5数据特征,本次影像融合处理主要采用了乘积变换融合和Andorre融合。
Andorre融合采用的是视宝公司提供的Andorre融合方法,具体步骤为:
步骤1 对全色影像先做正态化处理。等价于Wallis滤波及增强局部(纹理增强)与全局对比度。
步骤2 按下面公式融合(P是正态化处理后的全色影像,B1是绿波段,B2是红波段,B3是近红外波段)。
ERDAS 中模块计算公式:
§ 公式一(蓝通道):
§ 公式二(绿通道):
§ 公式三(红通道):
步骤 3 按下面公式完成伪自然色转换:
ERDAS 中模块计算公式:
§ 公式一(红通道):
§ 公式二(绿通道):
§ 公式三(蓝通道):
步骤 4 对步骤 3 生成的各个通道执行直方图拉伸处理。通常,线性直方图拉伸可以满足这种彩色影像的调整,需要根据影像目视效果定义阈值。阈值的选择应该避免在平衡其他颜色造成的像素过饱和。或在 Photoshop 中调整影像色调、亮度及对比度等直至满足要求。
通过 ERDAS 中 Model 实现其算法(图 4-10)。
4.3.3.3 融合影像后处理
后处理主要采用以下 5 种方法:
(1)直方图调整。对反差较低、亮度偏暗的融合影像,调整输入输出范围,改变反差系数进行线性拉伸,使其各色直方图达到接近正态分布。输出范围一般都定为 0~255,而在输入范围的选择中,对低亮度端的截去应慎重,可以消除部分噪声。
(2)USM 锐化。通过变化阈值、半径、锐化程度增强地物边缘特征。注意阈值和半径的设定值不宜过大,锐化程度可根据不同地区影像特点适当选取。通过软件的预览功能可以判断参数选择得是否合适。城乡结合部、居民点、道路和耕地边界是需要重点突出的地物,必须保证清晰可辨,进一步改善总体效果。
(3)彩色平衡。经过融合运算后,影像或多或少会带有一定程度的偏色,需要通过调整彩色平衡加以改正。
(4)色度饱和度调整。由于 SPOT 5 影像融合后存在大量的洋红色,与实地颜色不一致的,可以通过改变色度、饱和度、明度等将其转变为土黄色,使其更接近于真实颜色。
(5)反差增强。通过亮度和对比度调整,可以增强地物间的反差,使不同地类更易区分。
通过融合影像后处理,进一步改善影像的视觉效果,使整景影像色彩真实均匀、明暗程度适中、清晰,增强专题信息,特别是加强纹理信息。
图 4-10 融合处理算法
4.3.4 正射校正模型选择与处理
4.3.4.1 正射纠正的基本模型
一般对推扫式遥感卫星影像的正射纠正有严密纠正模型和变换关系纠正模型两大类。严密纠正模型根据卫星轨道参数、传感器摄影特征以及成像特点,由传感器在获取影像瞬间的位置、方位等因素,建立起像点与地面之间的共线关系,并由此共线方程解求像点或地面点的纠正。而变换关系纠正模型是一种传统的几何纠正方式,不考虑成像的特性,它通过地面控制点与影像同名点计算出不同变换式的变换系数,从而将变形的原始影像拟合到地面坐标中。
严密纠正模型有基于多项式的共线方程、基于卫星轨道参数的纠正方法、基于光束法的区域网平差等方法;变换关系纠正模型有多项式纠正、有理函数多项式、有理函数多项式区域网平差等方法。其中,区域网平差是用较少的控制点以多景影像组成区域网进行平差的纠正方法。
(1)基于多项式的共线方程纠正方法。改正原始影像的几何变形,采用像素坐标变换,使影像坐标符合某种地图投影和图形表达方式和像素亮度值重采样。在摄影瞬间,传感器、影像、地面三者之间,以共线方程反映了成像时地面点和像点之间一一对应的关系。
由于推扫式成像是当前大多数遥感卫星采用的主流成像方式,那么整景影像为多中心投影,每条扫描线是中心投影。用共线方程表达为
推扫式成像的每一扫描线外方位元素均不同,且y值恒为0。正射纠正时必须求解每一行的外方位元素,利用共线方程得到与地面点相对应的像点坐标,加入DEM后对影像进行纠正。
一般可以认为,在一定时间内,遥感卫星在轨道运行时,空间姿态变化是稳定的,那么6个外方位元素的变化是时间的函数。由于推扫式影像y坐标和时间之间有固定的对应关系,即每行扫描时间相同,所以可将第i行外方位元素表示为初始外方位元素(φi,wi,ki)和行数y的函数,而这个函数可以用二次多项式函数来表示,即
该方法需获得初始外方位元素可从星历文件中得到,如SPOTS影像星历,在DIM,CAP格式文件中。
(2)多项式纠正方法。多项式纠正方法是一种传统的变换关系纠正方法。多项式用二维的地面控制点计算出与像点的变换关系,设定任意像元在原始影像中坐标和对应地面点坐标分别为(x,y)和(X,Y),以x=Fx(x,y),y=Fy(x,y)数学表达式表达,如果该数学表达式采用多项式函数来表达,则像点坐标(x,y)与地面点坐标(X,Y)建立的多项式函数为
