导航:首页 > 知识科普 > python魔术方法怎么理解

python魔术方法怎么理解

发布时间:2022-08-09 03:39:52

Ⅰ 请问怎么学习Python

这里整理了一份Python开发的学习路线,可按照这份大纲来安排学习计划~

第一阶段:专业核心基础

阶段目标:

1. 熟练掌握Python的开发环境与编程核心知识

2. 熟练运用Python面向对象知识进行程序开发

3. 对Python的核心库和组件有深入理解

4. 熟练应用SQL语句进行数据库常用操作

5. 熟练运用Linux操作系统命令及环境配置

6. 熟练使用MySQL,掌握数据库高级操作

7. 能综合运用所学知识完成项目

知识点:

Python编程基础、Python面向对象、Python高级进阶、MySQL数据库、Linux操作系统。

1、Python编程基础,语法规则,函数与参数,数据类型,模块与包,文件IO,培养扎实的Python编程基本功,同时对Python核心对象和库的编程有熟练的运用。

2、Python面向对象,核心对象,异常处理,多线程,网络编程,深入理解面向对象编程,异常处理机制,多线程原理,网络协议知识,并熟练运用于项目中。

3、类的原理,MetaClass,下划线的特殊方法,递归,魔术方法,反射,迭代器,装饰器,UnitTest,Mock。深入理解面向对象底层原理,掌握Python开发高级进阶技术,理解单元测试技术。

4、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,约束,视图,存储过程,函数,触发器,事务,游标,PDBC,深入理解数据库管理系统通用知识及MySQL数据库的使用与管理。为Python后台开发打下坚实基础。

5、Linux安装配置,文件目录操作,VI命令,管理,用户与权限,环境配置,Docker,Shell编程Linux作为一个主流的服务器操作系统,是每一个开发工程师必须掌握的重点技术,并且能够熟练运用。

第二阶段:PythonWEB开发

阶段目标:

1. 熟练掌握Web前端开发技术,HTML,CSS,JavaScript及前端框架

2. 深入理解Web系统中的前后端交互过程与通信协议

3. 熟练运用Web前端和Django和Flask等主流框架完成Web系统开发

4. 深入理解网络协议,分布式,PDBC,AJAX,JSON等知识

5. 能够运用所学知识开发一个MiniWeb框架,掌握框架实现原理

6. 使用Web开发框架实现贯穿项目

知识点:

Web前端编程、Web前端高级、Django开发框架、Flask开发框架、Web开发项目实战。

1、Web页面元素,布局,CSS样式,盒模型,JavaScript,JQuery与Bootstrap掌握前端开发技术,掌握JQuery与BootStrap前端开发框架,完成页面布局与美化。

2、前端开发框架Vue,JSON数据,网络通信协议,Web服务器与前端交互熟练使用Vue框架,深入理解HTTP网络协议,熟练使用Swagger,AJAX技术实现前后端交互。

3、自定义Web开发框架,Django框架的基本使用,Model属性及后端配置,Cookie与Session,模板Templates,ORM数据模型,Redis二级缓存,RESTful,MVC模型掌握Django框架常用API,整合前端技术,开发完整的WEB系统和框架。

4、Flask安装配置,App对象的初始化和配置,视图函数的路由,Request对象,Abort函数,自定义错误,视图函数的返回值,Flask上下文和请求钩子,模板,数据库扩展包Flask-Sqlalchemy,数据库迁移扩展包Flask-Migrate,邮件扩展包Flask-Mail。掌握Flask框架的常用API,与Django框架的异同,并能独立开发完整的WEB系统开发。

第三阶段:爬虫与数据分析

阶段目标:

1. 熟练掌握爬虫运行原理及常见网络抓包工具使用,能够对HTTP及HTTPS协议进行抓包分析

2. 熟练掌握各种常见的网页结构解析库对抓取结果进行解析和提取

3. 熟练掌握各种常见反爬机制及应对策略,能够针对常见的反爬措施进行处理

4. 熟练使用商业爬虫框架Scrapy编写大型网络爬虫进行分布式内容爬取

5. 熟练掌握数据分析相关概念及工作流程

6. 熟练掌握主流数据分析工具Numpy、Pandas和Matplotlib的使用

7. 熟练掌握数据清洗、整理、格式转换、数据分析报告编写

8. 能够综合利用爬虫爬取豆瓣网电影评论数据并完成数据分析全流程项目实战

知识点:

网络爬虫开发、数据分析之Numpy、数据分析之Pandas。

1、爬虫页面爬取原理、爬取流程、页面解析工具LXML,Beautifulfoup,正则表达式,代理池编写和架构、常见反爬措施及解决方案、爬虫框架结构、商业爬虫框架Scrapy,基于对爬虫爬取原理、网站数据爬取流程及网络协议的分析和了解,掌握网页解析工具的使用,能够灵活应对大部分网站的反爬策略,具备独立完成爬虫框架的编写能力和熟练应用大型商业爬虫框架编写分布式爬虫的能力。

2、Numpy中的ndarray数据结构特点、numpy所支持的数据类型、自带的数组创建方法、算术运算符、矩阵积、自增和自减、通用函数和聚合函数、切片索引、ndarray的向量化和广播机制,熟悉数据分析三大利器之一Numpy的常见使用,熟悉ndarray数据结构的特点和常见操作,掌握针对不同维度的ndarray数组的分片、索引、矩阵运算等操作。

3、Pandas里面的三大数据结构,包括Dataframe、Series和Index对象的基本概念和使用,索引对象的更换及删除索引、算术和数据对齐方法,数据清洗和数据规整、结构转换,熟悉数据分析三大利器之一Pandas的常见使用,熟悉Pandas中三大数据对象的使用方法,能够使用Pandas完成数据分析中最重要的数据清洗、格式转换和数据规整工作、Pandas对文件的读取和操作方法。

4、matplotlib三层结构体系、各种常见图表类型折线图、柱状图、堆积柱状图、饼图的绘制、图例、文本、标线的添加、可视化文件的保存,熟悉数据分析三大利器之一Matplotlib的常见使用,熟悉Matplotlib的三层结构,能够熟练使用Matplotlib绘制各种常见的数据分析图表。能够综合利用课程中所讲的各种数据分析和可视化工具完成股票市场数据分析和预测、共享单车用户群里数据分析、全球幸福指数数据分析等项目的全程实战。

第四阶段:机器学习与人工智能

阶段目标:

1. 理解机器学习相关的基本概念及系统处理流程

2. 能够熟练应用各种常见的机器学习模型解决监督学习和非监督学习训练和测试问题,解决回归、分类问题

3. 熟练掌握常见的分类算法和回归算法模型,如KNN、决策树、随机森林、K-Means等

4. 掌握卷积神经网络对图像识别、自然语言识别问题的处理方式,熟悉深度学习框架TF里面的张量、会话、梯度优化模型等

5. 掌握深度学习卷积神经网络运行机制,能够自定义卷积层、池化层、FC层完成图像识别、手写字体识别、验证码识别等常规深度学习实战项目

知识点:

1、机器学习常见算法、sklearn数据集的使用、字典特征抽取、文本特征抽取、归一化、标准化、数据主成分分析PCA、KNN算法、决策树模型、随机森林、线性回归及逻辑回归模型和算法。熟悉机器学习相关基础概念,熟练掌握机器学习基本工作流程,熟悉特征工程、能够使用各种常见机器学习算法模型解决分类、回归、聚类等问题。

2、Tensorflow相关的基本概念,TF数据流图、会话、张量、tensorboard可视化、张量修改、TF文件读取、tensorflow playround使用、神经网络结构、卷积计算、激活函数计算、池化层设计,掌握机器学习和深度学习之前的区别和练习,熟练掌握深度学习基本工作流程,熟练掌握神经网络的结构层次及特点,掌握张量、图结构、OP对象等的使用,熟悉输入层、卷积层、池化层和全连接层的设计,完成验证码识别、图像识别、手写输入识别等常见深度学习项目全程实战。

Ⅱ 求python大神

python中的[]运算符通过重载__getitem__和__setitem__两个魔术方法实现。s[key]相当于调用s.__getitem__(key),s[key] = value相当于调用s.__setitem__(key, value)。

Ⅲ python的五个特点

python的五个特点:

1、简单易学

python是一种代表简单主义思想的语言,阅读一个良好的python程序就感觉像是在读英语段落一样,尽管这个英语段的语法要求非常严格。python最大的优点之一是具有伪代码的本质,它使我们在开发python程序时,专注的是解决问题,而不是搞明白语言本身。

