⑴ 土地利用強度
土地利用強度:
土地資源利用的效率,單位用地面積投資強度,對一個單位的土地投資的強度。
新修訂的《工業項目建設用地控制指標》(國土資發[2008]24號,以下簡稱《控制指標》)已於日前發布並即日起正式實施。這是繼《關於發布實施<全國工業用地出讓最低價標准>的通知》(國土資發[2006]307號)和《關於落實工業用地招標拍賣掛牌出讓制度有關問題的通知》(國土資發[2007]78號)發布之後,國土資源部針對工業用地出台的又一個促進土地節約集約利用的重要文件。
⑵ 農村土地測量的計算公式是什麼
農村土地面積可以通過繩索、捲尺、步量的方法來進行測量。
農村測量土地面積不要求十分精確,對於算一些奇形形狀的土地,直接用皮尺、步量,量出後用填補 、切割等數學方法估算土地面積。
農村一般以」畝「、」公頃「作為土地面積單位的;一畝≈666.67平方米(㎡);1公頃(ha)=15畝。
⑶ 土地產出強度的計算
1,土地產出強度是指工業園區(或生產工廠)單位面積土地產生的工業增加值。 2,土地產出強度計算公式如下: 土地產出強度=工業增加值/工業園區(或生產工廠)單位面積土地。也有的地方規定使用工業銷售產值作為衡量依據,各地有各地的要求。
⑷ 基於不同數據源的土地利用變化遙感動態監測方法
李翔宇 樊彥國
(中國石油大學地球資源與信息學院,山東東營,257061)
摘要:本文從所擁有的遙感數據源的可能情況出發,分別介紹了各種情況下利用遙感進行土地利用變化動態監測的方法,分析了其優勢和劣勢。
關鍵詞:遙感;土地利用變化;動態監測;方法
1 引言
我國是一個人多地少的國家,土地是我們賴以生存的資源。建立土地動態監測系統以快速准確地提供各類土地資源面積及其分布、土地資源動態變化狀況及土地資源生態環境信息是十分必要的,這樣可以保證我國在科學翔實的資料基礎上對土地資源進行科學的規劃及合理的利用,實現土地資源的可持續健康發展。可是傳統的統計或實地調查方式,耗時耗力,勞民傷財,並且難以適應土地利用的快速變化,而遙感可以提供及時准確且覆蓋面廣的地面影像資料,並且周期短、信息量大,通過後期的分析、處理、比較,可以使人們迅速准確地掌握土地利用變化的詳細信息,即實現土地利用的動態監測。現在,遙感技術已成為進行土地利用變化動態監測的重要手段。
基於遙感影像的土地利用變化監測方法大致可分為兩類:光譜直接比較法和分類結果比較法。多數變化提取演算法屬於前一種,主要包括影像差值法、比值法、主成分分析法和變化矢量分析法等,這些演算法直接通過兩時相數據的光譜差異確定變化發生的區域,但不能得出變化圖斑的類型;後一種方法通過對各自時相的數據進行土地利用分類,通過對兩個分類結果的比較提取變化信息,但其精度受兩時相數據分類精度的制約。實際操作中可以根據所持有數據源的不同而採用相應的方法。
2 基於單一感測器的土地利用變化監測方法
2.1 基於單一感測器多時相遙感影像
當遙感數據源為單一感測器但可以獲得多時相遙感影像時,可以考慮以下幾種方法。
2.1.1 單變數圖像差值法[1]
單變數圖像差值法比較簡單,是使用最廣泛的一種探測方法。它是將兩個時相的遙感圖像按波段進行逐像元相減,從而生成一幅新的代表二時相間光譜變化的差值圖像。輻射值的顯著變化代表了土地覆蓋變化,在差值圖像中接近於零的像元就被看做是未變化的,而那些大於或小於零的像元表示其覆蓋狀況發生了某種變化,從而設定適當的閾值就可以把變化信息提取出來。
2.1.2 圖像比值法[1,2]
比值處理被認為是辨識變化區域相對較快的手段。它是對於兩個時相多譜段數據中同名像元的光譜灰度值施以除法運算。顯然,經過輻射配准後,在圖像中未發生變化的像元其比值應近似為1,而對於變化像元而言,比值將明顯高於或低於1。比值法可以部分地消除陰影影響,突出某些地物間的反差,具有一定的圖像增強作用。
2.1.3 圖像回歸法[1]
圖像回歸法是首先假定時相Ⅰ的像元值是另一時相Ⅱ像元值的一個線性函數,通過最小二乘法來進行回歸,然後再用回歸方程計算出的預測值來減去時相Ⅰ的原始像元值,從而獲得兩時相的回歸殘差圖像。
2.1.4 植被指數差值法[2]
植被指數差值法是用近紅外與紅光波段間的比值(植被指數)代替原始波段作為輸入數據進行差值運算來生成變化圖像。由於植物普遍對紅光強烈吸收和對近紅外光強烈反射,因此紅光和近紅外波段之間的比值有利於提高光譜差異。