式中(:a0,a1,a2,a3,……,an)(,b0,b1,b2,b3,……,bn)——变换系数。
一般多项式阶数是1阶到5阶的,式中表达的为3阶。所需控制点数N与多项式阶数n的关系为:N(=n+1)(n+2)/2,即1阶需3个控制点,2阶需6个控制点,3阶需10个控制点。
多项式纠正考虑二维平面间的关系差,因此,对于地形起伏高差较大的区域,并不能改正由地形起伏引起的投影误差,纠正后的精度就不高。另外考虑入射角的影响,多项式纠正对于地形起伏较大地区并不适宜。
(3)有理函数纠正方法。有理函数纠正方法是一种变换关系的几何纠正模型,以有理函数系数(Rational Function Coefficient)将地面点P(La,Lb,Hc)与影像上的点(pIi,Sa)联系起来。对于地面点P,其影像坐标(pIi,Sa)的计算始于经纬度的正则化,即
正则化的影像坐标(x,y)为
求得的影像坐标为
有理函数纠正不仅以较高的精度进行物方和像方的空间变换,相对于多项式纠正方法考虑了地面高程,相对于基于共线方程模型使复杂的实际传感器模型得以简化,便于实现。
(4)区域网平差纠正方法。区域网平差,首先将三维空间模型经过相似变换缩小到影像空间,再将其以平行光投影至过原始影像中心的一个水平面上,最后将其变换至原始倾斜影像,从而进行以仿射变换建立误差方程,包括每景影像的参数和地面影像坐标的改正,组成法方程,进行平差计算改正。基于模型的区域网平差,是通过影像之间的约束关系补偿有理函数模型的系统误差。区域网平差要合理布设控制点,在景间需有一定数量的连接点,所需控制点数量较少。
4.3.4.2 正射纠正
本次遥感影像正射纠正采用专业遥感影像处理软件ERDAS提供的LPS正射模块进行的,纠正过程如图4-11所示。
图 4-11 正射纠正流程
为了与以往的县级土地利用数据库相衔接,平面坐标系统仍然采用 1954 北京坐标系,高程系统采用 1985 国家高程基准,投影方式采用高斯-克吕格投影,分带方式为 3°分带。
本项目涉及 79 景连片且同源影像数据,因此采用整体区域纠正,以工作区为纠正单元,利用具有区域网纠正功能的 ERDAS 中 LPS 模块进行区域网平差,根据影像分布情况建立一个区域网文件,快速生成无缝正射镶嵌精确的正射影像,如图 4-12 所示。因本工作区涉及 37°、38°、39°三个 3°分带,考虑到全省数据镶嵌等问题,整个工程采用 38°带,其中央经线为 114°。
本次纠正中采用 SPOT 5 物理模型,控制点均匀分布于整景影像,控制点个数 25 个,相邻景影像重叠区有 2 个以上共用控制点。
工作区控制点分布如图 4-13 所示。
影像正射纠正以实测控制点和 1∶5 万 DEM 为纠正基础,以工作区为纠正单元,采样间隔为 2.5 m。
对控制点和连接点超过限差的要进行检查、剔除,发现误差超限的点位,应先通过设置其为检查点方式重新解算,如解算通过,则通过平差解算;如果纠正精度超限,查找超限原因,则应考虑在误差较大的点位附近换点或增补点加以解决,并进行必要的返工,直至满足要求为止。控制点采集如图 4-14 所示。
对整景利用 DEM 数据在 LPS 中选取 SPOT 5 Orbital Pushbroom 传感器模型,投影选取 Gauss Kruger,椭球体采用 Krasovsky,进行正射纠正,纠正精度满足 SPOT 5_2.5 m 数字正射影像图纠正精度要求,纠正后的图面点位中误差见表 4-2。
图 4-12 整体区域纠正控制点选取示意图
图 4-13 区域网平差纠正工程图
图 4-14 控制点采集
表 4-2 正射纠正控制点中误差
续表
4.3.5 镶嵌
以项目区为单位,对相邻景正射影像的接边精度进行检查。经检查接边精度合格后,以项目区为单位,对正射影像进行镶嵌。
由于项目区采用的是 ERDAS 提供的 LPS 正射模块区域网平差纠正,相邻两幅影像,均采集了两个以上的共用控制点,相应提高了影像镶嵌精度。
在项目区相邻景影像的重叠区域中,平原、丘陵与山区分别随机选取了 30 对均匀分布的检查点,检查影像的接边精度。根据检查点的点位坐标,计算检查点点位中误差。见表 4-3。
表 4-3 影像镶嵌误差
本项目影像镶嵌以工作区为单元,在景与景之间镶嵌线尽量选取线状地物或地块边界等明显分界处,以便使镶嵌影像中的拼接缝尽可能地消除,尽量避开云、雾及其他质量相对较差的区域,使镶嵌处无裂缝、模糊和重影现象,使镶嵌处影像色彩过渡自然,使不同时相影像镶嵌时保证同一地块内纹理特征一致,方便地类判读和界线勾绘。影像镶嵌图如图 4-15 所示。
4. 遥感多项式校正的步骤
是遥感影像多项式校正,选同名像点,计算误差,小于限制就重采样,然后输出后检查,不合格的话再去调整点位等等
5. 几何校正的原理和过程
