数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。通常混称为“数学思想方法”。
数学四大思想:函数与方程、转化与化归、分类讨论、数形结合;
函数与方程
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。
等价转化
等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。 转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。
着名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。
等价转化思想方法的特点是具有灵活性和多样性。在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。
在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能力。
分类讨论
在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。
引起分类讨论的原因主要是以下几个方面:
① 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。
② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。
③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。
进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。
解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
数形结合
中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。
2. 论述数学思想方法在小学数学中的应用
摘 要 小学数学教育旨在让学生掌握和理解基本的数学知识,掌握正确的数学思想和应用方法,从而开拓数学学习的思维模式,提高学习能力。数学思想是一种文化,是数学教育的核心思想。作为数学教育工作者,对于数学思想在小学数学教育教学中的实践应用做出以下几点分析。
关键词 数学思想;小学;教学;浅析
数学知识广泛存在于人们的生产和生活当中。小学数学知识初级简单,却离不开数学思想方法的应用。小学数学思想方法有很多种。能够用不同的方法去解决数学问题,对于培养学生的数学基础,提高学习能力有很大的帮助。
一、数学思想方法的课堂应用状况
许多从事小学数学教育的老师,虽然意识到了数学思想方法在教学过程中应用的重要性,但是实际应用起来往往概念模糊,不够到位。大部分人依赖教材,缺乏变通,没有将数学思想方法融汇到知识当中,影响了数学知识的有效传授。学生对数学理论与内容的本质没有深刻体会,对于知识也不能全部吸收,无法付诸实践准确解决数学问题。
运用正确的数学思想方法对学生进行教育,使其能够理解并且运用,需要老师持之以恒的教育影响。这是一个缓慢的渗透过程,也是对于数学教学质量的有效提高过程。
二、数学思想方法课堂应用的分析研究
(一)分类思想方法在数学教学中的应用
数学的分类思想方法体现在对数学对象的分类及其分类标准。例如人教版四年级《三角形的分类》一课,三角形按角分让学生认识直角三角形、锐角三角形、钝角三角形。三角形按边分让学生认识等腰三角形和等边三角形的各个部分,以及等腰三角形两底角关系和等边三角形的三个内角的关系。通过分类的数学思想方法,使得学生经过观察、操作、比较、概括,体会每一类三角形角的特点和边的特点。不同的分类标准有不同的分类结果,从而产生新的概念。
(二)假设思想方法在数学教学中的应用
假设是先对题目中的已知条件或问题做出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。比如,在人教版小学五年级方程式的教学当中,老师通过等式保持不变的规律来教学生解方程。教学案例:一个盒子里的皮球和外面的皮球加起来一共有九个,求盒子里有几个皮球。那么用假设法,假设盒子里有X个皮球,得出方程式X+3=9。这里同时也用到了符号化思想方法,即用X作为符号化的语言来推导演算。那么利用等式保持不变的等量关系求方程式的解,方程两边同时减去一个3,左右两边仍然相等,得出:X+3-3=9-3。则最后算出答案X=6。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。同时小小的字母表示数,以符号的浓缩形式表达了大量的信息,如定律、公式等。
(三)统计思想方法在数学教学中的应用
小学数学统计表是一些基本的统计方法,求平均数应用题是体现数据处理的思想方法。例如,人教版小学六年级教材《扇形统计图》的教学中,老师给出一组数据,比如,课外活动中不同的运动项目,分别参加的人数不同,占全班的百分比也不同。乒乓球12人占30%;足球8人占20%;跳绳5人12.5%;踢毽子6人15%;其他9人22.5%;可以看出如果用条形统计图的话,并不能直观地表示出百分比。老师在黑板上画出扇形统计图,告诉学生用扇形统计图的整个圆表示全班人数,也就是单位“1”,圆内大小不同的扇形表示百分比,引导学生通过直观的图标,思考百分比是怎么算出来的?即各项运动的人数除以全班人数,所有百分比的和是100%。最后总结扇形统计图的特点:(1)整个圆代表总数量,扇形代表各部分数量。(2)从扇形的大小可以看出各部分数量占百分比的大小。(3)圆和扇形关系表示出了总数量与部分数量的关系。教师应将统计思想方法应用到数学教学当中,教会学生在生活中有很多问题可以用统计法来解决,并且能够运用各种统计方法来解决生活中的问题。
(四)类比思想方法在数学教学中的应用
类比思想方法是依据两类数学对象的相似性,由可能已知的一类数学对象的性质迁移到另一类数学对象的思想。例如人教版小学四年级教材《加法交换律》中例题:李叔叔准备骑车旅行一个星期,今天上午骑了40千米,下午骑了56千米。一共是多少千米?让学生用加法交换的方式列式,得出公式a+b=b+a。总结规律:两个加数交换位置,和不变。这就是数学类比思想的教学应用。另外类比思想在乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式的教学中都有应用。类比思想不仅使得学生们对于数学课本知识更加容易理解,而且让枯燥的数学公式在记忆上更加容易和方便。
小学数学思想在数学教育教学中广泛应用,占有非常重要的地位。除了今天的几项实践研究外,还有很多思想方法,比较思想方法、转化思想方法、集合思想方法等等很多教学形式。
为了跟上不断改革的小学教育教学发展的节奏,让学生们能够获得更多的数学思想方法,掌握数学知识,作为教育工作者应该在不断地教学实践中研究总结。为学生持续的学习和发展奠定基础,从而有效提高小学数学教育教学质量。
3. 数学思想方法在数学的运用
所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操作的规则或模式。人们通过长期的实践,发现了许多运用数学思想的手段、门路或程序。同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,便成为数学方法。数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算和分析,以形成解释、判断和预言的方法。 数学方法具有以下三个基本特征:一是高度的抽象性和概括性;二是精确性,即逻辑的严密性及结论的确定性;三是应用的普遍性和可操作性。 数学方法在科学技术研究中具有举足轻重的地位和作用:一是提供简洁精确的形式化语言,二是提供数量分析及计算的方法,三是提供逻辑推理的工具。现代科学技术特别是电脑的发展,与数学方法的地位和作用的强化正好是相辅相成。 宏观的数学方法包括:模型方法,变换方法,对称方法,无穷小方法,公理化方法,结构方法,实验方法。微观的且在中学数学中常用的基本数学方法大致可以分为以下三类: (1)逻辑学中的方法。例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等。这些方法既要遵从逻辑学中的基本规律和法则,又因运用于数学之中而具有数学的特色。 (2)数学中的一般方法。例如建模法、消元法、降次法、代入法、图象法(也称坐标法。代数中常用图象法,解析几何中常用坐标法)、向量法、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法、同一法、数学归纳法(这与逻辑学中的不完全归纳法不同)等。这些方法极为重要,应用也很广泛。 (3)数学中的特殊方法。