2.1.5 主成分分析法[3]
(1)差異主成分法 兩時相的影像經糾正、配准之後,先對影像作相差取絕對值處理,從而得到一個差值影像。差值影像作主成分變換之後的第一分量應該集中了該影像的主要信息,即原兩時相影像的主要差異信息。這個分量可以被認為是變化信息而被提取出來,從而生成變化模板,作為指導下一步變化類型確認和邊界確定的參考信息。
(2)多波段主成分變換 由遙感理論可得知,地物屬性發生變化,必將導致其在影像某幾個波段上的值發生變化,所以只要找出兩時相影像中對應波段上值的差別並確定這些差別的范圍,便可發現土地利用變化信息。在具體試驗中將兩時相的影像各波段進行組合,成一個兩倍於原影像波段數的新影像,對該影像作主成分變換。由於變換結果前幾個分量上集中了兩個影像的主要信息,而後幾個分量則反映出了兩影像的差別信息,因此可以抽取後幾個分量進行波段組合來產生出變化信息。一般說來,在上述多波段主成分變換之後,採用0、1、2分量進行波段組合能較好地反映出新舊時相影像的變化部分。
(3)主成分差異法 本方法和差異主成分方法所不同之處在於影像作主成分變換與差值處理的順序不一樣。要求先對兩時相的影像作主成分變換,然後對變換結果作差值,取差值的絕對值為處理結果。在實際的試驗中,兩時相影像作主成分變換後相差的第一分量已經涵蓋了幾乎所有的變化信息。因此,可以認為這一分量屬於影像的變化信息。
2.1.6 變化向量分析法[1]
由於多時相遙感數據中任一像元矢量都可用多維測量空間中的一個點來表示(空間的維數等於原始波段數),通過對不同時相下的同名像元矢量進行相減所得到的變化矢量就可以用於描述該像元第一時相 t1 到第二時相 t2 期間在多維空間中所發生的位置變化。其中變化矢量的模代表了變化的強度,而方向則指示了發生變化的類型。設時相 t1、t2 圖像的像元灰度矢量分別為 G=(g1,g2,…,gk)T 和H=(h1,h2,…,hk)T,則變化矢量為:ΔG=G -H。ΔG 包含了兩幅圖像中所有變化信息。變化強度由變化矢量的模||ΔG||決定,||ΔG||越大,表明圖像的差異越大,變化發生的可能性越大。因此,提取變化和非變化像元,可根據變化強度||ΔG||的大小設定閾值來實現,即像元||ΔG||超過某一閾值時,即可判定為土地利用類型發生變化的像元;而變化的類型,可由ΔG的指向確定。
這種方法利用多頻段信息,在提取變化位置的同時可以得到變化類型信息,是一種較理想的演算法。當然,要用好變化向量分析法還取決於分析過程中變化/未變化閾值是否取值合理以及相關分類方法是否適當。
2.1.7 分類後比較法
分類後比較法是對兩期遙感影像進行監督或非監督分類,然後比較在各圖像系列同一位置上的分類結果,進而確定土地利用類型變化的位置和所屬類型。該方法可直接獲得變化類型信息,但如何選擇合適的分類方法提高分類精度是准確獲得變化信息類型的關鍵。
2.1.1至2.1.6均屬於光譜直接比較法,此方法對變化比較敏感,可以避免分類過程所導致的誤差,但需要進行嚴格的輻射標准化,排除大氣狀況、太陽高度角、土壤濕度、物候等「雜訊」因素對圖像光譜的影響,由於目前對各種干擾(尤其是物候)導致的輻射差異的校正方法仍不成熟,因此,只能通過選擇同一感測器、同一季相的數據來盡可能減小「雜訊」。同時光譜直接比較法只注重變化像元的提取,而不能提供變化中土地類型的轉化信息(如地類屬性)。與之相對照,分類後比較法對輻射糾正要求相對較低,適用於不同感測器、不同季相的數據的比較,同時該方法不僅可以提供變化信息,而且還能夠給出各時期的土地利用類型信息。但這種方法的最終精度受到影像分類精度的限制,而且它對影像的全部范圍都要進行分類計算而不管它們是否已經發生變化,這樣無疑大大增加了變化信息檢測的計算量。
在目前的土地利用遙感監測研究中,結合光譜直接比較法和分類後比較法的混合動態監測方法逐漸受到重視,並有了一些成功的案例研究。Jenson 通過對濕地變化的動態監測研究表明:先利用光譜直接比較探測變化區,再進行圖像分類確定變化類型的混合法是一種非常有效的變化檢測方法[4];Macleod和Congalton的研究也表明以差值法為基礎的混合動態監測法優於傳統分類後比較法[5]。這樣可以集兩者之所長,取得更好的監測效果。
2.2 基於單一感測器單時相遙感影像
