導航:首頁 > 安裝方法 > 羅摩光速測量方法

羅摩光速測量方法

發布時間:2022-04-28 09:35:13

❶ 羅默測光速

光速的測量,首先在天文學上獲得成功,這是因為宇宙廣闊的空間提供了測量光速所需要的足夠大的距離.早在1676年丹麥天文學家羅默(1644—1710)首先測量了光速.由於任何周期性的變化過程都可當作時鍾,他成功地找到了離觀察者非常遙遠而相當准確的「時鍾」,羅默在觀察時所用的是木星每隔一定周期所出現的一次衛星蝕.他在觀察時注意到:連續兩次衛星蝕相隔的時間,當地球背離木星運動時,要比地球迎向木星運動時要長一些,他用光的傳播速度是有限的來解釋這個現象.光從木星發出(實際上是木星的衛星發出),當地球離開木星運動時,光必須追上地球,因而從地面上觀察木星的兩次衛星蝕相隔的時間,要比實際相隔的時間長一些;當地球迎向木星運動時,這個時間就短一些.因為衛星繞木星的周期不大(約為1.75天),所以上述時間差數,在最合適的時間(上圖中地球運行到軌道上的A和A』兩點時)不致超過15秒(地球的公轉軌道速度約為30千米/秒).因此,為了取得可靠的結果,當時的觀察曾在整年中連續地進行.羅默通過觀察從衛星蝕的時間變化和地球軌道直徑求出了光速.由於當時只知道地球軌道半徑的近似值,故求出的光速只有214300km/s.這個光速值盡管離光速的准確值相差甚遠,但它卻是測定光速歷史上的第一個記錄.後來人們用照相方法測量木星衛星蝕的時間,並在地球軌道半徑測量准確度提高後,用羅默法求得的光速為299840±60km/s.