2、面向对象

python既支持面向过程编程,也支持面向对象编程。在面向过程的语言中,程序是由过程或仅仅是可重用代码的函数构建起来的。在面向对象的语言中,程序是由数据和功能组合而成的对象构建起来的。

与其他主要的语言如C++和Java相比,python以一种非常强大又简单的方式实现面向对象编程。

3、可移植性

由于python的开源本质,它已经被移植在许多平台上。如果小心地避免使用依赖于系统的特性,那么所有python程序无需修改就可以在下述任何平台上运行,如:Linux、Windows、FreeBSD、Macintosh、Solaris、OS/2、Amiga、AROS、QNX、VMS、Windows
CE,甚至还有PocketPC、Symbian以及Google基于Linux开发的android平台。

4、解释性

一个用编译性语言如C或C++写的程序可以从源文件转换到一个计算机使用的语言。这个过程通过编译器和不同的标记、选项完成。当运行程序的时候,连接转载器软件把程序从硬盘复制到内存中并且运行。

而python语言写的程序不需要编译成二进制代码,可以直接从源代码运行程序。在计算机内部,python解释器把源代码转换成称为字节码的中间形式,然后再把它翻译成计算机使用的机器语言并运行。

事实上,由于不再担心如何编译程序,如何确保连接转载正确地库等,这一切使得使用python变得更为简单。

5、开源

python是FLOSS之一。简单地说,你可以自由地发布这个软件的拷贝,阅读它的源代码,对它做改动,把它的一部分用于新的自由软件中。

FLOSS是基于一个团体分享知识的概念,这是为什么python如此优秀的原因之一;它是由一群希望看到一个更加优秀的python的人创造并经常改进这的。

Ⅳ Python课程内容都学习什么啊

贺圣军Python轻松入门到项目实战(经典完整版)(超清视频)网络网盘

链接: https://pan..com/s/1C9k1o65FuQKNe68L3xEx3w

提取码: ja8v 复制这段内容后打开网络网盘手机App,操作更方便哦

若资源有问题欢迎追问~

Ⅳ python sort()用法

Python中的sort()方法用于数组排序,下面以实例形式对此加以详细说明:

一、基本形式

列表有自己的sort方法,其对列表进行原址排序,既然是原址排序,那显然元组不可能拥有这种方法,因为元组是不可修改的。

x=[4,6,2,1,7,9]x.sort()
printx#[1,2,4,6,7,9]

如果需要一个排序好的副本,同时保持原有列表不变,怎么实现呢

x=[4,6,2,1,7,9]
y=x[:]
y.sort()
printy#[1,2,4,6,7,9]
printx#[4,6,2,1,7,9]

注意:y = x[:] 通过分片操作将列表x的元素全部拷贝给y,如果简单的把x赋值给y:y = x,y和x还是指向同一个列表,并没有产生新的副本。

另一种获取已排序的列表副本的方法是使用sorted函数:

x=[4,6,2,1,7,9]
y=sorted(x)
printy#[1,2,4,6,7,9]
printx#[4,6,2,1,7,9]

sorted返回一个有序的副本,并且类型总是列表,如下:

printsorted('Python')#['P','h','n','o','t','y']

二、自定义比较函数

可以定义自己的比较函数,然后通过参数传递给sort方法:

defcomp(x,y):
ifx<y:
return1
elifx>y:
return-1
else:
return0
nums=[3,2,8,0,1]
nums.sort(comp)
printnums#降序排序[8,3,2,1,0]
nums.sort(cmp)#调用内建函数cmp,升序排序
printnums#降序排序[0,1,2,3,8]

三、可选参数

sort方法还有两个可选参数:key和reverse
1、key在使用时必须提供一个排序过程总调用的函数:

x=['mmm','mm','mm','m']
x.sort(key=len)
printx#['m','mm','mm','mmm']

2、reverse实现降序排序,需要提供一个布尔值:

y=[3,2,8,0,1]
y.sort(reverse=True)
printy#[8,3,2,1,0]