無論是光譜直接比較法還是分類後比較法都是基於多個時相的遙感影像來進行土地利用變化監測。而當前期遙感影像無法或者難以獲得的情況下,依靠後期的單時相遙感影像與前期的土地利用現狀圖也可以進行動態監測,這就是採用將土地利用現狀圖疊加在遙感圖像上的方法來監測土地利用變化情況[6]。具體說來,是利用土地利用現狀圖中不變的明顯地物標志(如線狀地物交叉點)作為控制點對遙感圖像進行配准,然後將土地現狀圖疊加再校正後的遙感圖像上,檢查各圖斑是否吻合,若圖斑的角點有偏移,則發生變化。可通過遙感圖像辨識當前的土地利用類型,而土地利用現狀圖含有先期的土地利用類型信息,所以可以比較容易地辨識土地利用類型的變更情況,並可測算出變化圖斑的面積。若其中有不能確定的圖斑,可以輔以外業調查,以提高監測精度。
3 基於多源遙感的土地利用變化信息監測方法
不同感測器都具有各自的優勢,獲得的圖像各有所長,如美國陸地衛星(Landsat)TM圖像光譜信息豐富;法國SPOT衛星圖像具有全色通道而空間解析度高;SAR圖像不受光照條件的影響而且幾乎不受大氣和雲層的干涉,可用於探測地物的復介電常數和表面的粗糙度等等。利用不同感測器的多源遙感影像進行融合,可以使其優勢互補,在此基礎上的土地利用變化動態監測已成為國際遙感界研究的主題之一。以TM影像和SPOT影像為例,目前應用多光譜TM和全色SPOT數據融合的方法主要有LAB變換、HIS變換、線性復合與乘積運算、比值運算、BROVEY 變換、高通濾波變換(HPH)和主成分分析(PCA)等方法[7],經上述演算法融合後的圖像可以有效地同時保留SPOT高解析度圖像的精細紋理和TM多光譜圖像的豐富色彩信息,從而有利於提高圖像的空間解析度和光譜解析度,為發生變化的地類圖斑的提取提供良好的數據源基礎。
3.1 光譜特徵變異法[8]
針對基於多源遙感的土地利用變化監測,變化信息的提取方法除了2.1所述方法之外還可以選擇光譜特徵變異法。
同一地物反映在SPOT影像上的信息是與其反映在TM影像上的光譜信息一一對應的。因此作TM和SPOT影像融合時,才能如實地顯示出地物的正確光譜屬性。但如果兩者信息表現為不一致時,那麼融合後影像的光譜就表現得與正常地物有所差別,此時就稱地物發生了光譜特徵變異(例如同一位置,前期在遙感影像上呈現為綠色的麥地,後期新修道路在影像上呈現較亮的灰度,那麼疊加之後會呈現一條綠色的道路,與正常地物相異),這部分影像在整個的影像范圍內是不正常和不協調的,這些地物可以通過影像判讀的方法勾繪出來,這種變化信息提取的方法具有物理意義明顯、簡潔的特點。但是經過試驗發現,發生光譜特徵變異的地物在幾何尺寸上要足夠的大才能被人工目視發現。此外,該方法的效率還受到被監測區地物光譜特性的限制。
3.2 變化信息提取方法的選擇
根據土地利用動態監測項目所獲取的數據源,可將遙感數據組合分為下述幾種類型,針對不同的類型要採取相應的方法以獲取較好的效果。
3.2.1 具有兩時相的 TM 和 SPOT 數據
這種情況是最好的。在該條件下,先對兩時相的數據以某一糾正後的TM或SPOT影像(首先處理TM還是SPOT視數據的具體情況而定,原則是利於TM和SPOT數據的配准融合處理)為參考分別作糾正和配准處理,為保留並結合原始數據中紋理信息和光譜信息要融合相對應的TM和SPOT影像,在兩時相融合影像的基礎上採用主成分差異的方法來提取變化信息。另外還可以用新時相的 SPOT 影像與舊時相的 TM 影像進行融合生成光譜特徵變異影像來指導發現變化的區域。
3.2.2 具有兩時相的 TM 和一個時相的 SPOT 數據
在此數據源的基礎上,首先仍對某一時相的TM或SPOT數據作糾正處理,然後將其他時相的TM和SPOT數據都統一以這個糾正後的TM (SPOT)為參考影像作影像到影像的糾正和配准。之後,選擇光譜特徵變異的方法來尋找大部分的變化信息,藉助於兩時相的TM影像確認變化;此外,利用主成分分析的辦法對兩時相的TM數據進行處理,得到變化信息模板,將模板疊置在判讀影像上補充單一方法進行變化提取的遺漏。
3.2.3 具有兩時相的 SPOT 和一個時相的 TM 數據
通常,前面的數據預處理糾正配准部分同3.2.2相同,然後對其中交錯時相的TM和SPOT數據進行融合得到光譜特徵變異影像,藉助於兩時相的SPOT數據發現影像中紋理信息的變化,從而輔助提取影像中的變化信息部分。除此之外,兩時相的SPOT影像數據理論上說,可以直接作比較得到變化的部分,但是由於成像條件的不同,這樣直接比較的方法會導致產生很多偽變化信息,干擾了真正變化部分的提取。因此,首先要對原始SPOT影像進行去噪及輻射校正等預處理,然後才能用來提取變化的信息。