❷ 光速是怎麼測的

1.羅默的衛星蝕法 光速的測量,首先在天文學上獲得成功,這是因為宇宙廣闊的空間提供了測量光速所需要的足夠大的距離.早在1676年丹麥天文學家羅默(1644— 1710)首先測量了光速.由於任何周期性的變化過程都可當作時鍾,他成功地找到了離觀察者非常遙遠而相當准確的「時鍾」,羅默在觀察時所用的是木星每隔一定周期所出現的一次衛星蝕.他在觀察時注意到:連續兩次衛星蝕相隔的時間,當地球背離木星運動時,要比地球迎向木星運動時要長一些,他用光的傳播速度是有限的來解釋這個現象.光從木星發出(實際上是木星的衛星發出),當地球離開木星運動時,光必須追上地球,因而從地面上觀察木星的兩次衛星蝕相隔的時間,要比實際相隔的時間長一些;當地球迎向木星運動時,這個時間就短一些.因為衛星繞木星的周期不大(約為1.75天),所以上述時間差數,在最合適的時間(上圖中地球運行到軌道上的A和A』兩點時)不致超過15秒(地球的公轉軌道速度約為30千米/秒).因此,為了取得可靠的結果,當時的觀察曾在整年中連續地進行.羅默通過觀察從衛星蝕的時間變化和地球軌道直徑求出了光速.由於當時只知道地球軌道半徑的近似值,故求出的光速只有214300km/s.這個光速值盡管離光速的准確值相差甚遠,但它卻是測定光速歷史上的第一個記錄.後來人們用照相方法測量木星衛星蝕的時間,並在地球軌道半徑測量准確度提高後,用羅默法求得的光速為299840±60km/s. 2.布萊德雷的光行差法 1728年,英國天文學家布萊德雷(1693—1762)採用恆星的光行差法,再一次得出光速是一有限的物理量.布萊德雷在地球上觀察恆星時,發現恆星的視位置在不斷地變化,在一年之內,所有恆星似乎都在天頂上繞著半長軸相等的橢圓運行了一周.他認為這種現象的產生是由於恆星發出的光傳到地面時需要一定的時間,而在此時間內,地球已因公轉而發生了位置的變化.他由此測得光速為: C=299930千米/秒 這一數值與實際值比較接近. 以上僅是利用天文學的現象和觀察數值對光速的測定,而在實驗室內限於當時的條件,測定光速尚不能實現. 二、光速測定的大地測量方法 光速的測定包含著對光所通過的距離和所需時間的量度,由於光速很大,所以必須測量一個很長的距離和一個很短的時間,大地測量法就是圍繞著如何准確測定距離和時間而設計的各種方法. 1.伽利略測定光速的方法 物理學發展史上,最早提出測量光速的是義大利物理學家伽利略.1607年在他的實驗中,讓相距甚遠的兩個觀察者,各執一盞能遮閉的燈,如圖所示:觀察者A打開燈光,經過一定時間後,光到達觀察者B,B立即打開自己的燈光,過了某一時間後,此信號回到A,於是A可以記下從他自己開燈的一瞬間,到信號從B返回到A的一瞬間所經過的時間間隔t.若兩觀察者的距離為S,則光的速度為 c=2s/t 因為光速很大,加之觀察者還要有一定的反應時間,所以伽利略的嘗試沒有成功.如果用反射鏡來代替B,那麼情況有所改善,這樣就可以避免觀察者所引入的誤差.這種測量原理長遠地保留在後來的一切測定光速的實驗方法之中.甚至在現代測定光速的實驗中仍然採用.但在信號接收上和時間測量上,要採用可靠的方法.使用這些方法甚至能在不太長的距離上測定光速,並達到足夠高的精確度. 2.旋轉齒輪法 用實驗方法測定光速首先是在1849年由斐索實驗.他用定期遮斷光線的方法(旋轉齒輪法)進行自動記錄.實驗示意圖如下.從光源s發出的光經會聚透鏡L1射到半鍍銀的鏡面A,由此反射後在齒輪W的齒a和a』之間的空隙內會聚,再經透鏡L2和L3而達到反射鏡M,然後再反射回來.又通過半鍍鏡A由 L4集聚後射入觀察者的眼睛E.如使齒輪轉動,那麼在光達到M鏡後再反射回來時所經過的時間△t內,齒輪將轉過一個角度.如果這時a與a』之間的空隙為齒 a(或a』)所佔據,則反射回來的光將被遮斷,因而觀察者將看不到光.但如齒輪轉到這樣一個角度,使由M鏡反射回來的光從另一齒間空隙通過,那麼觀察者會重新看到光,當齒輪轉動得更快,反射光又被另一個齒遮斷時,光又消失.這樣,當齒輪轉速由零而逐漸加快時,在E處將看到閃光.由齒輪轉速v、齒數n與齒輪和M的間距L可推得光速c=4nvL. 在斐索所做的實驗中,當具有720齒的齒輪,一秒鍾內轉動12.67次時,光將首次被擋住而消失,空隙與輪齒交替所需時間為 在這一時間內,光所經過的光程為2×8633米,所以光速c=2×8633×18244=3.15×108(m/s). 在對信號的發出和返回接收時刻能作自動記錄的遮斷法除旋轉齒輪法外,在現代還採用克爾盒法.1941年安德孫用克爾盒法測得:c=299776±6km/s,1951年貝格斯格蘭又用克爾盒法測得c=299793.1±0.3km/s. 3.旋轉鏡法 旋轉鏡法的主要特點是能對信號的傳播時間作精確測量.1851年傅科成功地運用此法測定了光速.旋轉鏡法的原理早在1834年1838年就已為惠更斯和阿拉果提出過,它主要用一個高速均勻轉動的鏡面來代替齒輪裝置.由於光源較強,而且聚焦得較好.因此能極其精密地測量很短的時間間隔.實驗裝置如圖所示.從光源s所發出的光通過半鍍銀的鏡面M1後,經過透鏡L射在繞O軸旋轉的平面反射鏡M2上O軸與圖面垂直.光從M2反射而會聚到凹面反射鏡M3上, M3的曲率中心恰在O軸上,所以光線由M3對稱地反射,並在s′點產生光源的像.當M2的轉速足夠快時,像S′的位置將改變到s〃,相對於可視M2為不轉時的位置移動了△s的距離可以推導出光速值: 式中w為M2轉動的角速度.l0為M2到M3的間距,l為透鏡L到光源S的間距,△s為s的像移動的距離.因此直接測量w、l、l0、△s,便可求得光速. 在傅科的實驗中:L=4米,L0=20米,△s=0.0007米,W=800×2π弧度/秒,他求得光速值c=298000±500km/s. 另外,傅科還利用這個實驗的基本原理,首次測出了光在介質(水)中的速度v<c,這是對波動說的有力證據. 3.旋轉棱鏡法 邁克耳遜把齒輪法和旋轉鏡法結合起來,創造了旋轉棱鏡法裝置.因為齒輪法之所以不夠准確,是由於不僅當齒的中央將光遮斷時變暗,而且當齒的邊緣遮斷光時也是如此.因此不能精確地測定象消失的瞬時.旋轉鏡法也不夠精確,因為在該法中象的位移△s太小,只有0.7毫米,不易測准.邁克耳遜的旋轉鏡法克服了這些缺點.他用一個正八面鋼質棱鏡代替了旋轉鏡法中的旋轉平面鏡,從而光路大大的增長,並利用精確地測定棱鏡的轉動速度代替測齒輪法中的齒輪轉速測出光走完整個路程所需的時間,從而減少了測量誤差.從1879年至1926年,邁克耳遜曾前後從事光速的測量工作近五十年,在這方面付出了極大的勞動. 1926年他的最後一個光速測定值為 c=299796km/s 這是當時最精確的測定值,很快成為當時光速的公認值. 三、光速測定的實驗室方法 光速測定的天文學方法和大地測量方法,都是採用測定光信號的傳播距離和傳播時間來確定光速的.這就要求要盡可能地增加光程,改進時間測量的准確性.這在實驗室里一般是受時空限制的,而只能在大地野外進行,如斐索的旋輪齒輪法當時是在巴黎的蘇冷與達蒙瑪特勒相距8633米的兩地進行的.傅科的旋轉鏡法當時也是在野外,邁克耳遜當時是在相距35373.21米的兩個山峰上完成的.現代科學技術的發展,使人們可以使用更小更精確地實驗儀器在實驗室中進行光速的測量. 1.微波諧振腔法 1950年埃森最先採用測定微波波長和頻率的方法來確定光速.在他的實驗中,將微波輸入到圓柱形的諧振腔中,當微波波長和諧振腔的幾何尺寸匹配時,諧振腔的圓周長πD和波長之比有如下的關系:πD=2.404825λ,因此可以通過諧振腔直徑的測定來確定波長,而直徑則用干涉法測量;頻率用逐級差頻法測定.測量精度達10-7.在埃森的實驗中,所用微波的波長為10厘米,所得光速的結果為299792.5±1km/s. 2.激光測速法 1790年美國國家標准局和美國國立物理實驗室最先運用激光測定光速.這個方法的原理是同時測定激光的波長和頻率來確定光速(c=νλ).由於激光的頻率和波長的測量精確度已大大提高,所以用激光測速法的測量精度可達10-9,比以前已有最精密的實驗方法提高精度約100倍. 四、光速測量方法一覽表 除了以上介紹的幾種測量光速的方法外,還有許多十分精確的測定光速的方法.現將不同方法測定的光速值列為「光速測量一覽表」供參考. 根據1975年第十五屆國際計量大會的決議,現代真空中光速的最可靠值是: c=299792.458±0.001km/s 聲速測量儀必須配上示波器和信號發生器才能完成測量聲速的任務。實驗中產生超聲波的裝置如圖所示。它由壓電陶瓷管或稱超聲壓電換能器與變幅桿組成;當有交變電壓加在壓電陶瓷管上時,由於壓電體的逆壓電效應,使其產生機械振動。此壓電陶瓷管粘接在鋁合金製成的變幅桿上,經過電子線路的放大,即成為超聲波發生器,由於壓電陶瓷管的周期性振動,帶動變幅桿也做周期軸向振動。當所加交變電壓的頻率與壓電陶瓷的固有頻率相同時,壓電陶瓷的振幅最大,這使得變幅桿的振幅也最大。變幅桿的端面在空氣中激發出縱波,即超聲波。本儀器的壓電陶瓷的振盪頻率在40kHz以上,相應的超聲波波長約為幾毫米,由於他的波長短,定向發射性能好,本超聲波發射器是比較理想的波源。由於變幅桿的端面直徑一般在20mm左右,比此波長大很多,因此可以近似認為離開發射器一定距離處的聲波是平面波。超聲波的接受器則是利用壓電體的正壓電效應,將接收的機械振動,轉化成電振動,為使此電振動增強。特加一選頻放大器加以放大,再經屏蔽線輸給示波器觀測。接收器安裝在可移動的機構上,這個機構包擴支架、絲桿、可移動底座(其上裝有指針,並通過定位螺母套在絲桿上,有絲桿帶動作平移)、帶刻度的手輪等。接收器的位置由主、尺刻度手輪的位置決定。主尺位於底座上面;最小方尺位於底坐上面;最小分尺為1mm,手輪與絲桿相連上分為100分格,每轉一周,接收器平移1mm,故手每一小格為0.01mm,可估到0.001mm。