几何校正原理:框幅式遥感影像图的几何校正手段分为光学校正和数字校正。传统 的遥感影像图校正多采用光学校正 ,这种方法在数学上有一定 的局限 ;而数字校正建立在严格的数学基础上,可以逐点逐行进行校正,所以它要求各种类型传感器图像 实行严格校正。通过数字校正,改正原始图像的几何变形 ,产生符合某种地图投影的新图像。
遥感影像图的几何校正有3种方案 ,即系统校正、利用控制点校正以及混合校正。
几何精校正就是利用地面控制点GCP对各种因素引起的遥感图像几何畸变进行校正。从数学上说,其原理是通过一组 GCP建立原始的畸变图像空间与校正空间的坐标变换关系,利用这种对应关 系把畸变空间中全部元素变换到校正空间中去,从 而实现几何精校正。
系统几何校正的关键是建立地球固定坐标系中LOS和未校正图像平面到校正图像平面之间的相互转换关系。
常用的方法有:基于多项式的遥感图像纠正、基于共线方程的遥感图像纠正、基于有理函数的遥感图像纠正、基于自动配准的小面元微分纠正等。
应用是:多光谱、多时相影像配准和遥感影像制图,必须经过上述几何校正。因人们已习惯于用正射投影地图,故多数遥感影像的几何校正以正射投影为基准进行。某些大比例尺遥感影像专题制图,可采用不同地图投影作为几何校正基准,主要是解决投影变换问题,一些畸变不能完全得到消除。遥感影像的几何校正可应用光学、电子学或计算机数字处理技术来实现。
6. 多项式的一般步骤
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
也可以用一句话来概括:
先看有无公因式,
再看能否套公式。
十字相乘试一试,
分组分解要合适。
在乐冲刺里有很多相关的练习,你可以多做做,很有帮助的~
7. 在线等!!数学题,关于多项式图像的,高手帮帮忙!!
根据图像可以得出该函数是偶函数
那么就要满足a=c=e=0,代入原函数解析式可得:
I. f(x)=x^4+b*x^2+d
II. F(x)= -x^4+ b*x^2+d
III. g(x)= x^6+b*x^4+d*x^2+f
然后取特殊点,可分别求的各待定系数的值,然后判断符合哪几个方程
判断多项式的图像的方法很多,比如:根据奇偶性、单调性、取特殊值、求导、排除等等
最高次项的系数对图像的作用
一次函数中心对称也轴对称
二次函数轴对称
三次函数中心对称
四次以上用二次乘二次.三次乘二次的图像来叠加.
这地方的对称中心和对称轴不一定是原点和Y轴
8. 几何纠正的主要步骤
第一步:打开并显示图像文件
2
1.选取已有的哈密地区2011年的遥感影像,由于原图已做几何校正,因此将原图作为基准图,另外将原图做一角度旋转,删除其空间参考信息,保存作为待校正图像。用原先的图像作为参考对旋转后的图像进行几何校正,使得其比较精确。
3
2.打开基准图像和待校正图像,#1为基准图像,#为旋转过后的待校正图像。
如下图所示(左边是参考图像,右边是待校正图像):
9. 多项式纠正的基本环节有两个
咨询记录 · 回答于2021-11-26
10. 遥感数据及其处理
一、遥感数据及其特征
滇东北地区铅锌矿遥感地质调查工作共分为三个层次,其中1∶5万层次及1∶2.5万层次使用美国陆地卫星(Landsat-7)ETM+数据作为基础数据,1∶1万层次使用美国快鸟(QuickBird)卫星数据作为基础数据。
(一)ETM+数据
ETM+数据是美国1999年4月所发射的陆地7号卫星携带的增强型主题成像仪(ETM+)对地球表面所采集的数据,其基本参数、设计波段的特征及设计用途见表3-1。
表3-1Landsat-7卫星参数及数据特征
长期对Landsat系列卫星数据在地质方面的应用研究表明,Landsat卫星数据各个波段都能提供地质构造、地形地貌信息。其中,5、6、7波段信息量更为丰富,1、2、3、4波段能够区分岩石中的铁、锰矿物和含铁、锰矿物的相对含量,尤其是4波段对于三价铁的矿物比较敏感,可以借此区分岩性,5波段对绿帘石族特征谱带敏感,7波段识别碳酸盐岩、绿片岩、绢云片岩和粘土岩及粘土矿物聚集带的效果较好,6波段对于识别地热异常、岩石和构造的含水性及鉴别地质构造有一定的用途。另外,Landsat-7还增加了一个15m分辨率的全色波段,从视觉效果上直接提高了对地物的识别,见表3-2。
表3-2 Landsat-7ETM+数据特征及在地质上的用途简表
图3-1 滇东北地区ETM数据分布示意图
本次工作范围占有ETM数据129-041及129-042两景,时相均为2001年12月23日。工作范围在两景数据中的位置如图3-1。数据元数据情况见表3-3。
表3-3 129-041,129-042卫星数据元数据特征
续表
(二)快鸟(Quick Bird)卫星数据