例如配方法、待定系数法、加减法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等。这些方法在解决某些数学问题时起着重要作用,不可等闲视之。 2.方法和招术 如上所述,方法是解决思想、行为等问题的门路和程序,是思想的产物,是包含或体现着思想的一套程序,它既可操作又可仿效。在选择并实施方法的前期过程中,反映了学习者的能力和技能的高低;而在后期过程中,只反映了学习者的技能的差异。 所谓“招术”“招”字应正为“着”字,本文仍用传统的“一招一式”的说法。是指解决特殊问题的专用计策或手段,纯属于技能而不属于能力。“招”的教育价值远低于“法”(这里的“法”指“通法”)的价值。“法”的可仿效性带有较为“普适”的意义,而“招”的“普适”要差得多;实施“招”要以能实施管着它的“法”为前提。 例如,待定系数法是一种特别有用的“法”。求二次函数的解析式时,用待定系数法根据图象上三个点的坐标求出解析式可看作第一“招”;根据顶点和另一点的坐标求出解析式可看作第二“招”;根据与x轴交点和另一点的坐标求出解析式可看作第三“招”。这三“招”各有奇妙之处。哪一“招”更好使用,要看条件和管着它们的“法”而定。教师授予学生“用待定系数法求二次函数的解析式”,最根本、最要紧的“法旨”就在于让学生明确二次函数的解析式中自变量、函数值和图象上点的横、纵坐标的对应关系;对于一般的点和特殊的点(例如顶点及与x轴的交点),解析式可以有什么不同的反映。而这样的“法旨”,恰恰体现了对应思想和数形结合的思想。由此看来,我国古代传说中经常提到的某些师傅对待弟子“给‘招’不给‘法’”的现象,在现代的数学教育、教学中应该尽量避免。 3.中学数学教科书中应该传授的基本数学思想和方法 (一)中学数学教科书中应该传授的基本数学思想 中学数学教科书担负着向学生传授基本数学思想的责任,在程度上有“渗透”、“介绍”和“突出”之分。 1.渗透。“渗透”就是把某些抽象的数学思想逐渐“融进”具体的、实在的数学知识中,使学生对这些思想有一些初步的感知或直觉,但还没有从理性上开始认识它们。要渗透的有集合思想、对应思想、公理化与结构思想、抽样统计思想、极限思想等。前三种基本数学思想从初中一年级就开始渗透了,并贯彻于整个中学阶段;抽样统计思想可从初中三年级开始渗透,极限思想也可从初中三年级的教科书中安排类似于“关于圆周率π”这样的阅读材料开始渗透。至于公理化与结构思想,要注意根据人类的认识规律,一开始就采取扩大的公理体系。例如,教科书既可以把“同位角相等,两直线平行”和它的逆命题都当作公理,也可以把判定两个三角形全等的三个命题“边角边”、“角边角”和“边边边”都当作公理。 这种渗透是随年级逐步深入的。例如集合思想,初中是用文氏图或列举法来表示集合,不等式(组)的解集可以用数轴表示或用不等式(组)表示;高中则是列举法、描述法、文氏图三者并举,并同时允许用不等式(组)、区间或集合的描述法来表示实数集的某些子集。又如对应思想,初中只用文字、数轴或平面直角坐标系来讲对应;高中则在此基础上引入了使用符号语言的对应法则。至于公理化与结构思想、抽样统计思想和极限思想在初、高中阶段的不同渗透水平,则是众所周知的。“渗透”到一定程度,就是“介绍”的前奏了。 2.介绍。“介绍”就是把某些数学思想在适当时候明确“引进”到数学知识中,使学生对这些思想有初步理解,这是理性认识的开始。要介绍的有符号与变元表示的思想、数形结合的思想、化归的思想、函数与方程的思想、抽样统计思想、极限思想等。这种介绍也是随年级逐步增加的。有的思想从初中一年级起就开始介绍(例如前四种基本数学思想),有的则是先渗透后介绍(例如后两种基本数学思想)。“介绍”与“渗透”的基本区别在于:“渗透”只要求学生知道有什么思想和是什么思想,而“介绍”则要求学生在此基础上进而知道为什么叫做思想(含思想的要素和特征)、用什么思想(含思想的用途)并学会运用。作为补充,也可以就问题适时地向学生介绍如何运用一分为二的思想和整体思想。 3.突出。“突出”就是把某些数学思想经常性地予以强调,并通过大量的综合训练而达到灵活运用。它是在介绍的基础上进行的,目的在于最大限度地发挥这些数学思想的功能。要突出的有数形结合的思想、化归的思想、函数与方程的思想等。这些基本数学思想贯穿于整个中学阶段,最重要、最常用,是中学数学的精髓,也最能长久保存在人一生的记忆之中。“介绍”与“突出”的基本区别在于:“介绍”只要求学生知道用什么和会用,而“突出”则要求学生在此基础上进而知道选用和善用。作为补充,也可以就数学问题经常向学生突出分类思想的运用。
(一)、整体思想
整体思想是将需解决的问题看作一个整体,由整体入手,通过研究问题的整体形式,洞察命题中的整体与局部的关系,实现等价化归使问题得到解决。一般情况下,用整体思想解题的途径为:(1)从整体特性上看问题;(2)从整体到局部看问题。
整体思想可以培养学生思维的灵活性。能使学生开阔眼界,拓宽解题思路,寻找解题捷径,从而达到快速、简洁的效果,甚至起到一举解决问题的作用。
例1.1 (05吉林卷)如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,则 ( )
A. a1a8 > a4a5 B. a1a8 < a4a5 C. a1+a8 > a4+a5 D. a1a8 = a4a5
分析:四个选项中,有A,B,D三个是比较a1a8与a4a5的大小,因此,只须从整体上判断a1a8 - a4a5符号,即进行作差比较。
解:设等差数列的首项为a1,则有a1a8 - a4a5 = a1(a1+7d)- (a1+3d)(a1+4d)=-12d 2 < 0,
∴a1a8 < a4a5 故选B 。
例1.2 (99全国卷)若正数a、b满足ab = a + b + 3,则ab的取值范围是 。
解;∵a、b∈R+ ∴a + b ≥2 ,ab = a + b + 3 即( )2 – 2 - 3 ≥ 0
( +1)( -3) ≥ 0 ∵ +1 > 0 ∴ -3 ≥ 0 ∴ ≥ 3 即 ab ≥ 9.
例1.3 已知f(x)= x5 + ax3 + bx + 8,且f(2)=10,求f(-2)。
解: 设g(x)= x5 + ax3 + bx,则g(- x)= - g(x), g(-2)= - g(2)
∴f(2)=g(2)+ 8 = 10……①;f(-2)= g(-2)+ 8 = - g(2) + 8……②
由 ①得g(2)= 2, ∴- g(2) = -2,代入② 得 f(-2) = -2 + 8 = 6.
本例将x5 + ax3 + bx看作一个整体,并注意到g(x)= x5 + ax3 + bx是一个奇函数。
类似解答题为设f(x)= ax5 + bx3 + x + 15,若f(-3) = 7,试求f(-3)的值,十分简便。
例1.4 设a1 , a2 … a2005,a2006都是正数,M =(a1 + a2 + … + a2005)(a2+ a3+ …+a2006),
N =(a1 + a2 + … + a2006)(a2+ a3+ …+ a2005),比较M,N的大小。
解:设a2+ … + a2005 = A
则M = ( a1 + A) ( A + a2006 ) = a1 A + a1 a2006 + A2 + A a2006
N = (a1 + A + a2006 ) A = a1 A + A2 + a2006 A 比较M,N的大小,显见M > N.
(二)、化归思想
“化归”是转化、归结的简称。在数学研究中人们总是把待解决或未解决的问题,通过某种转化过程,归结为已经能解决或者比较容易解决的问题,从而使问题得到最终的解决。
对于化归思想,匈牙利女数学家罗莎·彼得 (Rozsa Peter)在她的《无穷的玩艺》中有一个精彩的比喻:摆在你面前的有水龙头、水壶、煤气灶和火柴,任务是烧开水。你将怎么办?毋庸置疑,答案是打开水龙头,把水壶注满水并放到煤气灶上,然后划着火柴,点燃煤气灶烧开即可。罗莎又提出:如果水壶里已经注满了水,你又将怎么办?她说,一般人的回答是把水壶放到煤气灶上,然后划着火柴,点燃煤气灶烧开即可。罗莎说数学家的回答是,把水壶里的水倒掉,并声称自己把这一问题化归为最初提出的问题了。罗莎最后说数学家思维的独到之处,就是善于运用这种化归的思想。一个幽默、形象的比喻揭去了数学化归思想神秘的面纱,巧妙地让人领悟了化归思想方法的本质。有学者指出:“数学中许多计算方法之灵巧,证明方法之美妙,究其思路,往往就是利用了各种转化。”利用化归思想,常常可以另辟蹊径,解决新问题,获得新知识。
例2.1:已知:f (1-cosx) = sin2x,求f(x)。
解:令1- cosx = t (0 ≤ t ≤ 2),则cosx = 1- t
∴f(t)=f(1-cosx) = sin2x = 1- cos2x = 1-(1-t)2=-t2-2t 故f(x)= -x2-2x.