❸ 光速怎麼測量

1.羅默的衛星蝕法

光速的測量,首先在天文學上獲得成功,這是因為宇宙廣闊的空間提供了測量光速所需要的足夠大的距離.早在1676年丹麥天文學家羅默(1644— 1710)首先測量了光速.由於任何周期性的變化過程都可當作時鍾,他成功地找到了離觀察者非常遙遠而相當准確的「時鍾」,羅默在觀察時所用的是木星每隔一定周期所出現的一次衛星蝕.他在觀察時注意到:連續兩次衛星蝕相隔的時間,當地球背離木星運動時,要比地球迎向木星運動時要長一些,他用光的傳播速度是有限的來解釋這個現象.光從木星發出(實際上是木星的衛星發出),當地球離開木星運動時,光必須追上地球,因而從地面上觀察木星的兩次衛星蝕相隔的時間,要比實際相隔的時間長一些;當地球迎向木星運動時,這個時間就短一些.因為衛星繞木星的周期不大(約為1.75天),所以上述時間差數,在最合適的時間(上圖中地球運行到軌道上的A和A』兩點時)不致超過15秒(地球的公轉軌道速度約為30千米/秒).因此,為了取得可靠的結果,當時的觀察曾在整年中連續地進行.羅默通過觀察從衛星蝕的時間變化和地球軌道直徑求出了光速.由於當時只知道地球軌道半徑的近似值,故求出的光速只有214300km/s.這個光速值盡管離光速的准確值相差甚遠,但它卻是測定光速歷史上的第一個記錄.後來人們用照相方法測量木星衛星蝕的時間,並在地球軌道半徑測量准確度提高後,用羅默法求得的光速為299840±60km/s.

2.布萊德雷的光行差法

1728年,英國天文學家布萊德雷(1693—1762)採用恆星的光行差法,再一次得出光速是一有限的物理量.布萊德雷在地球上觀察恆星時,發現恆星的視位置在不斷地變化,在一年之內,所有恆星似乎都在天頂上繞著半長軸相等的橢圓運行了一周.他認為這種現象的產生是由於恆星發出的光傳到地面時需要一定的時間,而在此時間內,地球已因公轉而發生了位置的變化.他由此測得光速為:

C=299930千米/秒

這一數值與實際值比較接近.

以上僅是利用天文學的現象和觀察數值對光速的測定,而在實驗室內限於當時的條件,測定光速尚不能實現.

二、光速測定的大地測量方法

光速的測定包含著對光所通過的距離和所需時間的量度,由於光速很大,所以必須測量一個很長的距離和一個很短的時間,大地測量法就是圍繞著如何准確測定距離和時間而設計的各種方法.