快鸟(Quick Bird)是美国Digital Globel(Earth Watch)公司2001年10月发射的高分辨率卫星,其空间最高分辨率为61cm,可制作比例尺在1∶1万左右的影像。卫星参数及数据特征见表3-4。
表3-4 Quick Bird卫星参数及数据特征
快鸟卫星数据的波段设置,与ETM数据具有一定的对应性,1、2、3、4波段波长范围完全一致,只是在全色波段快鸟数据比ETM数据的波长范围略窄一些。
大比例尺遥感地质调查工作主要布设于彝良毛坪地区,购置快鸟数据80km2,范围为X:3038000—3046000,Y:35392000—35402000。属于现拍数据,数据采集时间为2004年5月8日,其元数据特征见表3-5。
表3-5 毛坪地区快鸟卫星数据元数据特征
二、遥感数据处理
(一)数据处理软件
遥感图像处理主要使用加拿大专业遥感图像处理软件PCIGeomatica8.0及美国着名专业遥感图像处理软件ENVI3.5。
(二)数据处理流程
遥感数据处理的主要流程包括数据组织(即数据种类选择、范围确认、时相选择、订购等)、数据镶嵌(单景数据不存在此过程)、几何校正、图像生成、图像增强、图像整饰等过程,见图3-2。
图3-2 数据处理流程图
(三)数据处理
1.数据镶嵌
所谓镶嵌,就是将相邻两景图像拼接、形成大图像的过程。在图像镶嵌过程中如果使用不同时相的数据,由于数据成像的季节、太阳高度角不同,导致同名像元点在不同的数据上可能表现为不同的灰阶;当使用相同时相数据时,由于地面站后期人为分景、单独处理,也会导致同名像元点在不同的数据上有可能表现为不同的灰阶,同一地物在不同数据上表现出不同特征。因此说,图像的镶嵌过程是一个数据重叠范围内的配准过程。
滇东北地区1∶5万工作区涉及129-041及129-042两景数据,数据镶嵌是在PCIGeomatica遥感图像处理平台的GCPworks模块中完成的。镶嵌过程中侧重于重叠数据范围内同名点的选择及镶嵌线的选择。一般每两景图像上下镶嵌选择10~15个GCP。在镶嵌线的选择上,避免一条直线,根据镶嵌区的地貌特征尽量使镶嵌线通过色差较大的地方,避免人为造成线性体。然后利用PCI提供的ColourMatching功能对镶嵌区内的图像色彩进行匹配,使镶嵌后图像的色彩在镶嵌线两侧柔和过渡,达到无缝的效果。
2.几何校正
(1)几何校正方法
由于卫星姿态与轨道、地球运动和形状、遥感器本身的性能和扫描镜的不规则、探测器的配置、检测器采样延迟、数模转换的误差等等原因,均会导致原始遥感图像的严重几何变形,不能直接使用。一般而言,卫星地面站会根据卫星轨道的各种参数将图像进行粗略的校正,但往往由于遥感器的位置及姿态的测量值不高,其粗校正后的图像仍存在不小的几何变形。用户需要利用地面控制点和多项式纠正模型做进一步的几何纠正。只有按照一定的投影模式对原始图像进行几何精校正后的图像,才能使图像上每个像元具有相应的准确的地理坐标,只有进行几何精校正后的图像才能制作成能与其他图件配合使用的“地图(map)”。几何纠正的步骤有以下3步:
1)地面控制点(GCP)的选择。地面控制点的选择一般有两种方法,实地测量和在相同比例尺或更大比例尺地形图上采点。地面控制点选择的原则是,选择在图像上显示清晰、实地不(或很少)随时间变化的定位识别标志,如道路交叉点、河流交汇处等。另外,控制点要在校正范围内均匀分布,并保证一定的数量。
2)多项式模型纠正。多项式模型纠正就是在图像像元坐标(x,y)与地形图上相应点的地理坐标(X,Y)之间通过适当的坐标多项式模型(坐标变换函数)建立一种关系,从而通过像元的重新定位把图像拟合到地形图上。多项式校正模型的数学表达式为:
滇东北铅锌银矿床遥感地质与成矿预测
式中:aij,bij为多项式系数;N为多项式次数,取决于图像的变形程度、控制点的数量和地形位移的大小。
3)重采样。由于经过了多项式校正,重新定位后的像元在原图像中分布是不均匀的,因此需要对原图像按一定的规则重新采样,进行亮度值的插值计算,建立新的图像矩阵。常用的重采样方法有最临近法、双线性内插法、三次卷积内插法。3种方法在地物边缘增强、地物连贯性、计算速度等方面各有利弊。其中三次卷积内插法对边缘有所增强,并具有均衡化和清晰化的效果,但计算量大。
(2)1∶5万工作范围图像几何校正
1∶5万工作范围图像校正使用相应范围的1∶5万地形图60幅。校正点的选择是在60幅地形图上均匀选择GCP203点,校正模型选择了二次多项式拟合,重采样方法使用三次卷积内插法。校正后的图像投影方式为高斯投影、6°分带,中央经线为105°,椭球体采用克拉索夫斯基1954椭球体,与地形图保持一致。
(3)1∶1万工作范围图像几何校正
