導航:首頁 > 安裝方法 > 數據預處理的步驟及方法

數據預處理的步驟及方法

發布時間:2022-06-11 14:20:43

Ⅰ 數據預處理的原理

數據預處理(data preprocessing)是指在主要的處理以前對數據進行的一些處理。如對大部分地球物理面積性觀測數據在進行轉換或增強處理之前,首先將不規則分布的測網經過插值轉換為規則網的處理,以利於計算機的運算。另外,對於一些剖面測量數據,如地震資料預處理有垂直疊加、重排、加道頭、編輯、重新取樣、多路編輯等。

中文名
數據預處理
外文名
data preprocessing
定義
主要的處理以前對數據進行處理
方法
數據清理,數據集成,數據變換等
目標
格式標准化,異常數據清除
快速
導航
預處理內容

方法
基本介紹
現實世界中數據大體上都是不完整,不一致的臟數據,無法直接進行數據挖掘,或挖掘結果差強人意。為了提高數據挖掘的質量產生了數據預處理技術。 數據預處理有多種方法:數據清理,數據集成,數據變換,數據歸約等。這些數據處理技術在數據挖掘之前使用,大大提高了數據挖掘模式的質量,降低實際挖掘所需要的時間。
數據的預處理是指對所收集數據進行分類或分組前所做的審核、篩選、排序等必要的處理。[1]
預處理內容
數據審核
從不同渠道取得的統計數據,在審核的內容和方法上有所不同。[1]
對於原始數據應主要從完整性和准確性兩個方面去審核。完整性審核主要是檢查應調查的單位或個體是否有遺漏,所有的調查項目或指標是否填寫齊全。准確性審核主要是包括兩個方面:一是檢查數據資料是否真實地反映了客觀實際情況,內容是否符合實際;二是檢查數據是否有錯誤,計算是否正確等。審核數據准確性的方法主要有邏輯檢查和計算檢查。邏輯檢查主要是審核數據是否符合邏輯,內容是否合理,各項目或數字之間有無相互矛盾的現象,此方法主要適合對定性(品質)數據的審核。計算檢查是檢查調查表中的各項數據在計算結果和計算方法上有無錯誤,主要用於對定量(數值型)數據的審核。[1]
對於通過其他渠道取得的二手資料,除了對其完整性和准確性進行審核外,還應該著重審核數據的適用性和時效性。二手資料可以來自多種渠道,有些數據可能是為特定目的通過專門調查而獲得的,或者是已經按照特定目的需要做了加工處理。對於使用者來說,首先應該弄清楚數據的來源、數據的口徑以及有關的背景資料,以便確定這些資料是否符合自己分析研究的需要,是否需要重新加工整理等,不能盲目生搬硬套。此外,還要對數據的時效性進行審核,對於有些時效性較強的問題,如果取得的數據過於滯後,可能失去了研究的意義。一般來說,應盡可能使用最新的統計數據。數據經審核後,確認適合於實際需要,才有必要做進一步的加工整理。[1]
數據審核的內容主要包括以下四個方面:
1.准確性審核。主要是從數據的真實性與精確性角度檢查資料,其審核的重點是檢查調查過程中所發生的誤差。[2]
2.適用性審核。主要是根據數據的用途,檢查數據解釋說明問題的程度。具體包括數據與調查主題、與目標總體的界定、與調查項目的解釋等是否匹配。[2]
3.及時性審核。主要是檢查數據是否按照規定時間報送,如未按規定時間報送,就需要檢查未及時報送的原因。[2]
4.一致性審核。主要是檢查數據在不同地區或國家、在不同的時間段是否具有可比性。[2]
數據篩選
對審核過程中發現的錯誤應盡可能予以糾正。調查結束後,當數據發現的錯誤不能予以糾正,或者有些數據不符合調查的要求而又無法彌補時,就需要對數據進行篩選。數據篩選包括兩方面的內容:一是將某些不符合要求的數據或有明顯錯誤地數據予以剔除;二是將符合某種特定條件的數據篩選出來,對不符合特定條件的數據予以剔除。數據的篩選在市場調查、經濟分析、管理決策中是十分重要的。[1]
數據排序
數據排序是按照一定順序將數據排列,以便於研究者通過瀏覽數據發現一些明顯的特徵或趨勢,找到解決問題的線索。除此之外,排序還有助於對數據檢查糾錯,為重新歸類或分組等提供依據。在某些場合,排序本身就是分析的目的之一。排序可藉助於計算機很容易的完成。[1]
對於分類數據,如果是字母型數據,排序有升序與降序之分,但習慣上升序使用得更為普遍,因為升序與字母的自然排列相同;如果是漢字型數據,排序方式有很多,比如按漢字的首位拼音字母排列,這與字母型數據的排序完全一樣,也可按筆畫排序,其中也有筆畫多少的升序降序之分。交替運用不同方式排序,在漢字型數據的檢查糾錯過程中十分有用。[1]
對於數值型數據,排序只有兩種,即遞增和遞減。排序後的數據也稱為順序統計量。[1]
方法
數據清理
數據清理常式通過填寫缺失的值、光滑雜訊數據、識別或刪除離群點並解決不一致性來「清理」數據。主要是達到如下目標:格式標准化,異常數據清除,錯誤糾正,重復數據的清除。
數據集成
數據集成常式將多個數據源中的數據結合起來並統一存儲,建立數據倉庫的過程實際上就是數據集成。
數據變換
通過平滑聚集,數據概化,規范化等方式將數據轉換成適用於數據挖掘的形式。
數據歸約
數據挖掘時往往數據量非常大,在少量數據上進行挖掘分析需要很長的時間,數據歸約技術可以用來得到數據集的歸約表示,它小得多,但仍然接近於保持原數據的完整性,並結果與歸約前結果相同或幾乎相同。
數據預處理[3] 是數據挖掘一個熱門的研究方面,畢竟這是由數據預處理的產生背景所決定的--現實世界中的數據幾乎都臟數據。
參考資料
[1] -李衛東主編 .應用統計學 .北京:清華大學出版社,2014:55-56
[2] 熊俊順著.統計學教程 第3版 .杭州:浙江大學出版社,2014:31-32
[3] 數據預處理的方法.中國網路網 [引用日期2014-03-27]

