1. 三維掃描儀的測量方法分類
時差測距,或稱'飛時測距'的3D激光掃描儀是一種主動式的掃描儀,其使用激光光探測目標物。圖中的光達即是一款以時差測距為主要技術的激光測距儀。此激光測距儀確定儀器到目標物表面距離的方式,是測定儀器所發出的激光脈沖往返一趟的時間換算而得。即儀器發射一個激光光脈沖,激光光打到物體表面後反射,再由儀器內的探測器接收信號,並記錄時間。由於光速 為一已知條件,光信號往返一趟的時間即可換算為信號所行走的距離,此距離又為儀器到物體表面距離的兩倍,故若令 為光信號往返一趟的時間,則光信號行走的距離等於。顯而易見的,時差測距式的3D激光掃描儀,其量測精度受到我們能多准確地量測時間 ,因為大約 3.3 皮秒;微微秒)的時間,光信號就走了 1 公釐。
激光測距儀每發一個激光信號只能測量單一點到儀器的距離。因此,掃描儀若要掃描完整的視野(field of view),就必須使每個激光信號以不同的角度發射。而此款激光測距儀即可通過本身的水平旋轉或系統內部的旋轉鏡(rotating mirrors)達成此目的。旋轉鏡由於較輕便、可快速環轉掃描、且精度較高,是較廣泛應用的方式。典型時差測距式的激光掃描儀,每秒約可量測10,000到100,000個目標點。 三角測距3D激光掃描儀,也是屬於以激光光去偵測環境情的主動式掃描儀。相對於飛時測距法,三角測距法3D激光掃描儀發射一道激光到待測物上,並利用攝影機查找待測物上的激光光點。隨著待測物(距離三角測距3D激光掃描儀)距離的不同,激光光點在攝影機畫面中的位置亦有所不同。這項技術之所以被稱為三角型測距法,是因為激光光點、攝影機,與激光本身構成一個三角形。在這個三角形中,激光與攝影機的距離、及激光在三角形中的角度,是我們已知的條件。通過攝影機畫面中激光光點的位置,我們可以決定出攝影機位於三角形中的角度。這三項條件可以決定出一個三角形,並可計算出待測物的距離。在很多案例中,人們以一線形激光條紋取代單一激光光點,將激光條紋對待測物作掃描,大幅加速了整個測量的進程。
手持激光掃描儀通過上述的三角形測距法建構出3D圖形:通過手持式設備,對待測物發射出激光光點或線性激光光。 以兩個或兩個以上的偵測器(電耦組件 或 位置感測組件)測量待測物的表面到手持激光產品的距離,通常還需要藉助特定參考點-通常是具黏性、可反射的貼片-用來當作掃描儀在空間中定位及校準使用。這些掃描儀獲得的數據,會被導入電腦中,並由軟體轉換成3D模型。手持式激光掃描儀,通常還會綜合被動式掃描(可見光)獲得的數據(如待測物的結構、色彩分布),建構出更完整的待測物3D模型。 個別廠商為了不當競爭目的,有時把結構光的三種具體形式(激光點,激光線,結構光柵)的掃描儀區分為一、二、三代。造成許多用戶認識和選型上的誤導和歧義。這是故意而為的錯誤,是嚴重的不當競爭和非法行為。
結構光的三種具體形式(激光點,激光線,結構光柵),其發展的主要目的,是針對不同的用途和不同的精度等級及工作效率的需求,而開發的產品。其使用和目的均有各自得市場,但隨科技的發展,這幾種產品,在用途上均會有部分交集的地方。比如,目前,國外百萬左右的照相式掃描儀,也可以提供橄欖核級的細節精密測量。這就覆蓋激光點線掃描儀的一些市場。 再如,國外高精密的激光線掃描儀,目前測量精度可到0.01微米。國內現在激光線掃描儀,其精度也可以做到0.05微米。那麼,激光點掃描儀和激光線掃描儀相比,在精度上也沒有了明顯優勢。但,顯然,激光點,線掃描儀的市場與結構光柵掃描儀的市場,還是有明顯區別的。這個區別就是通常在精度上,相差10倍或更多。
我們在選型和區分上。重點看的就是實際精度。這個是第一指標。舉例:個別廠商,在銷售上誤導客戶,客戶需要測量皮紋,確買了一台照相式掃描儀。結果造成實際根本不能用。 掃描儀廠牌不同,型號不同。結構形式不同。其必然有其優勢和劣勢的地方。所以其測量精度等級各有不同。用戶選型時,除了看標注的精度參數之外,還要通過實測產品樣件,來獲得正確評價。並且一般需要把精度指標寫入合同中,以避免不法廠商的欺騙行為。
