導航:首頁 > 安裝方法 > 解絕對式不等式的方法和步驟

解絕對式不等式的方法和步驟

發布時間:2024-02-09 14:48:07

如何解含絕對值的不等式

絕對值不等式解法的基本思路是:去掉絕對值符號,把它轉化為一般的不等式求解,轉化的方法一般有:

(1)絕對值定義法;

(2)平方法;

(3)零點區域法。常見的形式有以下幾種。

1、形如不等式:|x|<a(a>0)

利用絕對值的定義得不等式的解集為:-a<x<a

2、形如不等式:|x|>=a(a>0)

它的解集為:x<=-a或x>=a。

3、形如不等式|ax+b|<c(c>0)

它的解法是:先化為不等式組:-c<ax+b<c,再利用不等式的性質來得解集。

4、形如 |ax+b|>c(c>0)

它的解法是:先化為不等式組:ax+b>c或ax+b<-c,再利用不等式的性質求出原不等式的解集。

(1)解絕對式不等式的方法和步驟擴展閱讀:

等式的特殊性質有以下三種:

①不等式性質1:不等式的兩邊同時加上(或減去)同一個數(或式子),不等號的方向不變;

②不等式性質2:不等式的兩邊同時乘(或除以)同一個正數,不等號的方向不變;

③不等式性質3:不等式的兩邊同時乘(或除以)同一個負數,不等號的方向變。總結:當兩個正數的積為定值時,它們的和有最小值;當兩個正數的和為定值時,它們的積有最大值。

常用定理

①不等式F(x)< G(x)與不等式 G(x)>F(x)同解。

②如果不等式F(x) < G(x)的定義域被解析式H( x )的定義域所包含,那麼不等式 F(x)<G(x)與不等式F(x)+H(x)<G(x)+H(x)同解。

③如果不等式F(x)<G(x) 的定義域被解析式H(x)的定義域所包含,並且H(x)>0,那麼不等式F(x)<G(x)與不等式H(x)F(x)<H( x )G(x) 同解;如果H(x)<0,那麼不等式F(x)<G(x)與不等式H (x)F(x)>H(x)G(x)同解。

閱讀全文

與解絕對式不等式的方法和步驟相關的資料

熱點內容
閉經原因和治療方法 瀏覽:584
銷售高手怎麼找對方法 瀏覽:675
人物描寫有哪些描寫方法二年級 瀏覽:287
用什麼方法能把視頻上面的字去掉 瀏覽:63
綠色度評價方法有哪些 瀏覽:786
棉條的種植方法 瀏覽:482
普通開鎖方法圖片 瀏覽:297
氧化樂果的使用方法 瀏覽:400
體育鍛煉的方法包括哪三個方面 瀏覽:495
法國鱷魚軟膏使用方法 瀏覽:713
須黃芪的功效與作用及食用方法 瀏覽:85
智能手機電池充電方法 瀏覽:920
勾股定理治療方法 瀏覽:691
數字電筆的使用方法 瀏覽:38
腰椎鍛煉方法視頻 瀏覽:851
角閥與水龍頭閥芯安裝方法 瀏覽:9
軟管套不進去有什麼好方法 瀏覽:54
松子怎麼長期保存方法 瀏覽:767
圓台體心角計算方法 瀏覽:134
雙截棍的使用方法 瀏覽:145