Ⅱ 數據的預處理一般包括哪些步驟

嗯數據的預處理一般包括哪些是不懂數據的預處理方法過好幾項是刪除啊復制之類的一些步驟。

Ⅲ 數據處理有哪些步驟

一、拿


專業術語稱為“爬行”。例如,搜索引擎可以這樣做:它將Internet上的所有信息下載到其數據中心,然後您就可以搜索出來。


二、推送


有很多終端可以幫助我收集數據。例如,小米手環可以將您的日常跑步數據,心跳數據和睡眠數據上傳到數據中心這兩個步驟是數據傳輸。通常,它將在隊列中完成,因為數據量太大,並且必須對數據進行處理才能有用。但是系統無法處理它,所以我不得不排隊並慢慢地處理它。


三、存儲


現在,數據就是金錢,掌握數據就等於掌握金錢。否則,網站如何知道您要購買什麼? 這是因為它具有您的歷史交易數據。此信息無法提供給其他人,它非常寶貴,因此需要存儲。


四、數據處理和分析


上面存儲的數據是原始數據,大多數原始數據比較雜亂,並且其中包含大量垃圾數據,因此需要對其進行清理和過濾以獲取一些高質量的數據。對於高質量數據,您可以對其進行分析以對數據進行分類,或者發現數據之間的關系並獲取知識。


五、用於數據檢索和挖掘


檢索是搜索,所謂外交不決定要問谷歌,內政不決定要問網路。內部和外部搜索引擎都將經過分析的數據放入搜索引擎中,因此當人們想要查找信息時,他們可以對其進行搜索。

Ⅳ 預處理常用的方法有哪些

一、混凝-絮凝

混凝是指向水中投加一定劑量的化學葯劑,這些化學葯劑在水中發生水解,和水中的膠體粒子互相碰撞,發生電性中和,產生吸附、架橋和網捕作用,從而形成大的絮體顆粒,並從水中沉降,起到了降低顆粒懸浮物和膠體的作用。

二、介質過濾

介質過濾是指以石英砂或無煙煤等為介質,使水在重力或壓力下通過由這些介質構成的床層,而水中的的顆粒污染物質則被介質阻截,從而達到與水分離的過程。粒狀介質過濾基於「過濾-澄清」的工作過程去除水中的顆粒、懸浮物和膠體。



