⑴ 用配方法解过程详细点,谢谢!
⑵ 配方法为什么有些要加几 减几 乘几 除几 是根据是么的
给原式加上6的二分之一的平方再减去六的二分之一的平方 将减去的六的二分之一也就是三的平方排除在外 就变成了(x2+3)的平方减三的平方=1 在数学运算中 给一个整式同时加上减去同一个整式 结果不变.不过,配方法的依据有很多种情况,不能以一概全:
其次,如题所示,本题是一个一元二次方程式,解此方程的最终方法就是降幂,将二次方程式化成一次方程式;
(x+3)*(x+3)=xx+6x+9 依此对比可得,所提问的方程式xx+6x=1两边都加上9可以解此题。
主要背公式,多做题,熟了就懂了
⑶ 配方法公式
配方法怎么解一元二次方程的方法是:
在x2=a (a≥0)和(x+m) 2=n (n≥0)的一元二次方程基础上,把二次项系数为1和不是1、一次项系数不为偶数的一元二次方程转化为(x+m) 2=n (n≥0)的形式,进而求解。
⑷ x的平方十40x的配方法怎么解
x^2+40x等于xx+40x提取公因式x然后写成x(x+40)。首先你没有给出一个完整的等式,那么我就拿x^2+40x=400来说明一下。x^2+40x=400等于x^2+40x+400-400=400用完全平方公式得出(x+20)^2=400,得出x+20=+-20解得x1=0,x2=-40.
用配方法解一元二次方程的一般步骤:
1、把原方程化为的形式。
2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1。
3、方程两边同时加上一次项系数一半的平方。
4、再把方程左边配成一个完全平方式,右边化为一个常数。
5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。
⑸ 到底什么是配方法,一元二次方程用配方法怎样解
配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。
用配方法解一元二次方程的一般步骤:
1、把原方程化为的形式;
2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;
3、方程两边同时加上一次项系数一半的平方;
4、再把方程左边配成一个完全平方式,右边化为一个常数;
5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。
例: 解方程:3
(变形:方程左边分解因式,右边合并同类项;)
x+4/3=± 5/3(开方:根据平方根的意义,方程两边开平方;)
x+4/3=5/3 或 x+4/3=-5/3( 求解:解一元一次方程;)
所以x1=1/3, x2=-3 ( 定解:写出原方程的解)
(5)xx用配方法怎么计算扩展阅读
1、配方法解一元二次方程的口诀:一除二移三配四开方。
2、配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方。
3、配方法的理论依据是完全平方公式。
配方法的应用
1、用于比较大小
在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小。
2、用于求待定字母的值
配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值。
3、用于求最值
“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值。
4、用于证明
“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.
⑹ 用配方法求解一元二次方程!!求详细过程🙏🙏🙏
⑺ 用配方法计算 求解
⑻ 怎么用配方法算
⑼ 用配方法怎么算
x^2+3x=0
解:用配方法:
(x+3/2)^2=9/4
x+3/2=3/2
x1=0
x+3/2=-3/2
x2=-3
所以原方程的解是:x1=0 x2=-3
⑽ 用配方法怎么做配方法的公式是什么
x²-2x-8=0
x²-2x+1-1-8=0
x²-2x+1-9=0
(x-1)²=9
x-1=±3
解得
x1=4 x2=-2