导航:首页 > 知识科普 > 多位数乘两位数简便方法

多位数乘两位数简便方法

发布时间:2022-05-01 01:45:53

㈠ 关于多位数相乘的简便方法

选B是因为6x9=54中个位是4,而11338x25593结果的个位也是4 (两个因数个位相乘=24)

㈡ 乘法简便运算技巧

乘法简便运算方法

一、结合法

一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。

例1 计算:19×4×5

19×4×5

=19×(4×5)

=19×20

=380

在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。

二、分解法

一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。

例2 计算:45×18

48×18

=45×(2×9)

=45×2×9

=90×9

=810

将18分解成2×9的形式,再将括号去掉,使计算简便。

三、拆数法

有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。

例3 计算:99×99+199

(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:

99×99+199

=99×99+99+100

=99×(99+1)+100

=99×100+100

=10000

(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:

99×99+199

=(100-1)×99+(100-1)+100

=(100-1)×(99+1)+100

=(100-1)×100+100

=10000

四、改数法

有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。

例4 计算:25×5×48

25×5×48

=25×5×4×12

=(25×4)×(5×12)

=100×60

=6000

把48转化成4×12的形式,使计算简便。

例5 计算:16×25×25

因为4×25=100,而16=4×4,由此可将两个4分别与两个25相乘,即原式可转化为:(4×25)×(4×25)。

16×25×25

=(4×25)×(4×25)

=100×100

=10000

㈢ 52乖417的坚式怎么

数位较多的数写在上面数位较少的写在下面,相同数位对齐进行竖式计算。
多位数乘两位数竖式计算:把数位较多的数写在上面数位较少的写在下面,然后下面的因数要与写在上面的因数的数位要对齐,然后第二个因数的个位数与写在上面的数的个位相乘,然后把相乘得到的积的末位写在个位上,再与十位上的数相乘写在十位上,以此类推。
竖式计算是指在计算过程中列一道竖式计算,使计算简便。乘法的竖式计算是一个数的第i位乘上另一个数的第j位就应加在积的第i+j-1位上。

㈣ 两位数乘多位数的计算法则是什么,依据是什么

第一步是用两位数的个位去乘多位数;
第二步是用两位数的十位去乘多位数;
第三步是把相同数位对齐后相加。
依据是乘法分配律。

㈤ 两位数乘多位数的计算方法

就把多位数写到上边,两位数写到下边,从两位数的个位开始,乘那个多位数的个位十位百位千位,写下来。然后再错一位用十位数乘以多位数的个位,十位百位千位,写下来?然后再依加出来的结果就对了,没别的办法,只能多练,练得多了自然手都熟了,你自然就成高手了