工業水處理

在工業用水處理中,預處理工序的任務是將工業用水的水源——地表水、地下水或城市自來水處理到符合後續水處理裝置所允許的進水水質指標,從而保證水處理系統長期安全、穩定地運行,為工業生產提供優質用水。

預處理的對象主要是水中的懸浮物、膠體、微生物、有機物、游離性余氯和重金屬等。這些雜質對於電滲析、離子交換、反滲透、鈉濾等水處理裝置會產生不利的影響。

Ⅳ 大數據的預處理過程包括

大數據處理流程主要包括數據收集、數據預處理、數據存儲、數據處理與分析、數據展示/數據可視化、數據應用等環節,其中數據質量貫穿於整個大數據流程,每一個數據處理環節都會對大數據質量產生影響作用。通常,一個好的大數據產品要有大量的數據規模、快速的數據處理、精確的數據分析與預測、優秀的可視化圖表以及簡練易懂的結果解釋,本文將基於以上環節分別分析不同階段對大數據質量的影響及其關鍵影響因素。

一、數據收集

在數據收集過程中,數據源會影響大數據質量的真實性、完整性數據收集、一致性、准確性和安全性。對於Web數據,多採用網路爬蟲方式進行收集,這需要對爬蟲軟體進行時間設置以保障收集到的數據時效性質量。比如可以利用易海聚採集軟體的增值API設置,靈活控制採集任務的啟動和停止。

二、數據預處理

大數據採集過程中通常有一個或多個數據源,這些數據源包括同構或異構的資料庫、文件系統、服務介面等,易受到雜訊數據、數據值缺失、數據沖突等影響,因此需首先對收集到的大數據集合進行預處理,以保證大數據分析與預測結果的准確性與價值性。

大數據的預處理環節主要包括數據清理、數據集成、數據歸約與數據轉換等內容,可以大大提高大數據的總體質量,是大數據過程質量的體現。 數據清理技術包括對數據的不一致檢測、雜訊數據的識別、數據過濾與修正等方面,有利於提高大數據的一致性、准確性、真實性和可用性等方面的質量;

數據集成則是將多個數據源的數據進行集成,從而形成集中、統一的資料庫、數據立方體等,這一過程有利於提高大數據的完整性、一致性、安全性和可用性等方面質量;

數據歸約是在不損害分析結果准確性的前提下降低數據集規模,使之簡化,包括維歸約、數據歸約、數據抽樣等技術,這一過程有利於提高大數據的價值密度,即提高大數據存儲的價值性。

數據轉換處理包括基於規則或元數據的轉換、基於模型與學習的轉換等技術,可通過轉換實現數據統一,這一過程有利於提高大數據的一致性和可用性。

總之,數據預處理環節有利於提高大數據的一致性、准確性、真實性、可用性、完整性、安全性和價值性等方面質量,而大數據預處理中的相關技術是影響大數據過程質量的關鍵因素

三、數據處理與分析

1、數據處理

大數據的分布式處理技術與存儲形式、業務數據類型等相關,針對大數據處理的主要計算模型有MapRece分布式計算框架、分布式內存計算系統、分布式流計算系統等。MapRece是一個批處理的分布式計算框架,可對海量數據進行並行分析與處理,它適合對各種結構化、非結構化數據的處理。分布式內存計算系統可有效減少數據讀寫和移動的開銷,提高大數據處理性能。分布式流計算系統則是對數據流進行實時處理,以保障大數據的時效性和價值性。

總之,無論哪種大數據分布式處理與計算系統,都有利於提高大數據的價值性、可用性、時效性和准確性。大數據的類型和存儲形式決定了其所採用的數據處理系統,而數據處理系統的性能與優劣直接影響大數據質量的價值性、可用性、時效性和准確性。因此在進行大數據處理時,要根據大數據類型選擇合適的存儲形式和數據處理系統,以實現大數據質量的最優化。

2、數據分析

大數據分析技術主要包括已有數據的分布式統計分析技術和未知數據的分布式挖掘、深度學習技術。分布式統計分析可由數據處理技術完成,分布式挖掘和深度學習技術則在大數據分析階段完成,包括聚類與分類、關聯分析、深度學習等,可挖掘大數據集合中的數據關聯性,形成對事物的描述模式或屬性規則,可通過構建機器學習模型和海量訓練數據提升數據分析與預測的准確性。