1.伽利略測定光速的方法

物理學發展史上,最早提出測量光速的是義大利物理學家伽利略.1607年在他的實驗中,讓相距甚遠的兩個觀察者,各執一盞能遮閉的燈,如圖所示:觀察者A打開燈光,經過一定時間後,光到達觀察者B,B立即打開自己的燈光,過了某一時間後,此信號回到A,於是A可以記下從他自己開燈的一瞬間,到信號從B返回到A的一瞬間所經過的時間間隔t.若兩觀察者的距離為S,則光的速度為

c=2s/t

因為光速很大,加之觀察者還要有一定的反應時間,所以伽利略的嘗試沒有成功.如果用反射鏡來代替B,那麼情況有所改善,這樣就可以避免觀察者所引入的誤差.這種測量原理長遠地保留在後來的一切測定光速的實驗方法之中.甚至在現代測定光速的實驗中仍然採用.但在信號接收上和時間測量上,要採用可靠的方法.使用這些方法甚至能在不太長的距離上測定光速,並達到足夠高的精確度.

2.旋轉齒輪法

用實驗方法測定光速首先是在1849年由斐索實驗.他用定期遮斷光線的方法(旋轉齒輪法)進行自動記錄.實驗示意圖如下.從光源s發出的光經會聚透鏡L1射到半鍍銀的鏡面A,由此反射後在齒輪W的齒a和a』之間的空隙內會聚,再經透鏡L2和L3而達到反射鏡M,然後再反射回來.又通過半鍍鏡A由 L4集聚後射入觀察者的眼睛E.如使齒輪轉動,那麼在光達到M鏡後再反射回來時所經過的時間△t內,齒輪將轉過一個角度.如果這時a與a』之間的空隙為齒 a(或a』)所佔據,則反射回來的光將被遮斷,因而觀察者將看不到光.但如齒輪轉到這樣一個角度,使由M鏡反射回來的光從另一齒間空隙通過,那麼觀察者會重新看到光,當齒輪轉動得更快,反射光又被另一個齒遮斷時,光又消失.這樣,當齒輪轉速由零而逐漸加快時,在E處將看到閃光.由齒輪轉速v、齒數n與齒輪和M的間距L可推得光速c=4nvL.

在斐索所做的實驗中,當具有720齒的齒輪,一秒鍾內轉動12.67次時,光將首次被擋住而消失,空隙與輪齒交替所需時間為

在這一時間內,光所經過的光程為2×8633米,所以光速c=2×8633×18244=3.15×108(m/s).

在對信號的發出和返回接收時刻能作自動記錄的遮斷法除旋轉齒輪法外,在現代還採用克爾盒法.1941年安德孫用克爾盒法測得:c=299776±6km/s,1951年貝格斯格蘭又用克爾盒法測得c=299793.1±0.3km/s.

3.旋轉鏡法

旋轉鏡法的主要特點是能對信號的傳播時間作精確測量.1851年傅科成功地運用此法測定了光速.旋轉鏡法的原理早在1834年1838年就已為惠更斯和阿拉果提出過,它主要用一個高速均勻轉動的鏡面來代替齒輪裝置.由於光源較強,而且聚焦得較好.因此能極其精密地測量很短的時間間隔.實驗裝置如圖所示.從光源s所發出的光通過半鍍銀的鏡面M1後,經過透鏡L射在繞O軸旋轉的平面反射鏡M2上O軸與圖面垂直.光從M2反射而會聚到凹面反射鏡M3上, M3的曲率中心恰在O軸上,所以光線由M3對稱地反射,並在s′點產生光源的像.當M2的轉速足夠快時,像S′的位置將改變到s〃,相對於可視M2為不轉時的位置移動了△s的距離可以推導出光速值:

式中w為M2轉動的角速度.l0為M2到M3的間距,l為透鏡L到光源S的間距,△s為s的像移動的距離.因此直接測量w、l、l0、△s,便可求得光速.

在傅科的實驗中:L=4米,L0=20米,△s=0.0007米,W=800×2π弧度/秒,他求得光速值c=298000±500km/s.

另外,傅科還利用這個實驗的基本原理,首次測出了光在介質(水)中的速度v<c,這是對波動說的有力證據.

3.旋轉棱鏡法

邁克耳遜把齒輪法和旋轉鏡法結合起來,創造了旋轉棱鏡法裝置.因為齒輪法之所以不夠准確,是由於不僅當齒的中央將光遮斷時變暗,而且當齒的邊緣遮斷光時也是如此.因此不能精確地測定象消失的瞬時.旋轉鏡法也不夠精確,因為在該法中象的位移△s太小,只有0.7毫米,不易測准.邁克耳遜的旋轉鏡法克服了這些缺點.他用一個正八面鋼質棱鏡代替了旋轉鏡法中的旋轉平面鏡,從而光路大大的增長,並利用精確地測定棱鏡的轉動速度代替測齒輪法中的齒輪轉速測出光走完整個路