由于缺少相同比例尺地形图,收集到的地形资料只有区内1∶5万地形图和极少部分1∶2000地形图,因此校正点的采集采用地形图采点与野外实地测点相结合的方法完成。共采集GCP33个。校正模型选择了二次多项式拟合,重采样方法使用三次卷积内插法。校正后的图像投影方式为高斯投影、3°分带,中央经线为105°,椭球体采用克拉索夫斯基1954椭球体。
3.彩色合成
彩色合成的目的是将单色波段每像元的28(即256)色空间扩展到224(即16777216)色空间,增强目标地物的可视性,提高目视解译效果。通过色彩丰富、信息携带量大的基础彩色图像,解译人员才能充分识别图像的信息,进行地质解译。
为达到最佳的彩色合成效果,参加合成的波段选择常遵循以下原则:
1)参加合成的单波段有较大的方差,即波段本身具有较大的信息量。
2)参加合成的各波段间相关系数较小,避免信息的重复和冗余。
3)参加合成的三波段图像的均值要相近,避免合成图像产生严重偏色。
4)为突出目标地物,要选择目标物体显示较为突出的波段。
彩色合成图像为3个波段,赋予红、绿、蓝三原色的合成图像。
1∶5万工作范围基础图像制作选择了波段7、4、2合成方案,1∶2.5万工作范围基础图像选择了波段4、5、3合成方案,1∶1万工作区基础图像选择了波段3、2、1合成方案。选择依据将在“数据特征”一节中进行分析。
4.图像增强
图像增强的目的是为了突出相关的主题信息,提高图像的视觉效果,使解译分析者能更容易地识别图像内容,从而从图像中提取更有用的信息。图像增强的方法很多,从其作用的空间来看可以分为光谱增强和空间增强。这两种增强类型在整个图像处理和信息提取过程中都很常用。对于基础图像的增强一般采用光谱增强,从像元的对比度及波段间的亮度等方面改善图像的视觉效果,基本不改变目标地物的形状、大小等特征。
项目工作中的3种基础图像在生成后均采用光谱增强。根据图像各波段的直方图分布,分析整幅图像中像元间对比度的差异大小,确定光谱增强的具体手段。其中1∶5万范围的波段7、4、2合成图像面积大,地物种类多,信息丰富,增强过程中要求各种信息的充分显示,因此使用直方图均衡化的方法,理论上使图像中的各种亮度值均衡分布。1∶2.5万范围的波段4、5、3合成图像,图像范围相对较小,又由于地形切割较深,造成图像上山体阴影所占面积较大,而西南角地区比较平坦,反射率较高,像元亮度大,因此选择线性拉伸的方法进行增强。1∶1万范围的快鸟卫星波段3、2、1数据合成影像中,红尖山—姜家湾—花苗寨一带植被覆盖较多,造成影像上大面积绿色,使用线性拉伸的方法可以保证原始图像的对比度不再有大改变。
图3-3 毛坪地区图像不同拉伸方法效果对比图
拉伸方法应用效果以毛坪地区1∶1万影像为例,见图3-3。由图中可以看出,不拉伸的图像显然色彩层次太少,使用均方根拉伸的图像总体上提高了图形的亮度,压抑了像元间对比度的扩展,同时亮度高的地区彩色层次减少;直方图均衡化的图像提高了像元间的对比度,在原图像的暗色地区使色彩层次增加,但高亮色地区由于像元频率的增高而使色彩层次减少;线性拉伸不同程度地克服了以上几种拉伸的弊端,使图像色彩趋于丰富,层次趋于明显,便于解译者的解译。
在解译过程中为突出某种特征地物也可采用其他的增强手段,这里不再赘述。
5.图像融合
为了提高图像清晰度,同时充分发挥多波段数据的特点,需要将高分辨率的全色波段与参加彩色合成的多光谱波段进行融合处理。融合后的图像可以发挥多光谱图像与高分辨率图像各自的优势,弥补不足,改善遥感图像目标识别的准确率,提高遥感图像的综合分析精度。
融合方法大致可以分为彩色相关技术和数学方法两大类。彩色相关技术包括彩色合成、彩色空间变换等,有利于保持分辨率和色彩特征,如IHS变换法。常用的融合方法有IHS变换法、PCA变换法、HPF变换法与小波变换法等。
鉴于工作目的,为了提高地面分辨率和保持低分辨率图像的光谱信息,工作中选择了IHS变换方法,即将标准的RGB图像分离为空间信息的明度、波谱信息的色别及饱和度,而后用高分辨率图像代替明度再进行反变换的融合方法。融合后的图像既具有较高的分辨率,又具有与原图像相同的色度与饱和度。其具体过程如图3-4。
项目工作中所采用的ETM数据7个30m多光谱波段与15mPAN波段源于同一传感器,快鸟数据的4个2.4m多光谱波段与其0.6mPAN波段也源于同一传感器,因此数据融合过程中不存在数据配准问题,只对低分辨率波段进行重采样,并对参加融合的各波段进行直方图匹配,再进行IHS变换和RGB变换。其中低分辨率波段的重采样使用的方法为三次卷积内插法。融合前后图像特征如图3-5所示。
图3-4 IHS变换融合流程图
图3-5 融合前、后图像特征对比示意图
(四)图像处理精度评价