例2.2:(同例1.2)已知a,b是正数,且ab = a + b + 3,求ab的取值范围。
解:设ab = k,则a + b = k - 3,由韦达定理得:x2 -( k–3 )x + k = 0,
则 = ( k–3 )2 - 4k ≥ 0,解得k ≥ 9或k ≤ 1.
∵a > 0 、b > 0,∴ab > 0,即k> 0 , k ≤ 1舍去,∴k ≥ 9, 故ab ≥ 9.
例2.3动点M到定点F(4,0)的距离比它到定直线x + 5 = 0的距离小1.
求:动点M的轨迹方程。
解:“动点M到定点F(4,0)的距离比它到定直线x + 5 = 0的距离小1”可等价转化为“动点M到定点F(4,0)的距离与它到定直线x + 4 = 0的距离相等” 。
由抛物线的定义知,动点M的轨迹是抛物线,定点F(4,0)是抛物线的焦点,
定直线 x = - 4是抛物线的准线。∴P = 8.
∴ 抛物线方程为 y2 = 16x, 即动M的轨迹方程为y2 = 16x.
例2.4(03文全国卷)已知数列 满足
(I)求 (II)证明
分析:本题若从原递推式中迭代易求得 但发现该数列不是特殊数列,难以求出(II)中的 .如果用联系的观点看待,可用转化思想,将证明转化为求等比数列 的前n项和的问题。
(II)证明:由已知
= .
(三)、分类思想
分类思想是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同类的思想方法。分类是以比较为基础,它能揭示数学对象之间的规律,所以,分类是近代和现代数学中的一种重要的思想方法。
近几年关于分类与整体思想是高考命题的热点之一,因为含有参数的问题逐渐被人们所认可,这对提高学生的思维敏捷性和数学素质,都将成为不可或缺的内容。解答时要正确地确定分类的标准,分清层次、不重不漏地进行分类,从而使学生看问题更加全面。用分类讨论解决问题,关键是要选定好标准、角度,最后还要注意归纳、总结。
例3.1已知 f(x) = 1 (x ≥ 0),则不等式x+(x+2)f(x+2)≤5的解是 .
f(x) = -1 (x < 0)
分析:因为不等式x+(x+2)f(x + 2) ≤ 5是含有f(x+2),所以应先求f(x+2),而求f(x+2) 需对f(x+2)进行分类讨论。
解:(1)当x + 2 ≥0时,即x ≥- 2时,f(x+2) = 1,解不等式x+(x+2)·1≤5,
得x ≤ 所以 -2 ≤ x ≤
(2) 当x + 2 <0时,即x <- 2时,f(x+2)= - 1,解不等式x + (x + 2)·(-1)<5,
得 – 2 < 5, 所以,x < – 2;由(1)与(2)得{ x| x ≤ }
例3.2解不等式 kx2 - 3( k + 1) + 9 > 0
分析:本例要分k = 0与k ≠ 0两大类,而当k ≠ 0时又要分k < 0,0 < k <1和
k ≥ 1三种情形进行分类讨论,具体解略。
(四)、函数思想
函数是描述自然界中量的依存的关系,是对问题的数量本质特征和制约关系的一种刻划。函数思想就是用函数的观点、方法研究问题,将非函数问题转化为函数问题,建立函数关系,通过对函数进行研究,使问题得以解决。利用函数思想,中学数学中许多数量关系,都可以用它予以重新认识。
如从函数的观点看,数列可以看做是一个定义域为正整数集N+(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值。因此,等差、等比数列的通项an及前n项和sn都可以看作关于n的函数,当然其图像都是一系列离散的点。
运用函数思想,构造函数解题,能使我们观察问题时不局限于静止、孤立的,而是用运动、发展、变化的观点去研究,不少问题如从函数观点出发分析解题,常常比较简明,有时还会收到出奇制胜的效果。
例4.1 数列{an}的前n项和Sn = - n2 + 7n,若对于任给n∈N+ 有a >Sn 恒成立,求a的取值范围。
解:Sn = - n2 + 7n = - ( n – ) 2 + ,则由二次函数的对称性及n∈N+ 知:
当n=3或4时,有最大值,即(Sn)max = - 32 + 7×3 = 12,所以当a >12时,
对于给定n∈N+,a >Sn恒成立。
例4.2 (05江西)已知数列{ sn }的各项都是正数,且满足:a0 = 1,an + 1 = an (4 - an),
n∈N,求证:an < an+1 < 2,n ∈N.
分析:在an+1 = an ( 4 - an )这个等式中含有两个变量an和an+1,故不妨构造函数
f(x)= x(4-x)。下面用数学归纳法证明本题结论。
(1)当n = 0时,有a0 = 1,a1 = a0(4-a0) = , a0 < a1 < 2成立,
令f(x) = x ( 4 – x ),f(x) 在[0,2]上单调递增,且an+1 = f(an)。所以由ak<ak+1<2,
有 f(ak+1) < f(ak+2) < 2,即当n = k + 1时命题也成立。(2)
根据(1)(2)可知,对一切n ∈ N,有an < an+11 <2。
例4.3:若方程x2 - 2x + lg(2a2 – a ) = 0有异号二实根,求a的取值范围。
解:设f(x) = x2 - 2x + lg(2a2- a),则由已知得f(0) < 0, 即lg(2a2 - a) < 0,
∴0 < 2a2 – a < 1,解得a ∈( - , 0 )∪( , 1 )
通过以上例子的分析可以看出,运用函数思想解决一些非函数问题,方法新颖,思路独特,直观明了,大大简化了解题过程。
(五)、方程思想
方程是已知量和未知量的对立统一体,在解决数学问题时,先分析未知量的个数,然后把它们当成已知量,再根据题设中各量之间的制约关系,寻找关于这些未知量的相应个数的方程,从而用解方程(组)的方法探求解题途径所设的未知数,则沟通了变量之间的关系,实现了问题的转化,求得未知数,或运用方程的有关性质,使问题得以解决。方程思想是初等代数中思想方法的主体,应用十分广泛,可谓数学大厦基石之一,在众多的数学思想中显得十分重要。
例5.1 已知:(z–x)2 - 4(x–y)(y–z)= 0,求证:x,y,z成等差数列。
证明:以x–y,y–z为根作关于t的二次方程 [t -(x–y)][t-(y–z)] = 0
t2 + (z–x)t+ (x–y)(y–z) = 0 有判别式 = (z–x)2-4(x–y)(y–z) = 0,
从而两根相等x–y = y–z, 按定义,x,y,z成等差数列。
例5.2:函数f(x)与g(x)分别是一个奇函数与一个偶函数,若f(x) - g(x) = ( )x,
则f(1) 、g(0)、g(-2)大小关系为( ).
(A)g(-2) < f(1) < g(0); (B)g(0) < f(1) < g(-2);
(C)g(-2) < g(0) < f(1); (D)g(0) < g(-2) < f(1).
分析:构造一方程,令x →-x,得f(-x) - g(-x) = ( )-x, 即 - f(x) - g(x)=( )-x,由此可分别求出f(x)与g(x),进而求得f(1)、g(0)、g(-2)的值,通过比较,选(C).
例5.3:已知2 f(x) + f = x ,求f(x).
解:在原式中将x换成 ,再与原式联立,得 2f + f(x) =
2 2f(x) + f = x
消去 f ,得 f (x) = .
