導航:首頁 > 知識科普 > 因式分解方法怎麼算

因式分解方法怎麼算

發布時間:2023-06-29 21:05:12

❶ 因式分解有哪幾種計算方法是怎樣的

1、提公因式法

幾個多項式的各項都含有的公共的因式叫做這個多項式各項的公因式。 如果一個多項式的各項有公因式,可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法。

具體方法:當各項系數都是整數時,公因式的系數應取各項系數的最大公約數;字母取各項的相同的字母,而且各字母的指數取次數最低的;取相同的多項式,多項式的次數取最低的。

如果多項式的第一項是負的,一般要提出「-」號,使括弧內的第一項的系數成為正數。提出「-」號時,多項式的各項都要變號。

2、公式法

如果把乘法公式反過來,就可以把某些多項式分解因式,這種方法叫公式法。

平方差公式:a²-b²=(a+b)(a-b);

完全平方公式:a²±2ab+b²=(a±b)²;

注意:能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(或式)的平方和的形式,另一項是這兩個數(或式)的積的2倍。

(1)因式分解方法怎麼算擴展閱讀

韋達首先發現了因式分解的工具性和重要性,在其《論方程的整理和修改》中,首先給出代數方程的多項式因式分解方法,並證得所有三次和三次以上的一元多項式在實數范圍內皆可因式分解。

1637年笛卡兒(R. Descartes,1596-1650)在其《幾何學》中,首次應用待定系數法將4次方程分解為兩個2次方程求解,並最早給出因式分解定理。

笛卡兒還改進了韋達的一些數學符號,首先用x,y,z表示未知數,用a,b,c表示已知數,這些數學習慣沿用至今。有些人可能討厭數學,就是因其有太多符號和公式。

沒有數學符號,乘法公式用語言敘述是多麼啰嗦。故數學的進步在於其引進了較好的符號體系,使用數學符號是近代數學發展最為明顯的標志之一。

閱讀全文

與因式分解方法怎麼算相關的資料

熱點內容
新生兒餵奶瓶姿勢的正確方法 瀏覽:808
不銹鋼字的安裝方法 瀏覽:694
腎積水中醫治療方法 瀏覽:478
原始計算方法 瀏覽:479
怎麼用簡單的方法換一個 瀏覽:998
dna測序的最簡便可行的方法 瀏覽:448
血球計數板使用方法 瀏覽:135
做年糕的簡單方法視頻 瀏覽:991
簡單隨機抽樣的方法 瀏覽:164
研究方法名詞解釋 瀏覽:426
折手機支架的好方法 瀏覽:483
大梁承重簡單計算方法 瀏覽:119
用鹼治療灰指甲的方法 瀏覽:178
320除以40乘30的簡便計算方法 瀏覽:338
20x05用簡便方法計算 瀏覽:948
面輪廓度測量方法視頻 瀏覽:604
腹肌腰椎間盤突出鍛煉方法 瀏覽:269
女補腎壯陽的最佳方法 瀏覽:447
數值分析方法在工程地質的應用 瀏覽:927
知識點講解最簡單的方法 瀏覽:11