數據分析是大數據處理與應用的關鍵環節,它決定了大數據集合的價值性和可用性,以及分析預測結果的准確性。在數據分析環節,應根據大數據應用情境與決策需求,選擇合適的數據分析技術,提高大數據分析結果的可用性、價值性和准確性質量。

四、數據可視化與應用環節

數據可視化是指將大數據分析與預測結果以計算機圖形或圖像的直觀方式顯示給用戶的過程,並可與用戶進行互動式處理。數據可視化技術有利於發現大量業務數據中隱含的規律性信息,以支持管理決策。數據可視化環節可大大提高大數據分析結果的直觀性, 便於用戶理解與使用,故數據可視化是影響大數據可用性和易於理解性質量的關鍵因素。

大數據應用是指將經過分析處理後挖掘得到的大數據結果應用於管理決策、戰略規劃等的過程,它是對大數據分析結果的檢驗與驗證,大數據應用過程直接體現了大數據分析處理結果的價值性和可用性。大數據應用對大數據的分析處理具有引導作用。

在大數據收集、處理等一系列操作之前,通過對應用情境的充分調研、對管理決策需求信息的深入分析,可明確大數據處理與分析的目標,從而為大數據收集、存儲、處理、分析等過程提供明確的方向,並保障大數據分析結果的可用性、價值性和用戶需求的滿足。

Ⅵ 如何對微信數據進行預處理

微信數據進行預處理方法:
1、數據清理:數據清理主要針對數據數值上的各種異常情況的處理,根據數值異常情況的不同,數據清理常見的有以下:缺失值處理、離群和雜訊值處理、異常范圍及類型值處理。2、數據集成:數據集成主要是增大樣本數據量。3、數據變換:數據變換包含的方法眾多,作用也不盡相同。數據變換的目的可以簡單的概括為改變數據的特徵,方便計算及發現新的信息。常見的數據變換過程包含以下方法:離散化、區間化、二元化、規范化(有的地方也成稱為標准化)、特徵轉換與創建、函數變換。4、數據規約:數據規約的目的是減少數據量,降低數據的維度,刪除冗餘信息,提升分析准確性,減少計算量。數據規約包含的方法有:數據聚集、抽樣、維規約。
數據預處理(data preprocessing)是指在主要的處理以前對數據進行的一些處理。如對大部分地球物理面積性觀測數據在進行轉換或增強處理之前,首先將不規則分布的測網經過插值轉換為規則網的處理,以利於計算機的運算。另外,對於一些剖面測量數據,如地震資料預處理有垂直疊加、重排、加道頭、編輯、重新取樣、多路編輯等。

Ⅶ 數據預處理主要針對哪些數據

動畫當然有那個針對性的可以根據那個數據的連接還有自己下載輸的一組數

Ⅷ 簡要闡述數據預處理原理

數據預處理(data preprocessing)是指在主要的處理以前對數據進行的一些處理。如對大部分地球物理面積性觀測數據在進行轉換或增強處理之前,首先將不規則分布的測網經過插值轉換為規則網的處理,以利於計算機的運算。另外,對於一些剖面測量數據,如地震資料預處理有垂直疊加、重排、加道頭、編輯、重新取樣、多路編輯等。
中文名
數據預處理
外文名
data preprocessing
定義
主要的處理以前對數據進行處理
方法
數據清理,數據集成,數據變換等
目標
格式標准化,異常數據清除
快速
導航
預處理內容