㈥ 快速算出两位数乘法的方法

两位数乘法速算技巧原理:设两位数分别为10A B,10C D,其积为S,根据多项式展开:S=(10A B)×(10C D)=10A×10C B×10C 10A×D B×D,而所谓速算,就是根据其中一些相等或互补(相加为十)的关系简化上式,从而快速得出结果。注:下文中"--"代表十位和个位,因为两位数的十位相乘得数的后面是两个零,请大家不要忘了,前积就是前两位,后积是后两位,中积为中间两位,满十前一,不足补零.A.乘法速算一.前数相同的:1.1.十位是1,个位互补,即A=C=1,B D=10,S=(10 B D)×10 A×B方法:百位为二,个位相乘,得数为后积,满十前一。例:13×17 13 7=2--("-"在不熟练的时候作为助记符,熟练后就可以不使用了)3×7=21---221即13×17=221 1.2.十位是1,个位不互补,即A=C=1,B D≠10,S=(10 B D)×10 A×B方法:乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一。例:15×17 15 7=22-("-"在不熟练的时候作为助记符,熟练后就可以不使用了)5×7=35---255即15×17=255 1.3.十位相同,个位互补,即A=C,B D=10,S=A×(A 1)×10 A×B方法:十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积例:56×54(5 1)×5=30--6×4=24--3024 1.4.十位相同,个位不互补,即A=C,B D≠10,S=A×(A 1)×10 A×B方法:先头加一再乘头两,得数为前积,尾乘尾,的数为后积,乘数相加,看比十大几或小几,大几就加几个乘数的头乘十,反之亦然例:67×64(6 1)×6=42 7×4=28 7 4=11 11-10=1 4228 60=4288--4288方法2:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。例:67×64 6×6=36--(4 7)×6=66-4×7=28--4288二、后数相同的:2.1.个位是1,十位互补即B=D=1,A C=10 S=10A×10C 101方法:十位与十位相乘,得数为前积,加上101.。--8×2=16--101---1701 2.2.不是很简便个位是1,十位不互补即B=D=1,A C≠10 S=10A×10C 10C 10A 1方法:十位数乘积,加上十位数之和为前积,个位为1.。例:71×91 70×90=63--70 90=16-1--6461 2.3个位是5,十位互补即B=D=5,A C=10 S=10A×10C 25方法:十位数乘积,加上十位数之和为前积,加上25。例:35×75 3×7 5=26--25--2625 2.4不是很简便个位是5,十位不互补即B=D=5,A C≠10 S=10A×10C 525方法:两首位相乘(即求首位的平方),得数作为前积,两十位数的和与个位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。例:75×95 7×9=63--(7 9)×5=80-25--7125 2.5.个位相同,十位互补即B=D,A C=10 S=10A×10C B100 B2方法:十位与十位相乘加上个位,得数为前积,加上个位平方。例:86×26 8×2 6=22--36---2236 2.6.个位相同,十位非互补方法:十位与十位相乘加上个位,得数为前积,加上个位平方,再看看十位相加比10大几或小几,大几就加几个个位乘十,小几反之亦然例:73×43 7×4 3=31 97 4=11 3109 30=3139---3139 2.7.个位相同,十位非互补速算法2方法:头乘头,尾平方,再加上头加尾的结果乘尾再乘10例:73×43 7×4=28 92809 (7 4)×3×10=2809 11×30=2809 330=3139---3139三、特殊类型的:3.1、一因数数首尾相同,一因数十位与个位互补的两位数相乘。方法:互补的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。例:66×37(3 1)×6=24--6×7=42--2442 3.2、一因数数首尾相同,一因数十位与个位非互补的两位数相乘。方法:杂乱的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补,再看看非互补的因数相加比10大几或小几,大几就加几个相同数的数字乘十,反之亦然例:38×44(3 1)*4=12 8*4=32 1632 3 8=11 11-10=1 1632 40=1672--1672 3.3、一因数数首尾互补,一因数十位与个位不相同的两位数相乘。方法:乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补,再看看不相同的因数尾比头大几或小几,大几就加几个互补数的头乘十,反之亦然例:46×75(4 1)*7=35 6*5=30 5-7=-2 2*4=8 3530-80=3450--3450 3.4、一因数数首比尾小一,一因数十位与个手脑速算教程位相加等于9的两位数相乘。方法:凑9的数首位加1乘以首数的补数,得数为前积,首比尾小一的数的尾数的补数乘以凑9的数首位加1为后积,没有十位用0补。例:56×36 10-6=4 3 1=4 5*4=20 4*4=16---2016 3.5、两因数数首不同,尾互补的两位数相乘。方法:确定乘数与被乘数,反之亦然。被乘数头加一与乘数头相乘,得数为前积,尾乘尾,得数为后积。再看看被乘数的头比乘数的头大几或小几,大几就加几个乘数的尾乘十,反之亦然例:74×56(7 1)*5=40 4*6=24 7-5=2 2*6=12 12*10=120 4024 120=4144---4144 3.6、两因数首尾差一,尾数互补的算法方法:不用向第五个那么麻烦了,取大的头平方减一,得数为前积,大数的尾平方的补整百数为后积例:24×36 32 3*3-1=8 6^2=36 100-36=64---864 3.7、近100的两位数算法方法:确定乘数与被乘数,反之亦然。再用被乘数减去乘数补数,得数为前积,再把两数补数相乘,得数为后积(未满10补零,满百进一)例:93×91 100-91=9 93-9=84 100-93=7 7*9=63---8463 B、平方速算一、求11~19的平方同上1.2,乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一例:17×17 17 7=24-7×7=49---289三、个位是5的两位数的平方同上1.3,十位加1乘以十位,在得数的后面接上25。例:35×35(3 1)×3=12--25--1225四、十位是5的两位数的平方同上2.5,个位加25,在得数的后面接上个位平方。例:53×53 25 3=28--3×3=9--2809四、21~50的两位数的平方求25~50之间的两数的平方时,记住1~25的平方就简单了,11~19参照第一条,下面四个数据要牢记:21×21=441 22×22=484 23×23=529 24×24=576求25~50的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。例:37×37 37-25=12--(50-37)^2=169--1369 C、加减法一、补数的概念与应用补数的概念:补数是指从10、100、1000…中减去某一数后所剩下的数。例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。补数的应用:在速算方法中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。D、除法速算一、某数除以5、25、125时1、被除数÷5=被除数÷(10÷2)=被除数÷10×2=被除数×2÷10 2、被除数÷25=被除数×4÷100=被除数×2×2÷100 3、被除数÷125=被除数×8÷1000=被除数×2×2×2÷1000在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案。因本人水平所限,上面的算法不一定是最好的心算法其它由速算大师史丰收经过10年钻研发明的快速计算法,是直接凭大脑进行运算的方法,又称为快速心算、快速脑算。这套方法打破人类几千年从低位算起的传统方法,运用进位规律,总结26句口诀,由高位算起,再配合指算,加快计算速度,能瞬间运算出正确结果,协助人类开发脑力,加强思维、分析、判断和解决问题的能力,是当代应用数学的一大创举。这一套计算法,1990年由国家正式命名为"史丰收速算法",现已编入中国九年制义务教育《现代小学数学》课本。联合国教科文组织誉之为教育科学史上的奇迹,应向全世界推广。史丰收速算法的主要特点如下:⊙从高位算起,由左至右⊙不用计算工具⊙不列计算程序⊙看见算式直接报出正确答案⊙可以运用在多位数据的加减乘除以及乘方、开方、三角函数、对数等数学运算上速算法演练实例Example of Rapid Calculation in Practice○史丰收速算法易学易用,算法是从高位数算起,记着史教授总结了的26句口诀(这些口诀不需速算法26句口诀死背,而是合乎科学规律,相互连系),用来表示一位数乘多位数的进位规律,掌握了这些口诀和一些具体法则,就能快速进行加、减、乘、除、乘方、开方、分数、函数、对数…等运算。□本文针对乘法举例说明○速算法和传统乘法一样,均需逐位地处理乘数的每位数字,我们把被乘数中正在处理的那个数位称为“本位”,而从本位右侧第一位到最末位所表示的数称“后位数”。本位被乘以后,只取乘积的个位数,此即“本个”,而本位的后位数与乘数相乘后要进位的数就是“后进”。○乘积的每位数是由“本个加后进”和的个位数即--□本位积=(本个十后进)之和的个位数○那么我们演算时要由左而右地逐位求本个与后进,然后相加再取其个位数。现在,就以右例具体说明演算时的思维活动。(例题)被乘数首位前补0,列出算式:7536×2=15072乘数为2的进位规律是“2满5进1”7×2本个4,后位5,满5进1,4 1得5 5×2本个0,后位3不进,得0 3×2本个6,后位6,满5进1,6 1得7 6×2本个2,无后位,得2

