Ⅰ 数学简便计算,有哪几种方法
数学简便计算方法:
一、运用乘法分配律简便计算
简便计算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
Ⅱ 二次根式化简方法
把一个二次根式化简成最简二次根式,有以下两种情况:
1、如果被开方数是整式或整数,先将它分解因式或分解因数,然后将完全平方式或平方数开除根号,使根式化简。
2、如果被开方数是分式或分数(包括小数),先分母有理化,再按被开方数是整式或整数的情形化简。
由此可见,化简二次根式要领有两条:一是分母有理化;二是分解因式(因数),将完全平方式(数)开出根号。
最简根式是根式的一个重要概念,在根式运算过程中,自始至终贯穿着根式的化简,同学们要学会化简根式的方法,化简二次根式的步骤可简要地概括为“开”、“补”两个字。
第一步,“开”,即在被开方式的各因式中,可以用它们的算术平方根来代替,能移到根号外面的,都移到根号外面去,使新的被开方式的每一个因式的指数都小于根指数2;
第二步,“补”,即把新的被开方式的分母与分子同时补乘以分母本身,使分母自乘后,新分母可以全部开出根号外面去,达到被开方式不含分母的目的。
(2)二次简便运算方法扩展阅读:
二次根式的应用主要体现在两个方面:
(1)利用从特殊到一般,再由一般到特殊的重要思想方法,解决一些规律探索性问题;
(2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。
Ⅲ 简算到底有多少方法
一、整体简便计算。整个一道算式可以用简便方法计算,这种形式最为常见。例如:
=1.14×10
=11.4
二、局部简便计算。一道算式中局部可以进行简便计算,这种形式也不少见。
三、中途简便计算。开始计算并不能简便计算,而经过一两步后却能进行简便计算,这种情况最容易忽视。例如:
=1.2×(1+5+4)
=1.2×10
=12
四、重复简便计算。在一道题里不止一次地进行简便计算,这种情况往往不注意后一次简便计算。例如:
=8×55×0.125
=8×0.125×55 第二次
=1×55
=55
一简算的根据 a、乘法运算定律 b、加法运算定律 c、减法、除法的运算性质
二简算的类型 a、直接简算 b、部分简算 c、转化简算 d、过程简算
三简算的几种公式:
加法:a+b+c=a+(b+c)(加法结合律)
乘法:a×b×c=a×c×b(乘法交换律) a×b×c=a×(b×c)(乘法结合律) (a+b)×c=ac+bc或(a-b)×c=ac-bc(乘法分配律)
减法:a-b-c=a-c-b(减法交换律) a-b-c=a-(b+c)(减法结合律)
除法:a÷b÷c=a÷c÷b(除法交换律) a÷b÷c=a÷(b×c)(除法结合律) (a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c(除法分配律)
注意除法分配率只有在被除数是两个数的差或和的情况下才能进行分配
Ⅳ 一元二次方程有没有简便的计算方法
公式法是比较快的
方法 一、公式法
1
先判断△=b²-4ac,
若△<0原方程无实根;
2
若△=0,
原方程有两个相同的解为:
X=-b/(2a);
3
若△>0,
原方程的解为:
X=((-b)±√(△))/(2a)。
END
方法二、配方法
先把常数c移到方程右边得:
aX²+bX=-c
将二次项系数化为1得:
X²+(b/a)X=- c/a
3
方程两边分别加上(b/a)的一半的平方得:
X²+(b/a)X +(b/(2a))²=- c/a +(b/(2a))²
4
方程化为:
(b+(2a))²=- c/a +(b/(2a))²
5
①、若- c/a +(b/(2a))²<0,原方程无实根;
②、若- c/a +(b/(2a))² =0,原方程有两个相同的解为X=-b/(2a);
③、若- c/a +(b/(2a))²>0,原方程的解为X=(-b)±√((b²-4ac))/(2a)。
END
方法三、直接开平方法
1
形如(X-m)²=n (n≥0)一元二次方程可以直接开平方法求得解为X=m±√n
END
方法四、因式分解法
1
将一元二次方程aX²+bX+c=0化为如(mX-n)(dX-e)=0的形式可以直接求得解为X=n/m,或X=e/d。
Ⅳ 二次根式计算的方法
加减法
1、同类二次根式
一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。 化简:根号12等于4的根号3
2.合并同类二次根式
把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
3.二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
例如:(1)