(六)、数形结合思想
在数学中,数与形这两个基本对象构成了中学数学知识的两个基本板块。把数与形有机地结合起来便形成更为有效的知识体系,在更高层次上达到了统一,进而显示出数学知识内在的联系,加深了对数学实质的认识。着名数学家拉格朗日曾这样指出:“代数与几何在各自的道路上前进时,它们的进展是缓慢的,应用也有限,但当这两门学科结合起来后,它们各自从对方汲取新鲜的活力,从此,便以很快的速度向着完美的境地飞跑”。如解析几何、向量数学等。借助图形解题以其直观、形象、简捷而倍受青睐。
数形结合是一支双刃剑,通过抽象思维和形象思维相结合,可以培养学生思维的灵活性,形象性和深刻性。数形结合思想,提供了解决问题的一种手段,而且有些数量关系,借助于图形的性质,可以使抽象的概念和复杂的关系直观化、形象化、简单化,有利于拓宽解题思路,探求解题的途径,通常称为以形助数;而图形的一些性质,借助于数量的计算和分析,得以严谨化,即所谓以数辅形,这是相辅相成的两个方面,在解题时如有意识考虑数形结合,能较快的找到解决问题的途径,且可使解法别开生面。
例6.1:(05理全国卷Ⅲ)已知α为第三象限的角,则 所在的象限是( ).
(A)第一或第二象限;(B)第二或第三象限; y
(C)第一或第三象限;(D)第二或第四象限。 o
解:由图示立即可得为第二或第四象限。 x
注:此例用图像法比通常所用的解析法解要简捷得多。 α
例6.2:解关于x的方程1+logx (4-x)/10 = (lglgn-1)logx10.
略解:原方程化简得:x2–4x+lgn = 0,0 < x < 4且x≠1, n>1. 令y1= - x2 + 4x = -(x–2 )2 + 4,y2 = lgn. y ( 2,4 )
作图如右图所示
可知n = 104 或者n = 103 时方程有唯一解,
其解分别为x = 2和x = 3.
当1 < n < 104且n ≠103时方程有两解;当n > 104 时方程无解。0 2 3 x
例6.4 集合S = { x | x ≤ 10且x ∈N+ },A S,B S,且A B={ 4,5 },
(CsB) A = { 1,2,3 },(CsA) (CsB) = { 6, 7, 8 },求集合A和B。
分析:本题涉及的集合运算较为复杂,可采用Ween图将已知条件在图中标出,从图中找出所求答案。 S
解:如图所示:∵A B={ 4,5 } ∴将4,5写在A B中. A 4 B
∵(CsB) A={ 1,2,3 }∴将 1,2,3写在A中. 123 5 9 10
∵(CsA) (CsB) = { 6, 7, 8 }, ∴将 6,7,8写在S中A、B之外 6 7 8
∵(CsB) A与(CsA) (CsB)中均无9,10. ∴9,10写在B中.
故A ={1,2,3,4,5}, B ={4,5,9,10}
(七)、猜想论证思想
数学思维中通过观察、归纳、类比进而在直觉的基础上形成猜想也是一种基本的思维形式。它虽然是不严格的,但在探索思路、发现结论的过程中却能发挥巨大的威力。
翻开中外数学史可以发现,前人提出过许多猜想,不少已被后人所证明,着名的歌德巴赫猜想正以百万美元的悬赏征求解决,法兰西科学院的七位数学家提出了新千年的七个数学问题,与一百年前希尔伯特的二十三个数学问题遥相呼应。蔡上鹤先生指出:“在宏观世界中合情合理推理是必不可少的”。先猜想再证明是一种很好的数学思想。
例7.1波利亚曾出过这样的一道名题:两人坐在方桌边,相继轮流往桌在上平放一枚同样大小的硬币,当最后桌面上只剩下一个位置时,谁放下最后一枚,谁就算胜了。是先放者胜还是后放者胜?
分析:这个问题很容易使解题者把思路限制在硬币的数量关系上,我们可从几何角度进行大胆猜想,首先把问题极端化,如果“桌子小到只能放下一枚硬币,显然是先放者必胜。”可初步猜到答案。在执果索因寻找证明时,仍应注意是方桌,考虑到方桌面的对称性,它有一个对称中心,如果先放者占据方桌的中心,以后每次都将硬币放在对方所放硬币关于方桌中心对称的位置,先放者必胜。
例7.2 平面内两两相交的n条直线,没有任何三条交于同一点,试求它们将平面分成的块数。
解: 设它们交点的总数目为an,易知a1 = 2, a2 = 4, a3 = 7, a 4= 11, a5 = 16.
∵a2 - a1 = 2, a3 - a2 = 3, a4 – a3 = 4, a5 - a4 = 5,……. ∴猜想an - an-1 = n.
将以上(n-1)个式子相加,得 ,然后对此结论用数学归纳法加以证明。
(八)、建模思想
着名数学家怀特海曾说:“数学就是对于模式的研究”。数学模型是对现实原型进行数学抽象化的产物,数学建模是一种运用数学的语言和方法,通过抽象、简化,建立数学模型并予以“解决”的强有力的数学思想。
例8.1(与例1.1同)如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,则 ( )
A. a1a8 > a4a5 ; B. a1a8 < a4a5<
4. 如何认识在中学数学教学中数学思想方法的地位与作用
一、数学思想方法教学与能力的关系
思想方法就是客观存在反映在人的意识中经过思维活动而产生的结果,它是从大量的思维活动中获得的产物,经过反复提炼和实践,一再被证明为正确、可以反复被应用到新的思维活动中,并产生出新的结果。数学思想方法,就是指现实世界的空间形式和数量关系反映到人的意识中,经过思维活动而产生的结果,它是对数学事实与数学理论(概念、定理、公式、法则等)的本质认识。所以,数学思想是对数学知识的本质认识,是对数学规律的理性认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想。数学方法是指从数学角度提出问题、解决问题(包括数学内部问题和实际问题)的过程中所采用的各种方式、手段、途径等。数学思想和数学方法是紧密联系的,一般来说,强调指导思想时称数学思想,强调操作过程时称数学方法。
数学思想方法是形成学生的良好的认知结构的纽带,是由知识转化为能力的桥梁。中学数学教学大纲中明确指出:数学基础知识是指数学中的概念、性质、法则、公式、公理、定理以及由其内容所反映出来的数学思想方法。数学思想和方法纳入基础知识范畴,足见数学思想方法的教学问题已引起教育部门的重视,也体现了我国数学教育工作者对于数学课程发展的一个共识。这不仅是加强数学素养培养的一项举措,也是数学基础教育现代化进程的必然与要求。这是因为数学的现代化教学,是要把数学基础教育建立在现代数学的思想基础上,并使用现代数学的方法和语言。因此,探讨数学思想方法教学的 一系列问题,已成为数学现代教育研究中的一项重要课题。
从心理发展规律看,初中学生的思维是以形式思维为主向辨证思维过渡,高中学生的思维则是辨证思维的形成。进行数学思想方法教学,不仅有助于学生从形式思维向辩证思维过渡,而且是形成和发展学生辩证思维的重要途径。
从认知心理学角度看,数学学习过程是一个数学认知结构的发展变化过程,这个过程是通过同化和顺应两种方式实现的。所谓同化,就是主体把新的数学学习内容纳入到自身原有的认知结构中去,把新的数学材料进行加工改造,使之与原教学学习认知结构相适应。所谓顺应,是指主体原有的数学认识结构不能有效地同化新的学习材料时,主体调整成改造原来的数学内部结构去适应新的学习材料.在同化中,数学基础知识不具备思维特点和能动性,不能指导“加工”过程的进行。而心理成份只给主体提供愿望和动机,提供主体认知特点,仅凭它也不能实现“加工”过程。数学思想方法不仅提供思维策略(设计思想),而且还提供实施目标的具体手段(解题方法)。实际上数学中的转化、化归就是实现新旧知识的同化。与同化一样,顺应也在数学思想方法的指导下进行。积极进行数学思想方法教学,将极大地促进学生的数学认知结构的发展与完善。