方法
基本介紹
現實世界中數據大體上都是不完整,不一致的臟數據,無法直接進行數據挖掘,或挖掘結果差強人意。為了提高數據挖掘的質量產生了數據預處理技術。 數據預處理有多種方法:數據清理,數據集成,數據變換,數據歸約等。這些數據處理技術在數據挖掘之前使用,大大提高了數據挖掘模式的質量,降低實際挖掘所需要的時間。
數據的預處理是指對所收集數據進行分類或分組前所做的審核、篩選、排序等必要的處理。[1]
預處理內容
數據審核
從不同渠道取得的統計數據,在審核的內容和方法上有所不同。[1]
對於原始數據應主要從完整性和准確性兩個方面去審核。完整性審核主要是檢查應調查的單位或個體是否有遺漏,所有的調查項目或指標是否填寫齊全。准確性審核主要是包括兩個方面:一是檢查數據資料是否真實地反映了客觀實際情況,內容是否符合實際;二是檢查數據是否有錯誤,計算是否正確等。審核數據准確性的方法主要有邏輯檢查和計算檢查。邏輯檢查主要是審核數據是否符合邏輯,內容是否合理,各項目或數字之間有無相互矛盾的現象,此方法主要適合對定性(品質)數據的審核。計算檢查是檢查調查表中的各項數據在計算結果和計算方法上有無錯誤,主要用於對定量(數值型)數據的審核。[1]
對於通過其他渠道取得的二手資料,除了對其完整性和准確性進行審核外,還應該著重審核數據的適用性和時效性。二手資料可以來自多種渠道,有些數據可能是為特定目的通過專門調查而獲得的,或者是已經按照特定目的需要做了加工處理。對於使用者來說,首先應該弄清楚數據的來源、數據的口徑以及有關的背景資料,以便確定這些資料是否符合自己分析研究的需要,是否需要重新加工整理等,不能盲目生搬硬套。此外,還要對數據的時效性進行審核,對於有些時效性較強的問題,如果取得的數據過於滯後,可能失去了研究的意義。一般來說,應盡可能使用最新的統計數據。數據經審核後,確認適合於實際需要,才有必要做進一步的加工整理。[1]
數據審核的內容主要包括以下四個方面:
1.准確性審核。主要是從數據的真實性與精確性角度檢查資料,其審核的重點是檢查調查過程中所發生的誤差。[2]
2.適用性審核。主要是根據數據的用途,檢查數據解釋說明問題的程度。具體包括數據與調查主題、與目標總體的界定、與調查項目的解釋等是否匹配。[2]
3.及時性審核。主要是檢查數據是否按照規定時間報送,如未按規定時間報送,就需要檢查未及時報送的原因。[2]
4.一致性審核。主要是檢查數據在不同地區或國家、在不同的時間段是否具有可比性。[2]
數據篩選
對審核過程中發現的錯誤應盡可能予以糾正。調查結束後,當數據發現的錯誤不能予以糾正,或者有些數據不符合調查的要求而又無法彌補時,就需要對數據進行篩選。數據篩選包括兩方面的內容:一是將某些不符合要求的數據或有明顯錯誤地數據予以剔除;二是將符合某種特定條件的數據篩選出來,對不符合特定條件的數據予以剔除。數據的篩選在市場調查、經濟分析、管理決策中是十分重要的。

Ⅸ 數據預處理的方法有哪幾類

數據預處理有多種方法: 數據清理, 數據集成,數據變換,數據歸約等。這些數據處理技術在數據挖掘之前使用,大大提高了數據挖掘模式的質量,降低實際挖掘所需要的時間。

Ⅹ 點雲數據處理的5個步驟

摘要 1. 點雲濾波(數據預處理)

閱讀全文

與數據預處理的步驟及方法相關的資料

熱點內容
如何用土方法止牙疼 瀏覽:697
翡翠成品真假鑒定方法簡單 瀏覽:231
常用裝飾材料的計算方法 瀏覽:224
創維mb300電視使用方法 瀏覽:175
板條箱的使用方法視頻 瀏覽:897
消費稅應納稅額的計算方法和特點 瀏覽:923
烙鐵海綿使用方法 瀏覽:897
頸椎疼醫院採用什麼方法 瀏覽:176
庫函數C語言連接方法 瀏覽:625
冷料解決方法 瀏覽:536
貴婦眼膜正確使用方法 瀏覽:318
偏頭痛的治療方法及針灸 瀏覽:473
物質分類方法和技巧高中 瀏覽:347
羥基鑒定醛酮最常用的方法是 瀏覽:741
教學方法是指進行教學的計劃嗎 瀏覽:127
朗逸剎車片安裝方法 瀏覽:337
正確的母乳保存方法 瀏覽:437
手機免流上網方法 瀏覽:113
還有另外解決方法嗎 瀏覽:917
金毛快速長大方法 瀏覽:664