镶嵌校正过程中的精度评价常常使用RMS误差(均方根)来衡量,RMS是GCP的输入位置和逆转换之间的距离;它是在用转换矩阵对一个GCP做转换时所期望输出的坐标与实际输出的坐标之间的偏差。
滇东北铅锌银矿床遥感地质与成矿预测
式中:Ri为GCPi的RMS误差,XRi为GCPi的X残差,YRi为GCPi的Y残差。
整幅图像的总RMS误差:
滇东北铅锌银矿床遥感地质与成矿预测
式中:T为总RMS误差。
1.1∶5万镶嵌精度
数据镶嵌的误差大小对几何校正有很大影响,大的误差将人为增大图像的畸变。工作中1∶5万工作范围需要129-041与129-042两景数据上下镶嵌,按照《1/25万遥感地质调查技术规定》(DD2001—01)对镶嵌配准精度的规定同比计算,预设镶嵌误差T≤0.40。镶嵌过程中共采集镶嵌GCP13个,纠正模型1次,误差见表3-6。
表3-6 1∶5万图像镶嵌误差
由表3-6中可以看出,T=0.311,小于预设值0.40,能够满足无缝镶嵌的要求。
2.校正精度
(1)1∶5万图像校正精度
校正精度按照《1/25万遥感地质调查技术规定》(DD2001—01)对图像校正精度及校正点数目的同比计算,预设校正误差T≤0.80。校正过程中在60幅1∶5万地形图上基本均匀地选择203点,经误差调整选择有效校正GCP190个,校正多项式模型选择二次多项式,其误差见表3-7,由表中可以看出,T=0.794,小于预设值0.80,能够达到规范要求。
表3-7 1∶5万图像校正误差
(2)1∶1万图像校正精度
由于工作区只收集到1∶5万地形图和占很小部分的1∶2000地形地质图,且1∶5万地形图年代比较久远,因此在几何校正过程中误差较大。由于图像细节清晰,不影响使用与定位。
3.融合精度
低分辨率数据与高分辨率数据融合的目的是为了提高分辨率,为此,图像融合前后清晰程度的改变成为融合精度评价的主要指标。图像的清晰度是指地物的边界或影线两侧附近灰度有明显差异,即灰度变化率大小,它反映图像微小细节反差变化的速率,即图像多维方向上密度变化的速率,可用g来表示,一般来说融合前后g的变化越大则融合后图像的清晰度越高。
滇东北铅锌银矿床遥感地质与成矿预测
ETM30m多光谱波段与15m全色波段融合前后的值及快鸟数据2.4m多光谱数据与0.6m全色波段融合前后的g值对比见表3-8。由表中可以看出,融合后密度变化速率比原来提高几十到上百倍,表明图像融合后精度有很大提高。
表3-8 融合精度对照
三、工作区遥感数据
(一)1∶5万工作范围ETM数据特征
1∶5万工作范围图像行列数为9233(列)×12423(行)(插值为15m),总像元数为114701559点,由于左上角数据缺少使1140点为无效像素。
数据基本统计特征如表3-9至表3-11,各波段直方图见图3-6。
表3-9 1∶5万范围ETM数据基本统计特征
表3-10 1∶5万范围ETM数据波段间协方差矩阵
表3-11 1∶5万范围ETM数据波段间相关系数矩阵
从以上统计参数来看,8个波段的均值除60m分辨率的波段6和15m分辨率的PAN波段外,其他6个波段相差不大。8个波段的标准差从大到小排列为S5>S7>S4>S3>S6>S8>S2>S1,表明波段5的像元亮度值离散程度最大,波段1最小。对于波段间的相关系数而言(由于6波段与8波段分辨率的不同而不考虑),R12、R23、R25、R35、R45、R57、R37、R27均比较大,数值在0.80以上,而R13、R24、R34、R47相对较小,数值在0.7~0.8之间,相关系数最小的为R14、R15、R17,数值在0.5~0.6之间,相关系数大小也表征了波段间信息冗余的多少。1∶5万工作范围的彩色合成方案就是根据以上的统计数据结合彩色合成波段选择的其他原则而确定的。
直方图是图像范围内每个亮度值(DN)的像元数量的统计分布,能够直观反映原始图像的质量信息,如亮度值分布范围、亮度值分布规律,也可直接大致判读出图像的中值等参数。从8个波段的直方图可以看出波段4、5、7的直方图呈双峰表现,主峰在50~60出现,而在10~15之间又出现一个表现很窄的次峰,这是由于图像上的阴影及水体的像元亮度值所产生的,由此大致可以计算出阴影及水体在图像中所占的面积,以波段5为例计算出所占比例为6%左右。其他各波段的直方图比较接近正态分布。
协方差矩阵反映各个波段各自亮度值取值的分散程度,同时又能反映不同波段间的相关密切程度,它是单波段图像统计表与相关系数矩阵的合成,同时又能反向分裂。
图3-6 1∶5万范围ETM各波段图像直方图
(二)1∶2.5万工作范围ETM数据特征
1∶2.5万工作范围行列数为3000(列)×1860(行),总像元数为5580000点,插值后分辨率为15m。数据基本统计特征如表3-12至表3-14,各波段直方图如图3-7。