从学习迁移看,数学思想方法有利于学生学习迁移,特别是原理和态度的迁移,从而可以极大地提高学习质量和数学能力。布鲁纳认为 “学习基本原理的目的,就在于促进记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来。高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具。”由此可见,数学思想方法作为数学学科的“一般原理”,在教学中是至关重要的,因此,对于中学生,不管他们将来从事什么工作,唯有深深地铭刻于头脑中的数学思想方法将随时随地发生作用,使他们受益终生。
二、数学思想方法的教学原理
数学思想方法的教学原理是说明数学思想方法的教学规律的。中学数学的课程内容是由具体的数学知识与数学思想方法组成的有机整体,现行数学教材的编排一般是沿知识的纵方向展开的,大量的数学思想方法只是蕴涵在数学知识的体系之中,并没有明确的揭示和总结。这样就产生了如何处理数学思想方法教学的问题。进行数学思想方法的教学,必须在实践中探索规律,以构成数学思想方法教学的指导原则。数学思想方法的构建有三个阶段:潜意识阶段、明朗和形成阶段、深化阶段。一般来说,应以贯彻渗透性原则为主线,结合落实反复性、系统性和明确性的原则.它们相互联系,相辅相成,共同构成数学思想方法教学的指导思想。(如下图所示)
1.渗透性原则:在具体知识教学中,一般不直接点明所应用的数学思想方法,而是通过精心设计的学习情境与教学过程,着意引导学生领会蕴涵在其中的数学思想和方法,使他们在潜移默化中达到理解和掌握。数学思想方法与具体的数学知识虽然是一个有机整体,它们相互关联,相互依存,协同发展,但是具体数学知识的数学并不能替代数学思想方法的数学。一般来说,数学思想方法的教学总是以具体数学知识为载体,在知识的教学过程中实现的。数学思想是对数学知识和方法本质的认识,数学方法是解决数学问题、体现数学思想的手段和工具。所以,数学思想方法具有高度的抽象性与概括性。如果说数学方法尚具有某种外在形式或模式,那么作为一类数学方法的概括的数学思想,却只表现为一种意识或观念,很难找到外在的固定形式。因此,数学思想方法的形式绝不是一朝一夕可以实现的,必须要日积月累,长期渗透才能逐渐为学生所掌握。
数学思想方法的渗透主要是在具体知识的教学过程中实现的。因此,要贯彻好渗透性原则,就要不断优化教学过程。比如,概念的形成过程;公式、法则、性质、定理等结论的推导过程;解题方法的思考过程;知识的小结过程等,只有在这些过程的教学中,数学思想方法才能充分展现它们的活力。取消或压缩教学的思维过程,把数学教学看为知识结论的教学,就失去了渗透数学思想方法的机会,使数学思想方法无有用武之地。
2.反复性原则:学生对数学思想方法的领会和掌握只能遵循从个别到一般,从具体到抽象,从感性到理性,从低级到高级的认识规律。因此,这个认识过程具有长期性和反复性的特征.
从一个较长的学习过程看,学生对每种数学方法的认识都是在反复理解和运用中形成的,其间有一个由低级到高级的螺旋上升过程.如对同一数学思想方法,应该注意其在不同知识阶段的再现,以加强学生对数学思想方法的认识.
另外,由于个体差异的存在,与具体的数学知识相比,学生对数学思想方法的掌握往往表现出更大的不同步性.在教学中,应注意给中差生更多的思考,接受理解的时间,逾越了这个过程,或人为地缩短,会导致学生囫囵吞枣,长此以往,会形成好的更好,差的更差的两极分化局面。
3.系统性原则:与具体的数学知识一样,数学思想方法只有形成具有一定结构的系统,才能更好地发挥其整体功能。数学思想方法有高低层次之别,对于某一种数学思想而言,它所概括的一类数学方法,所串联的具体数学知识,也必须形成自身的体系,才能为学生理解和掌握,这就是数学思想方法教学的系统性原理。
对于数学思想方法的系统性的研究,一般需要从两个方面进行:一方面要研究在每一种具体数学知识的教学中可以进行哪些数学思想方法的教学。另一方面,又要研究一些重要的数学思想方法可以在那些知识点的教学中进行渗透,从而在纵横两个维度上整理出数学思想方法的系统。例如《数列》这一章,就体现了函数与方程、等价转化、分类讨论等重要的数学思想以及待定系数法、配方法、换元法、消元法、“归纳一猜想一证明”等基本的数学方法。
4.明确性原则:在中学数学各科教材中,数学思想方法的内容显得薄弱,除了一些具体的数学方法比较明确外,一些重要的数学思想方法都没有比较明确和系统的阐述,而它们一直蕴含在基础知识的教学之中。从数学思想方法教学的整个过程来看,只是长期、反复、不明确的渗透,将会影响学生认识从感性到理性的飞跃,妨碍了学生有意识地去掌握和领会。渗透性和明确性是数学思想方法教学辩证的两个方面。因此,在反复渗透的教学过程中,利用适当时机,对某些数学思想方法进行概括、强化和提高,对它的内容、名称、规律、使用方法适度明确化,是掌握、运用数学思想方法并转化为能力的前提,所以数学思想方法的教学应贯彻明确性原则。贯彻数学思想明确化原则,是让学生理解数学思想的关键,是熟练掌握、灵活运用、转化为能力的前提。
例如在解题教学中,可经常采用一题多解,多题一解的教学方法明确数学思想方法。一题多解是运用不同的数学思想方法,寻求多种解法;多题一解又是运用同一种数学思想方法于多种题目之中。但是在教学中,往往缺乏从数学思想方法的高度去阐明其中的本质和通法。我们在解题教学中,将蕴含其中的数学思想方法明确化,有利于学生掌握其中规律,使学生的认识能力产生飞跃。
三、中学数学中的主要思想方法
1.中学数学中的主要思想:函数与方程思想,数形结合思想,分类讨论思想,化归与转化思想。
(1)函数与方程思想:就是用函数的观点、方法研究问题,将非函数问题转化为函数问题,通过对函数的研究,使问题得以解决。通常是这样进行的:将问题转化为函数问题,建立函数关系,研究这个函数,得出相应的结论。中学数学中,方程、数列、不等式等问题都可利用函数思想得以简解;几何量的变化问题也可以通过对函数值域的考察加以解决。例如1990年全国高考题:如果实数x、y满足(x-2)2 + y2 =3,那么的最大值是 。分析:为分离出,先给已知等式两边同除以x2,得.分离变量与,得==.此式表示是的二次函数,易知当=2即x=时,有最大值3,则有最大值.此题不是函数而看成函数,这不正是函数思想的实质吗?
(2)数形结合思想:数学是研究现实世界空间形式和数量关系的科学,因而数学研究总是围绕着数与形进行的。“数”就是方程、函数、不等式及表达式,代数中的一切内容;“形”就是图形、图象、曲线等。数形结合的本质是数量关系决定了几何图形的性质,几何图形的性质反映了数量关系。数形结合就是抓住数与形之间的内在联系,以“形”直观地表达数,以“数”精确地研究形。华罗庚曾说:“数缺形时少直觉,形缺数时难入微。”通过深入的观察、联想,由形思数,由数想形,利用图形的直观诱发直觉。例如:已知x1是方程x+ lgx =3的根,x2是x+10x =3的根,则x1+x2等于( )(A)6(B)3(C)2(D)1 . 分析:构造函数y=lgx,y=10x,y=3-x,由于y=lgx与y=10x互为反函数,图象关于直线y=x对称,而直线y=3-x 与y=x互相垂直,所以y=3-x与y=lgx和y=3-x与y=10x的交点P1(x1,y1)P2(x2,y2)是关于直线y=3-x 与y=x的交点M(x0,y0)对称的,故x1+x2=2 x0=3,选(B),(图略).