❹ 光速是怎麼測量出來的

光速的測量方法: 最早光速的准確數值是通過觀測木星對其衛星的掩食測量的。還有轉動齒輪法、轉鏡法、克爾盒法、變頻閃光法等光速測量方法。

1.羅默的衛星蝕法

光速的測量,首先在天文學上獲得成功,這是因為宇宙廣闊的空間提供了測量光速所需要的足夠大的距離.早在1676年丹麥天文學家羅默(1644— 1710)首先測量了光速.由於任何周期性的變化過程都可當作時鍾,他成功地找到了離觀察者非常遙遠而相當准確的「時鍾」,羅默在觀察時所用的是木星每隔一定周期所出現的一次衛星蝕.他在觀察時注意到:連續兩次衛星蝕相隔的時間,當地球背離木星運動時,要比地球迎向木星運動時要長一些,他用光的傳播速度是有限的來解釋這個現象.光從木星發出(實際上是木星的衛星發出),當地球離開木星運動時,光必須追上地球,因而從地面上觀察木星的兩次衛星蝕相隔的時間,要比實際相隔的時間長一些;當地球迎向木星運動時,這個時間就短一些.因為衛星繞木星的周期不大(約為1.75天),所以上述時間差數,在最合適的時間(上圖中地球運行到軌道上的A和A』兩點時)不致超過15秒(地球的公轉軌道速度約為30千米/秒).因此,為了取得可靠的結果,當時的觀察曾在整年中連續地進行.羅默通過觀察從衛星蝕的時間變化和地球軌道直徑求出了光速.由於當時只知道地球軌道半徑的近似值,故求出的光速只有214300km/s.這個光速值盡管離光速的准確值相差甚遠,但它卻是測定光速歷史上的第一個記錄.後來人們用照相方法測量木星衛星蝕的時間,並在地球軌道半徑測量准確度提高後,用羅默法求得的光速為299840±60km/s.

2.布萊德雷的光行差法

1728年,英國天文學家布萊德雷(1693—1762)採用恆星的光行差法,再一次得出光速是一有限的物理量.布萊德雷在地球上觀察恆星時,發現恆星的視位置在不斷地變化,在一年之內,所有恆星似乎都在天頂上繞著半長軸相等的橢圓運行了一周.他認為這種現象的產生是由於恆星發出的光傳到地面時需要一定的時間,而在此時間內,地球已因公轉而發生了位置的變化.他由此測得光速為:

C=299930千米/秒

這一數值與實際值比較接近.

以上僅是利用天文學的現象和觀察數值對光速的測定,而在實驗室內限於當時的條件,測定光速尚不能實現.

二、光速測定的大地測量方法

光速的測定包含著對光所通過的距離和所需時間的量度,由於光速很大,所以必須測量一個很長的距離和一個很短的時間,大地測量法就是圍繞著如何准確測定距離和時間而設計的各種方法.

1.伽利略測定光速的方法

物理學發展史上,最早提出測量光速的是義大利物理學家伽利略.1607年在他的實驗中,讓相距甚遠的兩個觀察者,各執一盞能遮閉的燈,如圖所示:觀察者A打開燈光,經過一定時間後,光到達觀察者B,B立即打開自己的燈光,過了某一時間後,此信號回到A,於是A可以記下從他自己開燈的一瞬間,到信號從B返回到A的一瞬間所經過的時間間隔t.若兩觀察者的距離為S,則光的速度為

c=2s/t

因為光速很大,加之觀察者還要有一定的反應時間,所以伽利略的嘗試沒有成功.如果用反射鏡來代替B,那麼情況有所改善,這樣就可以避免觀察者所引入的誤差.這種測量原理長遠地保留在後來的一切測定光速的實驗方法之中.甚至在現代測定光速的實驗中仍然採用.但在信號接收上和時間測量上,要採用可靠的方法.使用這些方法甚至能在不太長的距離上測定光速,並達到足夠高的精確度.

2.旋轉齒輪法

用實驗方法測定光速首先是在1849年由斐索實驗.他用定期遮斷光線的方法(旋轉齒輪法)進行自動記錄.實驗示意圖如下.從光源s發出的光經會聚透鏡L1射到半鍍銀的鏡面A,由此反射後在齒輪W的齒a和a』之間的空隙內會聚,再經透鏡L2和L3而達到反射鏡M,然後再反射回來.又通過半鍍鏡A由 L4集聚後射入觀察者的眼睛E.如使齒輪轉動,那麼在光達到M鏡後再反射回來時所經過的時間△t內,齒輪將轉過一個角度.如果這時a與a』之間的空隙為齒 a(或a』)所佔據,則反射回來的光將被遮斷,因而觀察者將看不到光.但如齒輪轉到這樣一個角度,使由M鏡反射回來的光從另一齒間空隙通過,那麼觀察者會重新看到光,當齒輪轉動得更快,反射光又被另一個齒遮斷時,光又消失.這樣,當齒輪轉速由零而逐漸加快時,在E處將看到閃光.由齒輪轉速v、齒數n與齒輪和M的間距L可推得光速c=4nvL.

在斐索所做的實驗中,當具有720齒的齒輪,一秒鍾內轉動12.67次時,光將首次被擋住而消失,空隙與輪齒交替所需時間為

在這一時間內,光所經過的光程為2×8633米,所以光速c=2×8633×18244=3.15×108(m/s).

在對信號的發出和返回接收時刻能作自動記錄的遮斷法除旋轉齒輪法外,在現代還採用克爾盒法.1941年安德孫用克爾盒法測得:c=299776±6km/s,1951年貝格斯格蘭又用克爾盒法測得c=299793.1±0.3km/s.