2. 如何實現機器視覺的3d測量
更多內容歡迎搜索:Eyevision軟體中國技術服務中心—上海倍吉電子科技有限公司。 原理解析結構光3D測量技術是一種非接觸式主動光學三維測量技術,該技術基本原理是通過投影一束編碼光到待測物體表面,當物體表面形貌發生變化時,編碼光的分布將受到物體高度的調制,再利用相機獲取物體表面圖像,並對獲取的圖片進行解調從而恢復包含物體高度信息的3D形貌。通過調整光源的類型和系統參數,可將測量物體范圍從漫反射物體擴展到鏡面反射物體,實現鏡面物體表面平整度快速、高精度檢測。
3. 三維掃描儀測量原理是怎樣的
這種機器叫三坐標測量機,有關節臂的有龍門式的,就是在你產品上用探針接觸測量,獲得三維數據,這種方式是精度最高的,如果精度要求比這個稍微低點,那白光或者激光三維掃描儀是首選
4. 三維超聲波是怎樣掃描的
美國科學家已開發出一種三維超聲波掃描技術,該技術能使醫生們就像在病人身體上開了一扇窗子一樣研究病人的體內器官。該技術的發明者之一、北卡羅來納州杜克大學新興心血管技術工程研究中心的主任奧拉夫•拉姆說:「這一技術使目前的超聲波技術顯得過時了。
「這種三維超聲波處理技術,採用並行計算即時分析大量的聲音反射波,非常迅速地生產圖像,使外科醫生能夠在屏幕上從任何角度觀看一整顆跳動的心臟。這台多用途機器能夠加快診斷速度,增加診斷的精確性,並且可幫助醫生不做外科手術的情況下,較以前大大增加對人的心臟了解。
「採用三維技術後,我們能夠非常迅速地觀察整個跳動的心臟,並且可觀看我們選擇的任何部位。我們能觀看心臟的前面、側面和橫側面,一切都是在心臟跳動時進行的。」
為了「實時」捕捉跳動的心臟以及胎兒活動圖像,避免延遲,每個信號必須用大規模並行計算機處理技術同時處理。當有關內部組織的圖像出現在觀察屏上後,醫生用一個接觸墊能夠同時調出多達16個切片的畫面。
切片的視角可以不同,而且可把它們做得薄些和厚些。為了能隨時觀看它們,醫生能夠把所有的圖像存儲下來以便以後分析。
5. 什麼是三維掃描技術及測量技術
隨著信息和通信技術的發展,人們在生活和工作中接觸到越來越多的圖形圖像。獲取圖像的方法包括使用各種攝像機、照相機、掃描儀等,利用這些手段通常只能得到物體的平面圖像,即物體的二維信息。在許多領域,如機器視覺、面形檢測、實物仿形、自動加工、產品質量控制、生物醫學等,物體的三維信息是必不可少的。因此,如何獲取物體的三維信息,即三維物體面形輪廓測量得以發展。隨著計算機技術、光電子技術的迅速發展,新的光學三維掃描技術和計量方法也不斷涌現。 常用的三維掃描技術根據感測方式的不同,分為接觸式和非接觸式兩種。 接觸式的採用探測頭直接接觸物體表面,通過探測頭反饋回來的光電信號轉換為數字面形信息,從而實現對物體面形的掃描和測量,包括三坐標測量機法和電磁數字法。三坐標測量法是現在最通用的測量方式之一。 接觸式測量具有較高的准確性和可靠性;配合測量軟體,可快速准確地測量出物體的基本幾何形狀,如面,圓,圓柱,圓錐,圓球等。其缺點是:測量費用較高;探頭易磨損。測量速度慢;檢測一些內部元件有先天的限制,故欲求得物體真實外形則需要對探頭半徑進行補償,因此可能會導致修正誤差的問題;接觸探頭在測量時,接觸探頭的力將使探頭尖端部分與被測件之間發生局部變形而影響測量值的實際讀數;由於探頭觸發機構的慣性及時間延遲而使探頭產生超越現象,趨近速度會產生動態誤差。 隨著計算機機器視覺這一新興學科的興起和發展,用非接觸的光電方法對曲面的三維形貌進行快速測量已成為大趨勢。這種非接觸式測量不僅避免了接觸測量中需要對測頭半徑加以補償所帶來的麻煩,而且可以實現對各類表面進行高速三維掃描。