(3)分类讨论思想:就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同种类的思想方法,分类是以比较为基础的,它能揭示数学对象之间的内在规律,有助于学生总结归纳数学知识,使所学知识条理化。
数学中的分类有现象分类和本质分类两种,前一种分类是以分类对象的外部特征、外部关系为根据的,如复数分为实数与虚数等,这种分法看上去一目了然,但不能揭示所分对象之间的本质联系;后一种分类是按对象的本质特征、内部联系进行分类的,如函数按单调性或有界性分类,多面体按柱、锥、台分类等。引起分类讨论的主要原因有:①由数学概念引起的分类讨论;②由数学定理、性质、公式的限制条件引起的分类讨论;③由数学式子的变形所需要的限制条件引起的分类讨论;④由图形的位置和大小的不确定性而引起的分类讨论;⑤对于含有参数的问题要对参数的允许值进行全面的分类讨论。
(4)化归与转化思想:在教学研究中,使一种对象在一定条件下转化为另一种研究对象的数学思想称为转化思想。体现在数学解题中,就是将原问题进行变形,使之转化为我们所熟悉的或已解决的或易于解决的问题,就这一点来说,解题过程就是不断转化的过程。化归与转化的一般原则是:①化归目标简单化原则;②和谐统一性原则(化归应朝着使待解决问题在表现形式上趋于和谐,在量、形、关系方面趋于统一的方向进行,使问题的条件与结论表现得更均匀和恰当。);③具体化原则;④标准形式化原则(将待解问题在形式上向该类问题的标准形式化归。标准形式是指已经建立起来的数学模式。如二次函数y=ax2+bx+c (a≠0);椭圆方程);⑤低层次化原则(解决数学问题时,应尽量将高维空间的待解问题化归成低维空间的问题,高次数的问题化归成低次数的问题,多元问题化归为少元问题解决。这是因为低层次问题比高层次问题更直观、具体、简单)。化归与转化的策略有:①已知与未知的转化(已知条件常含有丰富的内容,发掘其隐含条件,使已知条件朝着明朗化的方向转化,如综合法;对于一个未知的新问题,通过联想,寻找转化为已知的途径,或从结论人手进行转化,如分析法)。②正面与反面的转化(在处理某一问题,按照习惯思维方式从正面思考而遇到困难,甚至不可能时,用逆向思维的方法去解决,往往能达到突破性的效果)。③数与形的转化(数形结合其实质是将抽象的数学语言与直观的图形相结合,可以使许多概念和关系直观而形象,有利于解题途径的探求)。 ④一般与特殊的转化。⑤复杂与简单元的转化(把一个复杂的、陌生的问题转化为简单的、熟悉的问题来解决,这是数学解题的一条重要原则)。
高中数学涉及最多的是转化思想,如超越方程代数化、三维空间平面化、复数问题实数化等,为了实现转化,相应地产生了许多的数学方法,如消元法、换元法、图象法、待定系数法、配方法等。通过这些数学方法的使用,使学生充分领略数学思想在数学领域里的地位与作用。
2.中学数学中的基本数学方法
(1)数学中的几种常用求解方法:配方法、消去法、换元法、待定系数法、数学归纳法、坐标法、参数法、构造法、数学模型法等;
(2)数学中的几种重要推理方法:综合法与分析法、完全归纳法与数学归纳法、演绎法、反证法与同一法;
(3)数学中的几种重要科学思维方法:观察与试尝、概括与抽象、分析与综合、特殊与一般、比较与分类、归纳与类比、直觉与顿悟等。
四、数学思想方法教学途径的探索
1.在基础知识的教学过程中,适时渗透数学思想方法
在教学过程中,要注意知识的形成过程,特别是定理、性质、公式的推导过程和例题的求解的过程,基本数学思想和数学方法都是在这个过程中形成和发展的,数学基本技能也是在这个过程学习和发展的,数学的各种能力也是在这个过程中得到培养和锻炼的,数学思想和数学观念也是在这个过程中形成的。
(1)重视概念的形成过程
概念是思维的细胞,是感性认识飞跃到理性认识的结果。而飞跃的实现要经过分析、综合、比较、抽象、概括等思维的逻辑加工,需依据数学思想方法的指导。因而概念教学应当完整地体现这一过程,引导学生揭示隐藏于概念之中的思维内核。例如,高一新教材,数学第一册(上)第二章 函数,有关函数的单调性的知识,是数形结合思想渗透教学的最好材料,教学中要充分抓住这一有利时机。函数f(x)在区间A上是增函数或减函数可直观地用下图示意:
通过图象的直观性,可使学生深刻理解函数的单调性,也使学生对增函数、减函数的定义有更加明确的认识。
(2)引导学生对定理、公式的探索、发现、推导的过程
在定理、性质、法则、公式、规律等的教学中要引导学生积极参与这些结论的探索、发现、推导的过程,不断在数学思想方法指导下,弄清每个结论的因果关系,最后再引导学生归纳得出结论。
例如,高一新教材,数学第一册(上)第三章 数列,教师要不失时机地引导学生观察发现数列是特殊的函数,关于等差数列,由通项公式和求和公式看出,an和Sn都是n的函数,当d≠0时,an是n的一次函数,Sn是n的二次函数。因此可以用一次、二次函数的有关知识来解决等差数列的通项、前n项和的问题。函数的图象是函数的灵魂。an =a1 +(n-1)d的图象是一条直线上的点.Sn =na1 +d的图象是一条抛物线上的点,借助图形的直观,解决问题。
2.在小结复习的教学过程中,揭示、提炼概括数学思想方法
由于同一内容可蕴含几种不同的数学思想方法,而同一数学思想方法又常常分布在许多不同的基础知识之中,及时小结、复习以进行强化刺激,让学生在脑海中留下深刻的印象,这样有意识、有目的地结合数学基础知识,揭示、提炼概括数学思想方法,既可避免单纯追求数学思想方法教学欲速则不达的问题,又明快地促使学生认识从感性到理性的飞跃。例如,《数列》这一章,体现了函数与方程、等价转化、分类讨论等重要的数学思想以及待定系数法、配方法、换元法、消元法、“归纳一猜想一证明”等基本的数学方法。复习小结时可配合知识点和典型例题强化训练。
3.抓好运用,不断巩固和深化数学思想方法
在抓住学习重点、突破学习难点及解决具体数学问题中,数学思想方法是处理这些问题的精灵,这些问题的解决过程,无一不是数学思想方法反复运用的过程,因此,时时注意数学思想方法的运用既有条件又有可能,这是进行数学思想方法教学行之有效的普遍途径.数学思想方法也只有在反复运用中,得到巩固与深化.例如2000年全国高考题:设{}是首项为1的正项数列,且,(n=1,2,3…),则它的通项公式= 。
分析:题设给出了数列相邻两项所满足的关系式(递推公式)和首项=1 ,由此可求出,,,从而可猜想出=,由特殊到一般,灵活运用“归纳一猜想一证明”这一探究问题的思维方式猜想出结果(填空题可不必证明)。
如果注意到递推公式是关于和的二次齐次式,也可通过分解因式或解一元二次方程来解决,即灵活运用方程思想求得更简单的递推式,进而运用迭乘法迅速求得.
由
①(∵>0) (常数) =
②
===.