3.旋轉鏡法

旋轉鏡法的主要特點是能對信號的傳播時間作精確測量.1851年傅科成功地運用此法測定了光速.旋轉鏡法的原理早在1834年1838年就已為惠更斯和阿拉果提出過,它主要用一個高速均勻轉動的鏡面來代替齒輪裝置.由於光源較強,而且聚焦得較好.因此能極其精密地測量很短的時間間隔.實驗裝置如圖所示.從光源s所發出的光通過半鍍銀的鏡面M1後,經過透鏡L射在繞O軸旋轉的平面反射鏡M2上O軸與圖面垂直.光從M2反射而會聚到凹面反射鏡M3上, M3的曲率中心恰在O軸上,所以光線由M3對稱地反射,並在s′點產生光源的像.當M2的轉速足夠快時,像S′的位置將改變到s〃,相對於可視M2為不轉時的位置移動了△s的距離可以推導出光速值:

式中w為M2轉動的角速度.l0為M2到M3的間距,l為透鏡L到光源S的間距,△s為s的像移動的距離.因此直接測量w、l、l0、△s,便可求得光速.

在傅科的實驗中:L=4米,L0=20米,△s=0.0007米,W=800×2π弧度/秒,他求得光速值c=298000±500km/s.

另外,傅科還利用這個實驗的基本原理,首次測出了光在介質(水)中的速度v<c,這是對波動說的有力證據.

3.旋轉棱鏡法

邁克耳遜把齒輪法和旋轉鏡法結合起來,創造了旋轉棱鏡法裝置.因為齒輪法之所以不夠准確,是由於不僅當齒的中央將光遮斷時變暗,而且當齒的邊緣遮斷光時也是如此.因此不能精確地測定象消失的瞬時.旋轉鏡法也不夠精確,因為在該法中象的位移△s太小,只有0.7毫米,不易測准.邁克耳遜的旋轉鏡法克服了這些缺點.他用一個正八面鋼質棱鏡代替了旋轉鏡法中的旋轉平面鏡,從而光路大大的增長,並利用精確地測定棱鏡的轉動速度代替測齒輪法中的齒輪轉速測出光走完整個路程所需的時間,從而減少了測量誤差.從1879年至1926年,邁克耳遜曾前後從事光速的測量工作近五十年,在這方面付出了極大的勞動. 1926年他的最後一個光速測定值為

c=299796km/s

這是當時最精確的測定值,很快成為當時光速的公認值.

三、光速測定的實驗室方法

光速測定的天文學方法和大地測量方法,都是採用測定光信號的傳播距離和傳播時間來確定光速的.這就要求要盡可能地增加光程,改進時間測量的准確性.這在實驗室里一般是受時空限制的,而只能在大地野外進行,如斐索的旋輪齒輪法當時是在巴黎的蘇冷與達蒙瑪特勒相距8633米的兩地進行的.傅科的旋轉鏡法當時也是在野外,邁克耳遜當時是在相距35373.21米的兩個山峰上完成的.現代科學技術的發展,使人們可以使用更小更精確地實驗儀器在實驗室中進行光速的測量.

1.微波諧振腔法

1950年埃森最先採用測定微波波長和頻率的方法來確定光速.在他的實驗中,將微波輸入到圓柱形的諧振腔中,當微波波長和諧振腔的幾何尺寸匹配時,諧振腔的圓周長πD和波長之比有如下的關系:πD=2.404825λ,因此可以通過諧振腔直徑的測定來確定波長,而直徑則用干涉法測量;頻率用逐級差頻法測定.測量精度達10-7.在埃森的實驗中,所用微波的波長為10厘米,所得光速的結果為299792.5±1km/s.

2.激光測速法

1790年美國國家標准局和美國國立物理實驗室最先運用激光測定光速.這個方法的原理是同時測定激光的波長和頻率來確定光速(c=νλ).由於激光的頻率和波長的測量精確度已大大提高,所以用激光測速法的測量精度可達10-9,比以前已有最精密的實驗方法提高精度約100倍.

四、光速測量方法一覽表

除了以上介紹的幾種測量光速的方法外,還有許多十分精確的測定光速的方法.現將不同方法測定的光速值列為「光速測量一覽表」供參考.

根據1975年第十五屆國際計量大會的決議,現代真空中光速的最可靠值是:

c=299792.458±0.001km/s

聲速測量儀必須配上示波器和信號發生器才能完成測量聲速的任務。實驗中產生超聲波的裝置如圖所示。它由壓電陶瓷管或稱超聲壓電換能器與變幅桿組成;當有交變電壓加在壓電陶瓷管上時,由於壓電體的逆壓電效應,使其產生機械振動。此壓電陶瓷管粘接在鋁合金製成的變幅桿上,經過電子線路的放大,即成為超聲波發生器,由於壓電陶瓷管的周期性振動,帶動變幅桿也做周期軸向振動。當所加交變電壓的頻率與壓電陶瓷的固有頻率相同時,壓電陶瓷的振幅最大,這使得變幅桿的振幅也最大。變幅桿的端面在空氣中激發出縱波,即超聲波。本儀器的壓電陶瓷的振盪頻率在40kHz以上,相應的超聲波波長約為幾毫米,由於他的波長短,定向發射性能好,本超聲波發射器是比較理想的波源。由於變幅桿的端面直徑一般在20mm左右,比此波長大很多,因此可以近似認為離開發射器一定距離處的聲波是平面波。超聲波的接受器則是利用壓電體的正壓電效應,將接收的機械振動,轉化成電振動,為使此電振動增強。特加一選頻放大器加以放大,再經屏蔽線輸給示波器觀測。接收器安裝在可移動的機構上,這個機構包擴支架、絲桿、可移動底座(其上裝有指針,並通過定位螺母套在絲桿上,有絲桿帶動作平移)、帶刻度的手輪等。接收器的位置由主、尺刻度手輪的位置決定。主尺位於底座上面;最小方尺位於底坐上面;最小分尺為1mm,手輪與絲桿相連上分為100分格,每轉一周,接收器平移1mm,故手每一小格為0.01mm,可估到0.001mm。