表3-12 1∶2.5万范围ETM数据基本统计特征
表3-13 1∶2.5万范围ETM数据波段间协方差矩阵
表3-14 1∶2.5万范围ETM数据波段间相关系数矩阵
图3-7 1∶2.5万范围ETM各波段图像直方图
从以上统计参数来看,8个波段的均值除60m分辨率的波段6为110表现较大,15m分辨率的PAN波段为29表现较小外,其他1、4、5三个波段数值相差不多,在50左右,2、3、7三个波段也相差不大,在37左右。8个波段的标准差从大到小排列为S5>S4>S7>S3>S8>S6>S2>S1,表明波段5的像元亮度值离散程度最大,波段1最小。对于波段间的相关系数而言(由于6波段与8波段分辨率的不同而不考虑),R57、R23、R73表现最大,数值在0.9以上,R12、R13、R25、R27、R35、R45次之,数值在0.8~0.9之间,而R24、R34、R47相对较小,数值在0.7~0.8之间,相关系数最小的为R14、R15、R17,数值在0.5~0.6之间,相关系数大小也表征了波段间信息冗余的多少。1∶2.5万工作范围的彩色合成方案就是根据以上的统计数据结合彩色合成波段选择的其他原则而决定的。
8个波段的直方图形态大致与1∶5万范围一致,表现意义相同,不再赘述。
(三)1∶1万工作范围QB数据特征
1∶1万工作范围采用高分辨率的QB数据,其多光谱波段只有4个,分辨率为2.4m,工作范围图像行列数为4168(列)×3407(行),总像元数为14200376点。多光谱数据基本统计特征如表3-15、表3-16,各波段直方图如图3-8。
表3-15 1∶1万范围QB数据基本统计特征
表3-16 1∶1万范围QB数据波段间相关系数矩阵
从以上统计可以看出,QB数据4个波段中1、2、3波段的相关系数均较大(R12=R23=0.96,R13=0.89),只有近红外波段与其他波段的相关系数很小(R14=0.29,R24=0.37,R34=0.20),同时可以看出近红外波段的中值与标准差也与其他波段相差很大,这是由于工作区内大面积植被所引起的。众所周知,绿色植物的叶绿素对可见光红波段(0.6~0.7μm)有强吸收,而叶内组织对近红外波段(0.7~1.1μm)有高反射,因此大面积植被将会直接改变相关波段的像元亮度值的分布。在基础图像彩色合成波段选择中,依据各项原则结合统计参数,选择波段1、2、3参与合成,为使合成后图像接近真彩色,合成方案为3(R)+2(G)+1(B)。
图3-8 1∶1万范围QB各波段图像直方图
四、遥感信息增强与提取
为了突出地质目标,增强微弱岩石蚀变信息,在图像处理过程中的不同阶段使用了多种信息增强技术方法,主要有地表三维技术、比值运算、KL变换、空间滤波、彩色变换技术等(表3-17)。
表3-17 工作中采用的主要信息增强方法技术及用途
(一)地表三维技术
地表三维技术是利用DEM(数字高程模型)将地图上的二维平面空间按高程的差异制作成一种地形上连续起伏变化的曲面,从而更真实地反映地表地貌的自然景观,突出显示特殊岩性的特殊地貌特征。
毛坪地区地表三维影像的制作利用了1∶5万DEM与QB3、2、1彩色合成图像;1∶5万DEM来源于1∶5万地形图,通过等高线数字化—高程赋值—DEM生成等过程实现。地表三维影像的制作主要有DEM与影像的配准及配准后的DEM与影像的复合两个过程。
图3-9是毛坪地区地表三维景观局部,其中视点为(103°54བྷ″,27°27བ″),视向45°,视角60°,视域60°。
图3-9 毛坪地区快鸟遥感影像地表三维景观(局部)
从毛坪地区地表三维影像可以看出左侧发育柱状节理的玄武岩及右侧二叠系灰岩地貌景观。
(二)图像比值运算
比值运算是将两个波段中不同亮度的地物成辐射状投射到一个曲线上,从而可非线性地夸大不同地物间的反差,它能够压抑影像上由于地形坡度和方向而引起的辐射量变化,减小环境条件的影响,提供任何单波段都不具有的独特信息。其运算公式为:
滇东北铅锌银矿床遥感地质与成矿预测
式中:DNm(x,y),DNn(x,y)分别是像元(x,y)在m和n波段上的亮度值;Rmn(x,y)为输出的比值。工作中比值运算主要运用于以下两方面。
1.计算植被覆盖度
植被覆盖度(f)是指某一时间某一地区内植被冠层的垂直投影面积与区域总面积之比。遥感地质解译主要是利用地表物体的光谱反射特性的差异,提取与地质工作有关的信息,工作的特点主要针对地表岩石、构造等,当地表植被覆盖时,对这些信息的解译将造成阻碍。因此,了解工作区的植被覆盖度能客观评价该区遥感地质解译的可解译程度。
研究表明绿色植物在可见光红波段(0.6~0.7μm)有强的吸收(叶绿素引起),在近红外波段(0.7~1.1μm)有高的反射和透射(叶内组织引起)。因此,在这两个波段使用比值运算可以充分表达它们反射率之间的差异,制作植被为高亮显示的植被信息图,并直接在图像上以像元数目比值求解植被覆盖度。