5. 数学思想方法在小学数学教学中的应用浅析
数学思想方法在小学数学教学中的应用。 数学思想方法最初以很简单的数学知识和数学材料的形式渗透给学生,随着学生年龄增长和学段的上升,数学知识和材料越来丰富,数学思想方法也越来越被用新的内容逐步展开,这些数学思想和方法也组成了数学全部内容的核心。
我们也可以想见,多年以后,学了数学的学生走出校门,踏入社会,大多数的数学知识很快会模糊不清到忘掉,但是因为数学学习而培养起来的一些优秀的品质、习惯、思维方法和着眼点,如求真精神、探索习惯、合情推理能力、逻辑推理能力等却以工作和学习中新的内容和材料展示出来,深入骨髓。所以米山国藏在《数学的精神、思想和方法》中说,“纵然是把数学知识忘记了,但数学的精神、思想、方法也会深深地铭刻在头脑里,长久地活跃于日常的业务中”。
6. 浅谈数学思想方法在小学数学教学中的渗透
为加强小学生的数学思维逻辑,提高数学课堂的教学效率,教师需采用科学有效的教学方法保证数学思想的有效渗透,从而激发学生的学习热情,强化学生的数学意识,带领学生运用数学思维解决实际生活问题。
教师在以往数学课堂内注重学生的数学成绩,未将学生在实际学习过程的数学方法进行充沛的指导,使得学生对数学问题具有一定的思想偏颇,加大教师的教学难度,无法全方位培养学生的综合能力。
因此,教师应结合时代潮流教学方法,根据教材具体内容展开相应的教学手段,充分加强学生的数学素养,进而提高学生对数学抽象性概念的理解,强化学生的数学意识,保证数学教学任务的有效进行。
一、小学生学习特点
由于小学生的年龄较低,对事物具有极强的好奇心,无法在数学课堂上集中注意力,继而导致自身的学习效率有所下降。所以,教师应结合学生在课上的学习状态,设计丰富的教学内容,调动学生积极性,激发学生的主观能动性,加强学生对数学基础知识的理解。教师应升华自身的教学素养,充分利用专业知识强化对学生数学思想的教育,联系实际生活内容,活跃课堂氛围,进而保证数学课堂的实效性[1]。
二、小学数学思想方法介绍
(一)数形结合法
教师要改变传统教模式中填鸭式教学方法,发挥学生的主观能动性,加强学生对事物的空间想象能力,培养学生的创新能力,使学生全面了解教师所讲的数学知识,从而激发学生的学习热情。基于此,教师可采取数形结合的教学模式帮助学生更好掌握基础知识要义,培养学生的良好学习习惯。在讲解具体内容时,教师要将抽象化概念转换为具体形象,加强学生实际的运算能力,提高数学思想在课堂上的渗透。
(二)总结法
总结法是教师常用的教学手段,通过课上最后的时间带领学生复习巩固相应的知识内容,增强学生的数学素养。因此,数学教师可将此方法融入课堂教学,加强学生对数学知识的运用能力,帮助学生建立相应的数学体系,使其能够正确解答有关数学问题,逐步培养学生的自主学习能力。由于小学阶段是学生学习的黄金时期,教师要从多方面加强对学生综合能力的培养,实现数学课堂的有效教学,保证教学进度。
(三)转化法
学生作为独立个体听取教师讲解的数学内容会产生不同的学习效果。教师要改变传统教学氛围,创设科学有效的教学环境,保持学生整节课的充沛精力,激发学生的学习兴趣。利用转化的教学方法增强学生对抽象概念的理解能力,时刻与学生沟通交流,根据学生的具体学习情况设计丰富的教学内容,继而增强学生对数学知识后的实际运用。
三、在小学数学教学中渗透数学思想方法的途径
(一)在课后总结中提炼数学思想
小学数学教材将学生所学的重点知识内容进行充分的整理,使得学生在每章完结之后都能有效复习相应概念,因此,教师应注重小学教材的布置内容,灵活运用课后知识增强学生的数学意识,完善学生的学习方法,逐步加强对学生数学问题的灵活运用。
比如在学习《图形的运动(二)》内容时,教师就要逐步引导学生对数学公式的理解能力,通过课后复习强化学生对数学问题的计算。首先教师要通过激趣导入吸引学生注意力,带领学生观察多媒体课件,明确抽对称的定义及性质,带领学生回顾相应的数学问题后,教师要让学生进行动手实践,将教材附页上的图形剪下,先折一折,再画出图形的对称轴,并让学生观察每个图形可以画多少对称轴,在学生实践过程中增强学生的数学思想。通过课后总结带领学生明确长方形、正方形、等腰梯形、等腰三角形、等边三角形、线段、菱形等图形的对称轴具有多少条,加强学生的学习效果,逐步培养学生的理性思维模式。
(二)在课堂教学中挖掘可利用的数学思想
为加强学生对数学思想的理解能力,教师应紧跟时代潮流发展,改变教学理念,摒弃传统教学思想,根据教材的具体内容与学生上课的实际情况,逐步挖掘可利用的数学思想,强化学生的逻辑思维,使得学生的学习效率不断增强[2]。
比如在学习《可能性》内容时,教师就要摒弃传统教学手法,采用科学有效的教学手段加强对学生的数学思想教育。首先通过问题引导引发学生的思考能力“抛硬币决定谁先开球公平吗?”带领学生初步体验事件发生的确定性与不确定性,并让学生列出简单的随机现象中所有可能发生的结果。其次教师要创设相应的问题情景,带领学生发现实际生活问题,如:哥哥弟弟都很想去电影院看电影,但是爸爸只有一张儿童票,只能给其中一个人,这时就要让学生充分思考课题采取什么样的方法保证公平,从而加深学生的可能性知识概念的运用能力,保证数学课堂的教学质量,加强学生对实际问题的数学思想。
(三)活跃数学思想氛围,调动学生积极性。
教师应明确数学思想存在于教材与学生的方方面面,需带领学生不断进行数学实践活动,侧面提高学生的数学思维逻辑,强化学生的学习方法,从多角度激发学生的学习积极性。教师要结合教材具体内容,发挥学生的主观意识,营造良好的数学思想学习氛围,采用循序渐进的教学方法,根据教材重难点知识内容,合理设计教学过程,加强学生的数学教育,发散学生的创新思维,全方位培养学生综合能力[3]。
比如在学习《百分数(一)》内容时,教师不应根据教材体现的内容进行教学,应以学生的数学思想为中心,发挥学生的创新能力。首先借用多媒体技术让学生观察每个人的不同情况,并思考如何派遣队员进行足球运动,加强学生的思考逻辑。其次,教师应让学生针对具体问题进行小组间的合作交流,强化学生的语言表达能力,活跃课堂氛围,营造良好的学习环境,激发学生对数学的学习兴趣。教师应及时了解学生所提的数学问题时刻与学生沟通交流。优化师生之间的关系,加强对学生逻辑思维的培养,实现数学思想的深度教学作用,从而提高小学数学课堂的教学质量,全面落实数学思想教育,利用丰富的教学资源提高学生自主学习意识。
结束语:
综上所述,为强化学生的数学意识,教师应全方位认识数学教材内容,利用抽象性知识体系提高学生的自主学习能力,从而实现小学课堂的有效教学。通过在课后、课时挖掘数学思想,不断加强学生对数学的认知能力,培养学生良好的学习习惯。教师应以学生为主体地位,升华自身的教学素质,使用专业的知识水平保证小学数学课堂的教学进度。
7. 数学思想方法在解题中的作用是什么
数学思想方法在解题中的作用
在数学教学中,”问题是数学的心脏“已成为数学界的共识,而问题的解决,实际上是数学思想方法的体现。
五大”数学思想“在解题中的运用
1.换元思想
换元法又称变量替换法,即根据所要求解的式子的结构特征,巧妙地设置新的变量来替代原来表达式中的某些式子或变量,对新的变量求出结果后,返回去再求出原变量的结果。换元法通过引入新的变量,将分散的条件联系起来,使超越式化为有理式、高次式化为低次式、隐性关系式化为显性关系式,从而达到化繁为简、变未知为已知的目的。
2.数形结合思想
数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体. 通过”形“往往可以解决用“数”很难解决的问题。
3.转化与化归思想
所谓转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而达到解决的一种方法。一般总是将复杂的问题通过转化为简单的问题,将难解的问题通过变换转化为容易的问题,将未解决的问题变换转化为已解决的问题。转化与化归的思想方法是数学中最基本的思想方法。数学中一切问题的解决都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现。各种变换法、分析法、反证法、待定系数法、构造法等都是转化的手段。所以说转化与化归是数学思想方法的灵魂。
4.函数与方程思想
函数思想指运用函数的概念和性质,通过类比、联想、转化、合理地构造函数,然后去分析、研究问题,转化问题和解决问题。方程思想是通过对问题的观察、分析、判断等一系列的思维过程中,具备标新立异、独树一帜的深刻性、独创性思维,将问题化归为方程的问,利用方程的性质、定理,实现问题与方程的互相转化接轨,达到解决问题的目的。