目前,非接觸式三維測量方法很多,常用的有:激光掃描測量、結構光掃描測量和工業CT等。大體上可以分為以下兩大類,一類是二維分析法,包括遮擋陰影法、莫爾條紋法、聚焦法,光度法等;另一類是三維模型法,包括飛行時間距離探測法、被動三角法和主動三角法。下面介紹幾種常用的基於三角測量法的三維掃描技術:點激光測量技術: 通過激光發射單點到物體表面,採用感測器在另外一側觀測,通過每一次的測量點反映物體的三維信息。其特點是精度較高,但測量速度慢,用於檢測相比三坐標系統要快。線激光掃描技術:通過激光發射一條光線(稱為光刀)到物體表面,採用感測器在另外一側觀測變形的光刀,通過解調光刀變形還原物體的三維信息。相比點激光掃描技術,其掃描速度大大的提高了,但也要附加運動系統才能得到完整的三維物體面形表示。該測量方法同樣具有精度較高的特徵,代表系統有三維激光掃描儀,手持式掃描儀等。面掃描技術:該類技術發展成熟的主要是結構光掃描,採用發射系統發射面光(面激光或者條紋),採用感測器在另外一側觀測變形條紋,結合相位技術及計算機視覺技術解調變形條紋並還原物體的三維信息。該種技術近來得到極大的發展,能夠迅速的獲取物體表面的面形信息,同時具有很高的測量精度,對測量環境低,應用於三維掃描具有很大的優勢,代表系統有照相式三維掃描儀。深圳市精易迅科技有限公司是一家長期致力於非接觸式三維掃描及檢測系統研發、銷售及服務一體化的專業三維數字化高科技公司,擁有點、線、面不同系列的激光和白光三維掃描系統,為您提供從三維掃描、工業檢測到工業設計、腳型鞋楦定製、逆向工程等一系列解決方案。
6. 3D視覺檢測/測量、三維視覺檢測、工業三維是一樣的么
三維的英文翻譯簡稱為"3d」,3D視覺檢測/測量和三維視覺檢測是一樣的,工業三維一般都包含了強兩者。真實世界的物體有三個維度:高度,寬度和深度。為了使機器人等自動化系統成功運行,他們需要能夠「看到」這三個維度。它們通過3D視覺檢測/測量或者三維視覺檢測提供這種「視覺」功能,其包括相機,照明和用於圖像處理的PC。
7. 三維掃描儀的工作原理是什麼
三維掃描儀(3D scanner)是一種科學儀器,用來偵測並分析現實世界中物體或環境的形狀(幾何構造)與外觀數據(如顏色、表面反照率等性質)。搜集到的數據常被用來進行三維重建計算,在虛擬世界中創建實際物體的數字模型。這些模型具有相當廣泛的用途,舉凡工業設計、瑕疵檢測、逆向工程、機器人導引、地貌測量、醫學信息、生物信息、刑事鑒定、數字文物典藏、電影製片、游戲創作素材等等都可見其應用。三維掃描儀的製作並非仰賴單一技術,各種不同的重建技術都有其優缺點,成本與售價也有高低之分。目前並無一體通用之重建技術,儀器與方法往往受限於物體的表面特性。例如光學技術不易處理閃亮(高反照率)、鏡面或半透明的表面,而激光技術不適用於脆弱或易變質的表面。
功能
三維掃描儀的用途是創建物體幾何表面的點雲(point cloud),這些點可用來插補成物體的表面形狀,越密集的點雲可以創建更精確的模型(這個過程稱做三維重建)。若掃描儀能夠獲取表面顏色,則可進一步在重建的表面上粘貼材質貼圖,亦即所謂的材質印射(texture mapping)。
三維掃描儀可模擬為照相機,它們的視線范圍都呈現圓錐狀,信息的搜集皆限定在一定的范圍內。兩者不同之處在於相機所抓取的是顏色信息,而三維掃描儀測量的是距離。由於測得的結果含有深度信息,因此常以深度視頻(depth image)或距離視頻(ranged image)稱之。
由於三維掃描儀的掃描范圍有限,因此常需要變換掃描儀與物體的相對位置或將物體放置於電動轉盤(turnable table)上,經過多次的掃描以拼湊物體的完整模型。將多個片面模型集成的技術稱做視頻配准(image registration)或對齊(alignment),其中涉及多種三維比對(3D-matching)方法。
三維掃描儀類型
三維掃描儀分類為接觸式(contact)與非接觸式(non-contact)兩種,後者又可分為主動掃描(active)與被動掃描(passive),這些分類下又細分出眾多不同的技術方法。使用可見光視頻達成重建的方法,又稱做基於機器視覺(vision-based)的方式,是今日機器視覺研究主流之一。
接觸式掃描:
接觸式三維掃描儀透過實際觸碰物體表面的方式計算深度,如座標測量機(CMM,CoordinateMeasuring Machine)即典型的接觸式三維掃描儀。此方法相當精確,常被用於工程製造產業,然而因其在掃描過程中必須接觸物體,待測物有遭到探針破壞損毀之可能,因此不適用於高價值對象如古文物、遺跡等的重建作業。此外,相較於其他方法接觸式掃描需要較長的時間,現今最快的座標測量機每秒能完成數百次測量,而光學技術如激光掃描儀運作頻率則高達每秒一萬至五百萬次。
8. 三維試驗是什麼檢測方法
紙片擴散法葯敏試驗,將細菌接種在瓊脂平板表面,貼上葯物紙片。紙片上的葯物向周圍的培養基中擴散,構成一維。瓊脂平板表面的細菌生長,產生了抗葯性酶,向培養基中擴散,構成另一維。所以,紙片擴散法是二維試驗。三維試驗,在紙片旁邊的瓊脂刻一深紋,其中加入受試菌液。細菌生長後醫學|教育網搜集整理,產生的抗葯性酶向四周的瓊脂中擴散,構成第三維。檢測ESBL,接種細菌後,貼上第三代頭孢菌素紙片,在紙片邊上的深紋中加被測菌液。紋中的細菌生長時產生ESBL,擴散到周圍的培養基中。擴散到培養基中的抗生素,遇到ESBL後被水解,不能對細菌生長產生抑制效應,形成的只能是變形的抑菌環。細菌不產生ESBL,抑菌環規則。
9. 三維測量技術的方法及應用
光學主動式三維測量
目前,主動式光學三維測量測量技術已廣泛用於工業檢測、反求工程、生物醫學、機器視覺等領域。例如,復雜的葉輪和葉片的面形檢測,汽車車身的檢測,人類口腔牙型測量,整形外科效果評價,用於製鞋CAD的鞋楦三維數據採集,各種實物模型的三維信息記錄與仿形等。三維高速度、高精度測量技術將隨著測量方法的完善和信息獲取與處理技術的改進而進一步發展,在新的更加廣闊的研究和應用領域中發揮重要作用。
主動式光學非接觸測量技術大體上可分為飛行時間法、主動三角法、莫爾輪廓術、投影結構光法、自動聚焦法、離焦法、全息干涉測量法、相移測量法等。以下對幾種主要的方法進行以下簡單介紹。
3.2.1.飛行時間法
飛行時間法是基於三維面形對結構光束產生的時間調制,一般採用激光,通過測量光波的飛行時間來獲得距離信息,結合附加的掃描裝置使光脈沖掃描整個待測對象就可以得到三維數據。飛行時間法以對信號檢測的時間解析度來換取距離測量精度,要得到高的測量精度,測量系統必須要有極高的時間解析度,常用於大尺度遠距離的測量。
3.2.2.干涉法
干涉測量是將一束相干光通過分光系統分成測量光和參考光,利用測量光波與參考光波的相干疊加來確定兩束光之間的相位差,從而獲得物體表面的深度信息。這種方法測量精度高,但測量范圍受到光波波長的限制,只能測量微觀表面的形貌和微小位移,不適於大尺度物體的檢測。
3.2.3.主動三角法
光學三角法是最常用的一種光學三維測量技術,以傳統的三角測量為基礎,通過待測點相對於光學基準線偏移產生的角度變化計算該點的深度信息。根據具體照明方式的不同,光學三角法可分為兩大類:被動三角法和基於結構光的主動三角法。雙目視覺是典型的被動三維測量技術,它的優點在於其適應性強,可以在多種條件下靈活地測量物體的立體信息,缺點是需要大量的相關匹配運算以及較為復雜的空間幾何參數的校準等問題,測量精度低,計算量較大,不適於精密計量,常用於三維目標的識別、理解以及位形分析等場合,在航空領域應用較多。主動三維測量技術根據三維面形對於結構光場的調制方式不同,可分為時間調制和空間調制兩大類。飛行時間法是典型的時間調制方法,激光逐點掃描法、光切法和光柵投射法是典型的空間調制方法。
3.2.4.相移測量法
相移測量法是一種重要的三維測量方法,它採用正弦光柵投影和相移技術,投影在物體上的光柵,根據物體的高度而產生變形,變形的光柵圖像叫做條紋圖,它包含了三維信息。
相移法是一種在時間軸上的逐點運算,不會造成全面影響,計算量少。另外,這種方法具有一定抗靜態雜訊的能力。缺點是不能消除條紋中高頻雜訊引起的誤差。在傳統相移系統中,精確移動光柵的需要增加了系統的復雜性。而在數字相移系統中,用軟體控制精確地實現相位移動。某些應用場合不允許測量多幅圖像,但只要沒有以上限制,相移法仍然是首選方案。