2.提取矿化蚀变信息
ETM的不同波段在地质上有不同的应用,这主要取决于各种与矿有关的蚀变矿物在不同波段存在波谱特征上的差异。图3-26是典型蚀变矿物的反射波谱曲线,从图中可看出,通常所讲的泥化蚀变矿物(即含有OH-、CO2-3)在2.2μm附近有明显吸收带,并与TM7波长范围相吻合。而在波段5的波长范围(1.55~1.75μm)内少有矿物的吸收谱带,多数都表现出高反射的特点,未蚀变矿物在波段5范围均没有明显的波谱特征,表现在TM5与TM7两个波段的相对亮度值的相对差异。因此,常常可使用波段5/7比值来突出含羟基和CO2-3类的蚀变矿物特征。另外,由图中可以看出三价铁矿物在波段1具有强的吸收,而在波段3具有相对强的反射;二价铁矿物在波段4具有强的吸收,而在波段5相对具有反射特征,因此也常用波段5/4、3/1比值来突出铁类矿物蚀变特征。比值后的图像上欲突出的蚀变特征常以高亮值显示而被提取出来。
(三)KL变换
KL变换又称为主成分分析,是在统计特征基础上的多维(如多波段)正交线性变换。多波段图像通过这种变换后产生一组新的组分图像,把原来多个波段中的信息进行集中和重组,并使新组分图像之间互不相关。其运算公式为:
滇东北铅锌银矿床遥感地质与成矿预测
其中,X为原图像p个波段的像元值向量,Y为变换后的q个组分的像元值向量,q≤
,T为变换矩阵。
KL变换要求Y的分量Yj与Yk相互独立,且若有j<k,则Yj的方差小于Yk的方差,所以必须有:
滇东北铅锌银矿床遥感地质与成矿预测
又因为:
所以:
即把矩阵D(X)变为对角矩阵Λ,对角线元素λ1、λ2…λp是D(X)的特征值,也分别是Y1、Y2…Yp的方差。
KL变换后的新组分图像中,一般第一组分具有大量的信息,但它包含了地形、植被等因素,对地质体的区分而言就成为干扰因素;其他组分虽然具有小的方差,包含的信息量少,但它可能正好突出了区分某些地质体的信息。因此,当需要对诸多信息进行综合时,往往使用KL变换后的第一组分,当要求某种特征信息时就选择相关的其他主组分。如图3-10,在B7单波段上玄武岩和火山碎屑岩界线显示隐约(或不显示),而在KL变换(参与波段B1、B2、B3、B4、B5、B6、B7)后的PC3上,界线显示明显。
图3-10 KL变换前后岩性边界对比影像
此外,KL变换也是提取与铁化和泥化有关蚀变的遥感信息的重要方法。通过对KL变换后的特征矩阵进行分析,选择富集特征信息的主组分,对蚀变信息的提取又很大的帮助。在后面信息提取过程中已经使用。
(四)空间信息增强
空间信息增强是指通过改变图像空间特征或频率来增强图像上信息的手段,即改变图像的“粗糙”或“平滑”程度来增强特征信息的方法。工作中使用了方向滤波和平均值滤波。
1.方向滤波
方向滤波是梯度法边缘增强的一种,它通过指定的8个方向的滤波模块对图像按方向进行边缘增强。工作中主要使用在线性体的解译和统计中,滤波后的图像突出显示了某个方向的线性体特征,同时对与该方向正交的线性体进行模糊。如图3-11所示,7波段的图像在分别使用 个方向模板滤波后,分别突出显示了45°方向和135°方向的线性体。
图3-11 方向滤波前后图像对比
2.平滑滤波
当需要去除图像上的噪声时,往往使用平滑滤波或低通滤波,加强图像中的低频成分,减弱图像的高频成分,使图像由“粗糙”变得“光滑”。均值滤波就是一种典型的平滑滤波方法,即用局部范围内临域像元亮度均值代替中心原像元亮度值。工作中平滑滤波主要使用在遥感蚀变信息提取后,信息噪声的去除。如图3-12所示,提取的锈水河铅锌矿异常在平滑滤波后,杂乱细小的信息斑点被去除,信息成“块”成“带”出现,方便了对异常分布的分析。
图3-12 平滑滤波前后PCT分级效果对比
(五)彩色变换技术
彩色变换技术是指将彩色图像在不同的彩色坐标系统之间的变换,主要应用在不同遥感器的数据或不同性质的数据融合后彩色合成图像的产生。在图像融合上常使用IHS变换,其简式如下:
滇东北铅锌银矿床遥感地质与成矿预测
变换后RGB混色系统分离为代表空间信息的明度(I)和代表波谱信息的色别(H)、饱和度(S)。从公式可以看出,明度(I)是3个波段的平均亮度,融合时使用直方图匹配后的高分辨率波段代替I,与原来的H、S一起进行IHS变换的反变换,重新变换到RGB空间,这样图像既保证了高分辨率数据的参与,提高地面分辨能力,又保持了原来多光谱波段的光谱特征。其融合效果参见图3-5。
另外,项目工作中较常用的是RGB彩色合成,当图像的饱和度缺乏时,也通过IHS变换的方法,专门对变换后的饱和度分量(S)进行调整,反变换后的图像可解译性会明显提高。