Ⅰ 怎样判断函数在某个点是否可导
这一点函数左右极限是否相等,相等即为可导。
函数连续且函数在某点的左极限=右极限=该点的函数值
可导首先必须连续,其次此点必须必须存在极限(左右极限相等)另外必须是平滑曲线不能有角(转折点)比如f(x)=x的绝对值 在x=0那一点是不可导的。
(1)函数在一点可导的常用方法扩展阅读:
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。
反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
Ⅱ 怎样判断一个函数在某一点处可导
首先判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-), f(x0+), f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)=f'(x0+),只有以上都满足了,则函数在x0处才可导。
函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在,它的左右极限存在且相等)推导而来。
可导的函数一定连续;不连续的函数一定不可导。
可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。
如果一个函数在x0处可导,那么它一定在x0处是连续函数。
函数可导定义:(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若 [f(x0+a)-f(x0)]/a的极限存在, 则称f(x)在x0处可导。
(2)若对于区间(a,b)上任意一点(m,f(m))均可导,则称f(x)在(a,b)上可导。
Ⅲ 函数求导数的方法
利用导数定义求函数的导数是学习导数的第一步,其中涉及极限的相关运算。小编就带大家看看如何利用导数定义求一些基本函数的导数。
开启分步阅读模式
操作方法
01
使用导数定义求解导数的步骤主要分为三个步骤。这里以幂函数y=x^n为例说明。
02
第一步,求出因变量的增量Δy=f(x+Δ)-f(x)。
03
第二步,计算Δy与Δx的比值。
04
第三步,求极限,令Δx趋近于0,可以求得极限。
05
幂函数的求解比较简单。对于一些其他较复杂的函数,还需要借=借助一些数学公式以及极限运算。例如对于y=sin(x)的求解,就需要利用和差化积公式与
lim(x->0){sin(x)/x}=1这两个公式。
06
同样,首先计算增量Δy=f(x+Δ)-f(x)。
07
接下来的两步可以一同进行。
08
以下是常用的一些导数公式,大家可以试着去推导一下。导数公式的计算,需要使用大量极限计算的技巧,希望大家多多训练。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。小编整理了求导数的方法,供参考!
一、总论
一般来说,导数的大题有两到三问。每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。
二、主流题型及其方法
(1)求函数中某参数的值或给定参数的值求导数或切线
一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:
先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。
注意:
①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。
②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。
③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。
(2)求函数的单调性或单调区间以及极值点和最值
一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。这类问题的方法是:
首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。
极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。
最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。
注意:
①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。没有注意定义域问题很严重。
②分类要准,不要慌张。
③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下场。
(3)恒成立或在一定条件下成立时求参数范围
这类问题一般都设置在导数题的第三问,也就是最后一问,属于有一定难度的问题。这就需要我们一定的综合能力。不仅要对导数有一定的理解,而且对于一些不等式、函数等的知识要有比较好的掌握。这一类题目不是送分题,属于扣分题,但掌握好了方法,也可以百发百中。方法如下:
做这类恒成立类型题目或者一定范围内成立的题目的核心的四个字就是:分离变量。一定要将所求的参数分离出来,否则后患无穷。有些人总是认为不分离变量也可以做。一些简单的题目诚然可以做,但到了真正的难题,分离变量的优势立刻体现,它可以规避掉一些极为繁琐的讨论,只用一些简单的代数变形可以搞定,而不分离变量就要面临着极为麻烦的讨论,不仅浪费时间,而且还容易出差错。所以面对这样的问题,分离变量是首选之法。当然有的题确实不能分离变量,那么这时就需要我们的观察能力,如果还是没有简便方法,那么才会进入到讨论阶段。
Ⅳ 怎么证明一个函数在某一点可导且连续
在一个点可导的证明方法是
第一步:那个点的
左导数=右导数
第二步:在那个点,函数有定义
函数就在那个点可导
连续的证明方法是
第一步:函数在那个点,左极限=右极限
第二步:函数在那个点有定义,且函数值等于左右极限值
函数就在那个点连续
Ⅳ 函数求导公式是什么
高数常见函数求导公式如下图:
求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。
如果一个函数的定义域为全体实数,即函数在实数域上都有定义。函数在定义域中一点可导需要一定的条件。
首先,要使函数f在一点可导,那么函数一定要在这一点处连续。换言之,函数若在某点可导,则必然在该点处连续。可导的函数一定连续,不连续的函数一定不可导。
Ⅵ 如何判断函数可导和不可导
1、函数在定义域中一点可导需要一定的条件:只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
2、可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
3、单侧导数:
极限
左导数和右导数统称为单侧导数。
(6)函数在一点可导的常用方法扩展阅读:
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
Ⅶ 高数可导, 用什么方法判断函数在某一点是否是可导,连续的,可导和连续的条件分别是什么
函数在某一点是否是可导的条件是:在该点的左、右导数相等;
函数在某一点是否连续的条件是:在该点左、右极限相等且等于该点的函数值.