㈦ 三位数乘两位数的简便方法

三位数乘两位数巧算例子283×99
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
283×99

=283×100-283

=28300-283

=28017

(7)多位数乘两位数简便方法扩展阅读→竖式计算:先将两乘数末位对齐,然后分别使用第二个乘数,由末位起对每一位数依次乘上一个乘数,最后将所计算结果累加即为乘积,如果乘数为小数可先将其扩大相应的倍数,最后乘积在缩小相应的倍数;
解题过程:
步骤一:9×283=2547

步骤二:9×283=25470

根据以上计算结果相加为28017

存疑请追问,满意请采纳

㈧ 多位数乘法如何运算

1.十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
注:和满十要进一。
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
注:和满十要进一。

㈨ 1.28×2.5竖式

1.28×2.5竖式如下:

解析:首先把1.28扩大100倍变成128,2.5扩大10倍变成25,然后根据整数乘法的方法计算即可。从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐。

算出积后,再看乘数中一共有几位小数,就从积的右边起数出几位,点上小数点。(小数计算中,积的小数部分末尾的0去掉)。

竖式格式:

乘法竖式的写法和加减法的竖式写法格式相同,只是计算符号不同,计算时用乘法口诀算,注意积的个位要跟因数的个位对齐。

写乘法竖式时,要先写一个因数,再写乘号和另一个因数,在下面画一道横线,根据口诀算出积以后,将积写在横线下。

(9)多位数乘两位数简便方法扩展阅读:

乘法计算法则

一、多位数乘一位数的竖式计算

1、 相同数位对齐。

2、 用这个数分别去乘多位数每一个数位上的数,从个位数乘起,即从右往左乘。

3、 乘到哪一位就把积写在哪一位数位对应的下面。

4、如果要进位的,哪一位的乘积满几十,就向前进几,然后再继续往下乘。

二、多位数乘两位数

1、 把数位较多的因数写在上面,数位较少的写在下面。

2、下面的因数要与写在上面的因数的数位要对齐。

3、 用第二个因数(即写在下面的因数)的个位数与写在上面的数的个位相乘,把相乘得到的积的末位写在个位上,再与十位上的数相乘写在十位上,……。

4、 要仅为的,哪一位的乘积满几十,就向前进几,然后再继续往下乘。

5、 再用写在下面的因数的十位与写在上面的因数的各个位数分别相乘,把相乘得到的积的末位写在对应的十位上。

6、 然后把每次乘得的数加起来。

阅读全文

与多位数乘两位数简便方法相关的资料

热点内容
平滑移动计算方法 浏览:988
华硕手机电池校对方法 浏览:220
如何自制去除汗渍的方法 浏览:899
结构化系统分析方法主要特点 浏览:193
测量血清白蛋白的方法 浏览:25
鉴别茅台酒的方法每年不一样 浏览:267
貂衣服怎么保养方法 浏览:858
设置左边距20像素的方法有哪些 浏览:511
金枝玉叶怎么养殖方法图片 浏览:345
转码器正确使用方法 浏览:803
机器人正确安装方法 浏览:361
沙煲锅使用方法 浏览:756
正确的卸妆方法 浏览:862
薯仔第一次种植方法 浏览:801
有什么方法纠正nl不分 浏览:992
颈部淋巴瘤治疗方法 浏览:301
宝宝思维训练方法 浏览:965
第四单元数学比较大小的解决方法 浏览:776
高中物理解题方法与技巧典例分析有解析吗 浏览:966
真假钱的辨别方法视频 浏览:494