用语言叙述为:两个数的算术平方根的商,等于这两个数商的算术平方根。
(5)二次简便运算方法扩展阅读:
运算方法
1、确定运算顺序。
2、灵活运用运算定律。
3、正确使用乘法公式。
4、多数分母有理化要及时。
5、在有些简便运算中也许可以约分,不要盲目有理化(但最后结果必须是分母有理化的)。
6、字母运算时注意隐含条件和末尾括号的注明。
7、提公因式时可以考虑提带根号的公因式。
Ⅵ 二次根式的除法运算时,如何选方法可以使运算更简便
1.二次根式的加减运算: 先把式子中各项二次根式化成最简二次根式,再参照多项式的加减运算,去括号与合并同类二次根式。 2.二次根式的乘法: (1)法则:根a ·根b =根ab (a≥0且b≥0) (2)类型: (i)单项二次根式乘以单项二次根式; (ii)单项二次根式乘以多项二次根式; (iii)多项二次根式乘以多项二次根式 在进行乘法运算时,有时可以应用乘法公式,使计算简便。 3.二次根式的除法: (1)法则:根a/根b =根a/b (a≥0且b>0) (2)类型: (i)单项二次根式除以单项二次根式(应用运算法则计算) (ii)多项二次根式除以单项二次根式(转化为单项二次根式除以单项二次根式) (iii)除数是二个二次根式的和或是一个二次根式与一个有理数的和(把分母有理化进行运算,或与分式的运算类比思考,约去分子,分母中的公因式)。
Ⅶ 二次函数简便运算
你是问的求二次函数的解析式呢,求最值呢,不管是那一类的,只要记住公式,灵活运用。有时还需用到抛物线的对称性
Ⅷ 简便运算的技巧是什么
简便运算方法大全
一、什么是简便运算
“简便运算”是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算。
二、简便运算大全
(一)、交换律(带符号搬家法)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
例:256+78-56=256-56+78=200+78=278
450×9÷50=450÷50×9=9×9=81
说明:适用于加法交换律和乘法交换律。
1/4
(二)、结合律
(1)加括号法
①当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。)
例:345-67-33=345-(67+33)=345-100=245
789-133+33=789-(133-33)=789-100=689
②当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要
2/4
变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10
1200÷48×4=1200÷(48÷4)=1200÷12=100
(2)去括号法
①当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈) (注:去括号是添加括号的逆运算)
②当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)
三、乘法分配律
①分配法 括号里是加或减运算,与另一个数相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
②提取公因式 注意相同因数的提取。
例:35×78+22×35=35×(78+22)=35×100=3500这里35是相同因数。
③注意构造,让算式满足乘法分配律的条件。
3
Ⅸ 谁能告诉我二次根式计算的方法啊
二次根式的化简与计算的策略与方法
二次根式是初中数学教学的难点内容,读者在掌握二次根式有关的概念与性质后,进行二次根式的化简与运算时,一般遵循以下做法:
①先将式中的二次根式适当化简
②二次根式的乘法可以参照多项式乘法进行,运算中要运用公式 ( , )
③对于二次根式的除法,通常是先写成分式的形式,然后通过分母有理化进行运算.
④二次根式的加减法与多项式的加减法类似,即在化简的基础上去括号与合并同类项.
⑤运算结果一般要化成最简二次根式.
化简二次根式的常用技巧与方法
二次根式的化简是二次根式教学的一个重要内容,对于二次根式的化简,除了掌握基本概念和运算法则外,还要掌握一些特殊的方法和技巧,会收到事半功倍的效果,下面通过具体的实例进行分类解析.
1.公式法
【例1】计算① ; ②
【解】①原式
②原式
【解后评注】以上解法运用了“完全平方公式”和“平方差公式”,从而使计算较为简便.
2.观察特征法
【例2】计算:
【方法导引】若直接运用根式的性质去计算,须要进行两次分母有理化,计算相当麻烦,观察原式中的分子与分母,可以发现,分母中的各项都乘以 ,即得分子,于是可以简解如下:
【解】原式 .
【例3】 把下列各式的分母有理化.