Ⅷ 如何判断函数在某点是否可导和连续
判断如下:
1、如果对于任意不论多么小的正数e,总能找到一个正数o(依赖于e),使得对满足不等式|x-x0|<e的所有x都有|f(x)-f(x0)|<e,那么就说函数f(x)在x=x0是连续的。
依赖于的意思是通过e得到o,例如o=e^3,注意这种关系不能倒过来。形象地说就是没有断点。
2、如果差商[f(x0+d)-f(x0)]/d,当d不论从哪边趋于0时,都有唯一的极限f'(x0),那么就说函数f(x)在x=x0是可微的。形象地说就是光滑。
3、连续是可导的必要不充分条件:
要判断函数在一点是否连续,要用极限的方法,就是这点左极限和右极限是否相等,相等就是连续的。要判断是否可导,是可导必定连续,如果不是连续,就不可导,如果连续,求这点的左导数和右导数,相等就是可导,不相等不可导。
(8)函数在一点可导的常用方法扩展阅读:
1、连续点:如果函数在某一邻域内有定义,且x->x0时limf(x)=f(x0),就称x0为f(x)的连续点。
一个推论,即y=f(x)在x0处连续等价于y=f(x)在x0处既左连续又右连续,也等价于y=f(x)在x0处的左、右极限都等于f(x0)。
这就包括了函数连续必须同时满足三个条件:
1)函数在x0处有定义;
2)x-> x0时,limf(x)存在;
3)x-> x0时,limf(x)=f(x0)。
初等函数在其定义域内是连续的。
2、连续函数:函数f(x)在其定义域内的每一点都连续,则称函数f(x)为连续函数。
3、连续性与可导性关系:连续是可导的必要条件,即函数可导必然连续;不连续必然不可 导;连续不一定可导。典型例子:含尖点的连续函数。
如果f是在x0处可导的函数,则f一定在x0处连续,特别地,任何可导函数一定在其定义域内每一点都连续。反过来并不一定。事实上,存在一个在其定义域上处处连续函数,但处处不可导。
Ⅸ 什么方法判断函数在某一点是否是可导,连续的,可导和连续的条件
函数在某点连续:f(x)+=f(x)-=f(x),形象点说就是函数的图像是可以一笔画出来的,中间没有跳跃,但可以有尖锐的拐角比如f(x)=|x|在x=0时连续。
函数在某点可导:f'(x)+=f'(x)-=f'(x),形象点说就是函数图像在这点需要很圆滑的画出来,不能有尖锐的拐角跟跳跃,f(x)=|x|在x=0时,有个90度尖锐拐角那他就不是可导的
Ⅹ 如何判断函数在一点是否连续和可导
一个函数在某一区间上连续(可导)指的是该函数在此区间的任意一点上连续(可导)。
至于判断在某一点上函数是否连续或可导,即判断某个极限是否存在。
判断函数f在点x0处是否连续,即判断极限lim(x--x0)f(x)是否存在且等于f(x0)。
判断函数f在点x0处是否可导,即判断极限lim(dx--0)(f(x+dx)-f(x))/dx是否存在。
对于连续性,在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的。这种现象在函数关系上的反映,就是函数的连续性。
设函数(分段函数在x=0处的左右极限都存在,但不等于f(0))。