❺ 光速是如何測定出來的

1、最早的高精度測量光速的方法,齒輪法。

光在特定的光路上,兩次通過齒輪的間隙後被觀測者看到。這種情況下,只有齒輪的轉速是某一些特定的值的時候,光才可以順利通過兩個間隙,而不被擋住。而這個特定的轉速,則與光速有關。這樣,就把光速的測量,轉化成了測量一個齒輪的轉速。

2、邁克爾遜的改進實驗。

把齒輪換成了一個八面的鏡子。鏡子不斷旋轉,只有在轉速是特定的值的時候,光才能順利被反射,進入觀測者的眼睛。由於這里,鏡子對光路的影響更大,所以測量的精確度可以更高。

3、現代的光路測量往往會使用干涉法。

通過測量特定頻率的激光的波長,再用速度=波長*頻率,就能算出來速度。這一方法的精度極高。現在,由於米是從光速定義過來的,所以光速的值也就定死了,就是299792458m/s。

(5)羅摩光速測量方法擴展閱讀:

第一個嘗試去測量光速的是伽利略。

他和他的助手在夜間相隔數公里遠面對面地站著,每人拿一盞燈,燈有開關。首先,第一個人先舉起燈,同時記下時間。當第二個人看到第一個人的燈時立即舉起自己的燈,也記下時間。從第一個人舉起燈到他看到第二個人的燈的時間間隔就是光傳播1.6km里的時間。

為了減小誤差,伽利略反反復復舉燈,但當時的他不知道光的傳播速度實在是太快了,這種方法最終失敗。但伽利略的實驗揭開了人類歷史上對光速進行研究的序幕。

❻ 光速是如何測量出來的

光的干涉和衍射現象說明光具有波動性,光的偏振現象進而說明光是橫波.而光以有限速度傳播以及光速的精確測定,在建立光的電磁波學說方面也曾起了重大的作用.光速是物理學中最重要的基本常數之一,也是所有各種頻率的電磁波在真空中的傳播速度.狹義相對論認為:任何信號和物體的速度都不能超過真空中的光速.在折射率為n的介質中,光的傳播速度為:v=c/n.在光學和物理學的發展歷史上,光速的測定,一直是許多科學家為之探索的課題.許多光速測量方法那巧妙的構思、高超的實驗設計一直在啟迪著後人的物理學研究.歷史上光速測量方法可以分為天文學測量方法、大地測量方法和實驗室測量方法等.

具體請到這個地址查看~`帖出來..太長了~

http://allastronomy.lamost.org/bbs/simple/index.php?t230.html
參考資料:http://allastronomy.lamost.org/bbs/simple/index.php?t230.html
回答者:子弟兵知道 - 試用期 一級 6-19 18:20

❼ 光速是怎樣測出來的基本原理

17世紀初,伽利略用測量聲速的方法來測量光速,他讓兩個人各提一盞有遮光板的燈,並分別站在相距約1.6千米的地方,令第一個人先打開他的燈,同時開始計時;第二個人見到第一個人的燈亮時,立刻打開自己的燈;當第一個人看見第二個人的燈亮時,停止計時,這樣測出光從第一個人到第二個人再返回所用的時間,再測出兩地的距離,就可以計算出光的速度。
從原理上講,伽利略的方法是對的,但是實驗失敗了。這是因為光速很大,1/7秒能繞地球一周多,靠當時的條件在地球上用通常測聲速的方法測光速是難以實現的。於是,人們把測光速的場地移到太空。
在伽利略去世後約30年,丹麥王文學家羅默在觀察木星的衛星食中,於1676年指出光速是有限的。

1834年,英國物理學家惠斯通利用旋轉鏡來測定電火花持續的時間,也想用此法來測定光速,同時也想確認一下在拆折射率更大的介質中,光速是否更大。
惠斯通的思想方法是正確的,但是他沒有完成。

斐索先後研究了光的干涉、熱膨脹等,發明了干涉儀。他在研究和測量光速問題上作出了貢獻,是第一個不用天文常數、不藉助天文觀察來測量光速的人。 他是採用旋轉齒輪的方法來測定光速的。
測出的光速為 342539。21千米/秒,這個數值與當時天文學家公認的光速值相差甚小。

傅科在物理學史上以其「傅科擺」的實驗著名於世。在光速測定的研究中,他是採用旋轉平面鏡的方法來測量光速的。
其測得的光速為29。8×107米/秒,並分析實驗誤差不可能超過5×105米/秒。