Ⅵ Python如何实现单例模式

有些时候你的项目中难免需要一些全局唯一的对象,这些对象大多是一些工具性的东西,在Python中实现单例模式并不是什么难事。以下总结几种方法:
使用类装饰器
使用装饰器实现单例类的时候,类本身并不知道自己是单例的,所以写代码的人可以不care这个,只要正常写自己的类的实现就可以,类的单例有装饰器保证。
def singleton(cls):
instances = {}
def _wrapper(*args, **kwargs):
if cls not in instances:
instances[cls] = cls(*args, **kwargs)
return instances[cls]
return _wrapper
你会发现singleton装饰器内部使用了一个dict。当然你也可以用其他的方式,不过以下的实现是错误的:
def singleton(cls):
_instance = None #外部作用域的引用对于嵌套的内部作用域是只读的
def _wrapper(*args, **kwargs):
if _instance is None: #解释器会抛出"UnboundLocalError: ...referenced before assignment"
_instance = cls(*args, **kwargs) #赋值行为使解释器将"_instance"看作局部变量
return _instance
return _wrapper
使用元类(__metaclass__)和可调用对象(__call__)
Python的对象系统中一些皆对象,类也不例外,可以称之为”类型对象”,比较绕,但仔细思考也不难:类本身也是一种对象,只不过这种对象很特殊,它表示某一种类型。是对象,那必然是实例化来的,那么谁实例化后是这种类型对象呢?也就是元类。
Python中,class关键字表示定义一个类对象,此时解释器会按一定规则寻找__metaclass__,如果找到了,就调用对应的元类实现来实例化该类对象;没找到,就会调用type元类来实例化该类对象。
__call__是Python的魔术方法,Python的面向对象是”Duck type”的,意味着对象的行为可以通过实现协议来实现,可以看作是一种特殊的接口形式。某个类实现了__call__方法意味着该类的对象是可调用的,可以想象函数调用的样子。再考虑一下foo=Foo()这种实例化的形式,是不是很像啊。结合元类的概念,可以看出,Foo类是单例的,则在调用Foo()的时候每次都返回了同样的对象。而Foo作为一个类对象是单例的,意味着它的类(即生成它的元类)是实现了__call__方法的。所以可以如下实现:
class Singleton(type):
def __init__(cls, name, bases, attrs):
super(Singleton, cls).__init__(name, bases, attrs)
cls._instance = None
def __call__(cls, *args, **kwargs):
if cls._instance is None
# 以下不要使用'cls._instance = cls(*args, **kwargs)', 防止死循环,
# cls的调用行为已经被当前'__call__'协议拦截了
# 使用super(Singleton, cls).__call__来生成cls的实例
cls._instance = super(Singleton, cls).__call__(*args, **kwargs)
return cls._instance

class Foo(object): #单例类
__metaclass__ = Singleton

>>>a = Foo()
>>>b = Foo()
>>>a is b
>>>True
>>>a.x = 1
>>>b.x
>>>1
使用__new__
__init__不是Python对象的构造方法,__init__只负责初始化实例对象,在调用__init__方法之前,会首先调用__new__方法生成对象,可以认为__new__方法充当了构造方法的角色。所以可以在__new__中加以控制,使得某个类只生成唯一对象。具体实现时可以实现一个父类,重载__new__方法,单例类只需要继承这个父类就好。
class Singleton(object):
def __new__(cls, *args, **kwargs):
if not hasattr(cls, '_instance'):
cls._instance = super(Singleton, cls).__new__(cls, *args, **kwargs)
return cls._instance

class Foo(Singleton): #单例类
a = 1

Ⅶ python 魔术方法什么意思

魔术方法就跟语法糖差不多

阅读全文

与python魔术方法怎么理解相关的资料

热点内容
什么方法手机不会烫 浏览:499
gitv连接wifi方法 浏览:364
身高突增的训练方法 浏览:449
跳远训练方法及手段 浏览:313
竖的超轻粘土做方法怎么做 浏览:80
抖音手机上传视频方法 浏览:141
领巾的使用方法 浏览:376
清理牛羊头蹄子的方法视频 浏览:316
报税处理方法视频 浏览:911
幼儿简单的放松身体的方法 浏览:178
法士特小十挡取力器安装方法 浏览:141
脑梗后遗症锻炼方法 浏览:545
米6怎么切换网络设置在哪里设置方法 浏览:103
如何喂蛇的方法 浏览:559
北京平菇种植方法哪里找 浏览:347
语音网络连接方法 浏览:171
二维码使用方法 浏览:750
退火最简单方法 浏览:268
纠正罗圈腿最佳方法 浏览:687
划痕蜡的使用方法 浏览:520