5.分类讨论思想
所谓分类讨论,就是当问题所给的对象不能进行统一研究时,我们就需要对研究的对象进行分类,然后对每一类分别研究,得出每一类的结论,最后综合各类的结果得到整个问题的解答。实质上分类讨论是“化整为零,各个击破,再积零为整”的策略。分类讨论时应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论。”
8. 如何在课堂教学中进行数学思想方法的教学
作为一名小学教师,每天的课堂教学我们总是在有意或无意的渗透着数学思想方法。美国教育心理家布鲁纳指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在人的一生中,最有用的不仅是数学知识,更重要的是数学的思想方法和数学的意识,因此数学的思想方法是数学的灵魂和精髓。掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。在小学数学教学中,教师有计划、有意识地渗透一些数学思想方法非常重要。下面我就谈谈在小学数学教学中,我是如何渗透数学思想方法:
一、改变应试教育观念,创新数学思想方法。
数学思想方法隐含在数学知识体系里,是无“形”的,而数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的。作为教师首先要改变应试教育观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。在小学数学教学中,教师不能仅仅满足于学生获得正确知识的结论,而应该着力于引导学生对知识形成过程的理解。让学生逐步领会蕴涵其中的数学思想方法。也就是说,对于数学教学重视过程与重视结果同样重要。教师要站在数学思想方面的高度,对其教学内容,用恰当的语言进行深入浅出的分析,把隐蔽在知识内容背后的思想方法提示出来。例如,长方体和正方体的认识概念教学,可以按下列程序进行:(1)由实物抽象为几何图形,建立长方体和正方体的表象;(2)在表象的基础上,指出长方体和正方体特点,使学生对长方体和正方体有一个更深层次的认识;(3)利用长方体和正方体的各种表象,分析其本质特征,抽象概括为用文字语言表达的长方体和正方体的概念;(4)使长方体和正方体的有关概念符号化。显然,这一数学过程,既符合学生由感知到表象,再到概念的认知规律,又能让学生从中体会到教师是如何应用数学思想方法,对有联系的材料进行对比的,对空间形式进行抽象概括的,对教学概念进行形式化的。
二、课堂教学中及时渗透数学思想方法。
为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究思想渗透的手段和方法。在教学过程中,我经常通过以下途径及时向学生渗透数学思想方法:(1)在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,这些都是向学生渗透数学思想和方法的极好机会。例如量的计量教学,首要问题是要合理引入计量单位。作为课本不可能花大气力去阐述这个过程。但是作为教师根据教学的实际情况,适当地展示它的简单过程和所运用的思想方法,有利于培养学生的创造性思维品质和为追求真理而勇于探索的精神。例如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块”大小必须统一的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。(2)在问题的解决过程中渗透。如:教学“鸡兔同笼” 这一课时,在解决问题的过程中,用图表、课件展示的方法让学生逐步领会“假设”这种策略的奥妙所在。(3)在复习小结中渗透。在章节小结、复习的数学教学中,我们要注意从纵横两个方面,总结复习数学思想与方法,使师生都能体验到领悟数学思想,运用数学方法,提高训练效果,减轻师生负担,走出题海误区的轻松愉悦之感。如教学 “梯形面积”这一单元之后,我及时帮助学生依靠梯形面积的推导过程回忆平行四边形的面积、三角形的面积公式的推导方法,使学生能清楚地意识到:“转化”是解决问题的有效方法。
三、让学生学会自觉运用数学思想方法。
数学思想方法的教学,不仅是为了指导学生有效地运用数学知识、探寻解题的方向和入口,更是对培养人的思维素质有着特殊不可替代的意义。它在新授中属于“隐含、渗透”阶段,在练习与复习中进入明确、系统的阶段,也是数学思想方法的获得过程和应用过程。这是一个从模糊到清晰的飞跃。而这样的飞跃,依靠着系统的分析与解题练习来实现。学生做练习,不仅对已经掌握的数学知识以及数学思想方法会起到巩固和深化的作用,而且还会从中归纳和提炼出新的数学思想方法。数学思想方法的教学过程首先是从模仿开始的。学生按照例题师范的程序与格式解答和例题相同类型的习题,实际上是数学思想方法的机械运用。此时,并不能肯定学生已领会了所用的数学思想方法,只当学生将它用于新的情景,解决其他有关的问题并有创意时,才能肯定学生对这一教学本质、数学规律有了深刻的认识。
我们知道,最好的学习效果是主动参与,亲自发现,数学思想方法的学习也不例外。在教学中,通过数学思想方法的广泛应用,让学生从主观上重视数学思想方法的学习,进而增强自觉提炼数学思想方法的意识。教师对习题的设计也应该从数学思想方法的角度加以考虑,尽量多安排一些能使各种学习水平的学生深入浅出地作出解答的习题,它既有具体的方法或步骤,又能从一类问题的解法去思考或从思想观点上去把握,形成解题方法,进而深化为数学思想。例如;在教学完多边形面积的计算以后,可以由易到难,出几题运用移动、割补等方法解决的实际问题,这样做不仅可以让学生领会到转化的数学思想方法,对提高学生的学习兴趣也大有好处。让学生在操作中掌握,在掌握后领悟,使数学思想方法在知识能力的形成过程中共同生成。
我们小学数学教师只有重视对数学思想方法的学习研究,探讨其教学规律,才能适应新课改的需要。数学思想方法的渗透具有长期性、反复性。对学生进行数学思想方法的渗透必定要经历一个循环往复、螺旋上升的过程,往往是几种思想方法交织在一起,在教学过程中教师要依据具体情况,有效进行数学思想方法的渗透。
9. 论述数学思想方法在小学教学中的应用
1转化思想
在小学数学教学中,转化思想是一种常见的数学运用方法,其主要功能是将不同类型的元素转化为相同类型的元素。转化思想的运用能够将数学题型化繁为简、化难为易,使学生快速解答题型。在小学数学中,转化思想被经常应用,如:异分母加减法。14+23,教师应引入转化思想,教育学生异分母转化法,将数学题转化为同分母加减法:312+812,使答案一目了然。除此外,分数与小数的加减法也需要渗透转化思想,如:0.5+14就可转化为0.5+0.25,使问题更加容易解决,提高学生问题解答能力。
2.分类思想
分类思想主要是将某问题视为整体,并在一定分类标准上将整体划分为相应部分,以此达到快速解答问题的目的。如:在小学几何教学中的三角形教学中,将所有三角形分为锐角三角形、直角三角形与钝角三角形,此三类三角形直接囊括了所有三角形的特征。分类方法是小学数学中的重要数学思想方法,为确保分类方法的合理性,教学应教育学生在采用此方法解题时遵循以下几项原则:统一性原则、不重复与遗漏原则、层次性原则等。
3数形结合
数形结合是将抽象的知识转化为直观概念,提高学生理解能力,实现解决问题的目标。小学思维正处于过度其,形象思维较强而逻辑思维较差,数形结合能够巧妙引导学生结合形象思维与抽象逻辑,提高学生的思维能力。如分数的算式14×15可借用图形达到结果直观的目的。将矩形分为数个1×1cm的格子,并用\表示整个矩形的14,用/表示整个矩形的15,可直观看出两者间的公共部分,即为两者之积。
10. 数学思想方法如何在教学中运用
运用主题图渗透数学思想方法的教学研究 一以二年级人教版教材为例 摘要 数学思想方法是数学知识的灵魂和核心。教师在引导学生发现数学问题, 探索数学方法,解决数学问题的过程中,要将掌握数学思想方法作为最重要的 教学目标。数学思想方法因其抽象性的特点,需要通过具体的数学知识和内容 来承载。在新课程改革的理念下,编者通过精心设计,将改革后很多新的教育 理念和数学思想方法隐藏在主题图中。主题图将现实生活和数学思想方法紧密 结合,通过生动活泼的图片展示,给教师提供了众多宝贵的数学教学资源。