1850年5月6日傅科向科學院報告了自己的實驗結果,並發現光速在水中比在空氣中小,證明了波動說的觀點是正確的。

邁克耳遜(美國人,A。A。Michelson,1852-1931)繼承了傅科的實驗思想,用旋轉八面棱鏡法測得光速為299796千米/秒。 。

❽ 怎樣測量光速科學家是怎樣做得

「光傳播需不需要時間」,這一直是物理學家頗感興趣的問題。最早嘗試測定光速的人是伽利略。他提出了一種類似測聲速的方法來測光速。由兩個試驗者各提一盞信號燈,同時開始計時:而第二個人在看到第一個人發來的光信號時也立即開自己的燈,當第一個人看到第二個人發回的光信號時立即停止計時,若測出光信號往返所經過的時間,再除兩地的距離,就得到光速了。在一個漆黑的夜晚,伽利略與他的助手來到佛羅倫薩郊外,在相距數公里的兩個山頭上做實驗,結果卻失敗了。
伽利略測量光速的方法,從原理上講是正確的。但實際測試卻未獲成功。為什麼呢?其原因是光傳播的速度太快了,光信號在這樣兩個山頭之間傳播一個來回的時間不到萬分之一秒,靠當時簡陋的計時儀器根本無法測出,即使如此,也並非一無所獲,至少使人們認識到,光速實在太快,要測光速必須是在極短的時間間隔中。
第一個成功地進行光速測量的是凡麥天文學家羅默。他在觀察木星時發現,每隔一定周期會出現一次衛星蝕,而衛星蝕的時間間隔卻有長有短。所謂衛星蝕就像月亮有月蝕一樣,就是木星的衛星繞木星公轉時,當木星牌衛星和太陽中間時,也會發生木星的衛星蝕,木衛星繞木星公轉一周要消失在木星的影內一次,二次消失所經歷的時間衛星公周期,羅默發現,木星衛星公轉周期不是恆定不變的,當地球背離木星運行時,周期略長;反之,地球接近木星運行時周期略短。地球並不能影響木星衛星的運動,從地球上觀察木星衛星公轉周期之所以有變化,是因為當地球背離木星運行時,從木星衛星發出的光要多走一段,即如圖中的S,這段附加路程需要附加時間,因此光不是瞬時傳播的,而需要時間。羅默對木星衛星蝕周期進行了長期觀察,求得光速為2.15*10 8米/秒,即每秒21.5萬公里(千米)。雖然這個數值並不精確,但能得出光速有限的結論仍不愧是一重大的貢獻。
後來,不僅有天文法測光速,還出現了在地球上測量光速,測量的精度逐步提高。直到現在,不少科學發達的國家都集中了一批優秀的科學家致力於提高光速測量的精度。

❾ 光速是怎樣測出來的

1、天文學方法1676年,丹麥天文學家O.C.羅默利用木星衛星的星蝕時間變化證實光是以有限速度傳播的。

2、布萊德雷的光行差法

1728年,英國天文學家布萊德雷(1693—1762)採用恆星的光行差法,再一次得出光速是一有限的物理量,布萊德雷在地球上觀察恆星時,發現恆星的視位置在不斷地變化,在一年之內,所有恆星似乎都在天頂上繞著半長軸相等的橢圓運行了一周。

他認為這種現象的產生是由於恆星發出的光傳到地面時需要一定的時間,而在此時間內,地球已因公轉而發生了位置的變化,他由此測得光速為:C=299930千米/秒。

3、地面測量方法

光速的測定包含著對光所通過的距離和所需時間的量度,由於光速很大,所以必須測量一個很長的距離和一個很短的時間,大地測量法就是圍繞著如何准確測定距離和時間而設計的各種方法。

4、旋轉齒輪法

用實驗方法測定光速首先是在1849年由斐索實驗,他用定期遮斷光線的方法(旋轉齒輪法)進行自動記錄。

5、旋轉鏡法

旋轉鏡法的主要特點是能對信號的傳播時間作精確測量,1851年傅科成功地運用此法測定了光速,旋轉鏡法的原理早在1834年1838年就已為惠更斯和阿拉果提出過。

它主要用一個高速均勻轉動的鏡面來代替齒輪裝置,由於光源較強,而且聚焦得較好,因此能極其精密地測量很短的時間間隔。

閱讀全文

與羅摩光速測量方法相關的資料

熱點內容
蘋果手機網頁提取文字的方法 瀏覽:292
星露穀物語鐵錠快速入手方法 瀏覽:120
摩托機油尺正確的測量方法 瀏覽:800
炸蝦的正確方法圖片 瀏覽:428
a型血人最佳解壓方法 瀏覽:110
調整金牛座的最佳方法 瀏覽:381
以實踐為基礎的研究方法及意義 瀏覽:545
魅藍攔截的信息在哪裡設置方法 瀏覽:403
雕刻牛字最簡單的方法 瀏覽:36
武漢戀愛挽回方法操作步驟 瀏覽:431
戒掉手機的四個方法 瀏覽:574
快速有效治療尖銳濕方法 瀏覽:226
最簡單的方法畫hellokitty 瀏覽:844
反滲透膜解決方法 瀏覽:485
扯麵的正確方法和技巧 瀏覽:494
文彥博樹洞取球方法好在哪裡 瀏覽:854
四川泡洋姜的正確泡水方法 瀏覽:497
黑檀手串的鑒別方法圖解 瀏覽:818
延遲滿足實驗研究方法 瀏覽:161
種植業污染解決方法 瀏覽:894