(1) ;(2) ( )
【方法导引】①式分母中有两个因式,将它有理化要乘以两个有理化因式那样分子将有三个因式相等,计算将很繁,观察分母中的两个因式如果相加即得分子,这就启示我们可以用如下解法:
【解】①原式
【方法导引】②式可以直接有理化分母,再化简.但是,不难发现②式分子中 的系数若为“1”,那么原式的值就等于“1”了!因此,②可以解答如下:
【解】②原式
3.运用配方法
【例4】化简
【解】原式
【解后评注】注意这时是算术根,开方后必须是非负数,显然不能等于“ ”
4.平方法
【例5】化简
【解】∵
∴ .
【解后评注】对于这类共轭根式 与 的有关问题,一般用平方法都可以进行化简
5.恒等变形公式法
【例6】化简
【方法导引】若直接展开,计算较繁,如利用公式 ,则使运算简化.
【解】原式
6.常值换元法
【例7】化简
【解】令 ,则:
原式
7.裂项法
【例8】化简
【解】原式各项分母有理化得
原式
【例9】化简
【方法导引】这个分数如果直接有理化分母将十分繁锁,但我们不难发现每一个分数的分子等于分母的两个因数之和,于是则有如下简解:
【解】原式
8.构造对偶式法
【例10】化简
【解】构造对偶式,于是没
,
则 , ,
原式
9.由里向外,逐层化简
【解】∵
而
∴原式
【解后评注】对多重根式的化简问题,应采用由里向外,由局部到整体,逐层化简的方法处理.
10.由右到左,逐项化简
【例11】化简
【方法导引】原式从右到左是层层递进的关系,因此从右向左进行化简.
【解】原式
.
【解后评注】平方差公式和整体思想是解答本题的关键,由平方差公式将多重根号逐层脱去,逐项化简,其环节紧凑,一环扣一环,如果不具有熟练的技能是难以达到化简之目的的.
返回
二次根式大小比较的常用方法
二次根式的化简具有极强的技巧性,而在不求近似值的情况下比较两个无理数(即二次根式)的大小同样具有很强的技巧性,对初中生来说是一个难点,但掌握一些常见的方法对它的学习有很大的帮助和促进作用.
1.根式变形法
【例1】比较 与 的大小
【解】将两个二次根式作变形得
,
∵ ,∴ 即
【解后评注】本解法依据是:当 , 时,① ,则 ;②若 ,则
2.平方法
【例2】比较 与 的大小
【解】 ,
∵ ,∴
【解后评注】本法的依据是:当 , 时,如果 ,则 ,如果 ,则 .
3.分母有理化法
通过运用分母有理化,利用分子的大小来判断其倒数的大小.
【例3】比较 与 的大小
【解】∵
又∵
∴
4.分子有理化法
在比较两个无理数的差的大小时,我们通常要将其进行分子有理化,利用分母的大小来判断其倒数的大小.
【例4】比较 与 的大小
【解】∵
又∵
∴ .而
5.等式的基本性质法
【例5】比较 与 的大小
【解法1】∵
又
∴
即
【解后评注】本解法利用了下面两个性质:①都加上同一个数后,两数的大小关系不变.②非负底数和它们的二次幂的大小关系一致.
【解法2】将它们分别乘以这两个数的有理化因式的积,得
又∵ ∴
【解后评注】本解法的依据是:都乘以同一个正数后,两数的大小关系不变.
6.利用媒介值传递法
【例6】比较 与 的大小
【解】∵ ∴
又∵ ∴
∴
【解后评注】适当选择介于两个无理数之间的媒介法,利用数值的传递性进行比较.
7.作差比较法
在对两数进行大小比较时,经常运用如下性质:
① ;②
【例7】比较 与 的大小
【解】∵
∴
8.求商比较法
与求差比较法相对应的还有一种比较的方法,即作商比较法,它运用的是如下性质,当 , 时,则:
① ;②
【例8】比较 与 的大小.
【解】
∵
∴
∴
【解后评注】得上所述,含有根式的无理数大小的比较往往可采用多种方法,来求解.有时还需各种方法配合使用,其中根式变形法,平方法是最基本的,对于具体的问题要作具体分析,以求用最佳的方法解出正确的结果.