A. 带括号的通分和不带括号的通分有什么区别
通分(rection of fractions to a common denominator)根据分数(式)的基本性质,把几个异分母分数(式)化成与原来分数(式)相等的同分母的分数(式)的过程,叫做通分。
带括号的通分和不带括号的通分没有什么区别
你可以先去括号,但是别忘记去括号后每一项都得乘以分母扩大的倍数,这个方法比较麻烦,容易出错。最好的方法是先通分,再去小括号。如果题中没有要求,最后不去小括号也是可以的。
B. 去括号的法则 详细点的
1.括号前是"+"号,把括号和它前面的"+"号去掉后,原括号里各项的符号都不改变。
2.括号前是"-"号,把括号和它前面的"-"号去掉后,原括号里各项的符号都要改变。(改成与原来相反的符号,例:-(x-y)=-x+y
乘除法去括号法则的依据实际是乘法分配律中的一种。
注: 要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.
去括号时应将括号前的符号连同括号一起去掉.
要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.
若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.
遇到多层括号一般由里到外,逐层去括号,也可由外到里.数"-"的个数.
若是遇到n-(-x+y)
那就等于n-(-x)-y=n-y+x
若不去括号或遇到括号可先算括号里的,再算括号外的。
编辑本段去、添括号法则
去括号或添括号,关键要看连接号。
括号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
编辑本段附初中常见法则
有理数的加法运算
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
解一元一次不等式组
大于头来小于尾,大小不一中间找。
大大小小没有解,四种情况全来了。
同向取两边,异向取中间。
中间无元素,无解便出现。
幼儿园小鬼当家,(同小相对取较小)
敬老院以老为荣,(同大就要取较大)
军营里没老没少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
去、添括号法则
去括号或添括号,关键要看连接号。
括号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程
已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式
两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式
二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程
先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法
和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解
一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】 一提(提公因式)二套(套公式)
二次三项式的因式分解
先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
比和比例
两数相除也叫比,两比相等叫比例。
外项积等内项积,等积可化八比例。
分别交换内外项,统统都要叫更比。
同时交换内外项,便要称其为反比。
前后项和比后项,比值不变叫合比。
前后项差比后项,组成比例是分比。
两项和比两项差,比值相等合分比。
前项和比后项和,比值不变叫等比。
正比例与反比例
变化过程商一定,两个变量成正比。
变化过程积一定,两个变量成反比。
判断四式成比例
四式是否成比例,生或降幂先排序。
两端积等中间积,四式便可成比例。
比例中项
成比例的四项中,外项相同会遇到。
有时内项会相同,比例中项少不了。
比例中项很重要,多种场合会碰到。
成比例的四项中,外项相同有不少。
有时内项会相同,比例中项出现了。
同数平方等异积,比例中项无处逃。
求定义域
求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次幂。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次幂。
限制条件不唯一,不等式组求解集。
C. 数学简便计算,有哪几种方法
数学简便计算方法:
一、运用乘法分配律简便计算
简便计算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
D. 求通分,约分,快捷简便的方法
通分的关键是确定几个分式的最简公分母,其步骤如下:
1.分别列出各分母的约数;
2.将各分母约数相乘,若有公约数只乘一次,所得结果即为各分母最小公倍数;
3.凡出现的字母或含有字母的因式为底的幂的因式都要取;
4.相同字母或含字母的因式的幂的因式取指数最大的;
5.将上述取得的式子都乘起来,就得到了最简公分母;
步骤
1. 先求出原来几个分数(式)的分母的最简公分母;
2. 根据分数(式)的基本性质,把原来分数(式)化成以最简公分母为分母的分数(式)。
依据
通分和约分的依据都是分数(式)的基本性质:
分数(式)的分子、分母同乘以或除以一个不等于零的数(式),分数(式)的大小不变。分母不变,对方的分子分母交叉相乘
E. 如何化简和去括号求教
先算括号里面的然后就可以把括号给去了。
F. 分式通分,分子带有小括号的去括号吗
可以先去括号,但是别忘记去括号后每一项都得乘以分母扩大的倍数,这个方法比较麻烦,容易出错。最好的方法是先通分,再去小括号。如果题中没有要求,最后不去小括号也是可以的。
G. 关于去括号
括号前是+号,把括号与他前面的+号去掉后,原括号里各项的符号都不改变
括号前是-号,把括号与他前面的-号去掉后,原括号里各项的符号都要改变
可以代成数字理解:
6-(5-1)=6-5+1
6+(5-1)=6+5-1
不是吗?
代字母也一样
a-(b-c)=a-b+c
a+(b-c)=a+b-c
H. 在线等高手回答
先去括号~其实也不能这样说,一般是先去掉括号,再通分,但是不排除有先通分去分母的简单方法~主要是对题而言··
I. 简便运算去括号口诀
去、添括号法则: 去括号、添括号,关键看符号, 括号前面是正号,去、添括号不变号, 括号前面是负号,去、添括号都变号。