3.2.4 具有單時相的 SPOT 影像和另一時相 TM 影像的數據
首先要對SPOT和TM數據進行糾正處理,然後利用糾正後的SPOT和另一時相TM影像融合得到光譜特徵變異影像,並以此作為判讀變化信息的主要參考數據。此外,單時相的SPOT數據可以作為新增波段加入到原始的 TM 數據中去進行主成分分析來提取變化的信息,輔助發現漏判的變化圖斑。
利用遙感進行土地利用動態監測的方法非常多,這些方法各有自己的優勢和劣勢,實際工作中,要針對所擁有的數據源的情況,綜合各方面要求來選擇合適的方法,也可以綜合幾種方法取長補短以達到更好的監測效果。至於如何更有效地識別土地變化的類型以及如何提高分類的精度仍有很大的研究空間。
參考文獻
[1]盧珏.土地利用動態監測變化信息提取演算法評估[J].湖北農學院學報,2002,22 (5):394~396
[2]張銀輝,趙庚星.試論土地利用遙感動態監測技術方法[J].國土資源管理,2001,18 (3):15~18
[3]楊貴軍,武文波,陳步尚,夏春林.土地利用動態遙感監測中變化信息的提取方法[J].東北測繪,2003,26 (1):18~21
[4]Jensen J R,Cowen D J,Narumalani S,et al.An evaluation of coast watch change detection protocol in South Carolina [J].Photogram metric Engineering and Remote Sensing,1993,59 (6):1039~1046
[5]Macleod R D,Congalton R G.A quantitative comparison of change-detection algorithms for monitoring eelgrass from remotely sensed data [J].Photogram metric Engineering and Remote Sensing,1998,64 (3):207~216
[6]吳連喜,嚴泰來,張瑋,薛天民,程昌秀.土地利用現狀圖與遙感圖像疊加進行土地利用變更監測[J].農業工程學報,2001,17 (6):156~160
[7]張炳智,張繼閑,張麗.土地利用動態遙感監測中變化信息提取方法的研究[J].測繪科學,2000,25 (3):46~50
⑸ 土地利用結構變化率和產業結構變化率怎麼計算
土地利用變化的速度可以通過土地利用動態度模型進行度量,它既可表徵單一土地利用類型的時序變化,也可對區域土地利用動態的總體狀況及其區域分異進行分析。表達式如下:
K=(Ub-Ua)/Ua×1/T×100
%
其中:
K
為研究時段內某一土地利用類型變化率,
Ua
、Ub
分別為研究初期和研究末期某一種土地利用類型的數量,
T
為研究時段長,當T
的時段設定為年時,
K
值就是該研究區某種土地利用類型年變化率。
基於產業結構變化率的區域產業結構分析利用產業結構變化率來進一步度量產業部門結構隨時間推移的變化程度,其計算公式為:
⑹ 土地變化率怎麼算
土地動態度可分為兩種類型:(1)單一土地利用類型動態度分析單一土地利用類型動態度表達的是某研究區一定時間范圍內某種土地利用類型的數量變化情況,其表達式為:K=(Ub-Ua)/Ua×1T×100%式中:Ua、Ub為研究初期及研究末期某種土地利用類型的數量;T為研究時段,當T的單位為年時,K值就是該研究區某種土地利用類型的年變化率.(2)綜合土地利用動態度分析某一研究樣區的綜合土地利用動態度,其值常用LC表示,是指該研究區土地利用年變化率.
依你的問題來看單一土地利用類型動態度屬於土地類型變化率,綜合土地利用動態度屬於土地利用年變化率.
⑺ 水土保持平均土壤流失強度是怎麼算來的
將不同區域土壤流失強度加權平均即可,在水保方案中很多時候是採用的類比工程法得到的,如果區域較小的話用徑流小區實測即可。
⑻ 土地開發強度中有哪些指標,各個指標的計算公式是什麼
反映城市土地開發強度的指標有三個,即建築密度、建築高度和容積率。