导航:首页 > 解决方法 > 问题解决的策略与方法

问题解决的策略与方法

发布时间:2022-12-10 05:01:01

① 大学心理学 问题解决策略都有哪些请就其中的一种举例进行说明。

问题解决的策略主要有以下三种:

(1)尝试错误:就是通过简单地尝试不同的反应来发现正确的答案,当通常在没有足够的信息来发现切实可行的,系统的解决方法时,就采取这种方法,他可能不会有效,甚至不能解决问题,但在某些情况下只能这么做。

补充:问题解决:使用信息达到目标的一种认知过程,而这种过程受到某种障碍的阻挠。

当人们开始解决一个问题时,起始状态和目标转台是不同的,否则就不叫问题了。人们在解决问题的时候会用到算子,算子很有多中,他是改变当前问题状态的一种操作。一个人关于可利用的算子的经验取决于它的教育和经验。纽厄尔和西蒙用问题空间的概念对问题解决进行描述,在他们看来。问题解决就是在问题空间中进行搜索,以找到一条从初始装到目标状态的通路。



参考书籍:张钦《普通心理学》

② 常用的解决问题的策略有哪些

解决问题策略的学习,和解决问题的学习是统一的。在小学数学学习中,往往通过例题的学习来使学生掌握解决问题的策略,又通过练习题的应用,使学生掌握解决问题的策略。可以说解决问题的策略是数学例题学习的核心,作为一名教师要知道小学数学中常用的解决问题的策略有哪些?下面尝试列举一二。

模拟操作是通过探索性的动手操作活动来模拟问题情境,从而获得解决问题的一种策略。通过这种策略的训练,可以培养学生的创造性思维。

比如,在解决火车过桥问题时,让学生将文具盒当做桥,将自己用的笔当做火车,自己模拟火车过桥。通过类似问题的模拟,把这种不清晰的数量关系很直观地表现出来,这种问题就容易理解解决了。

当然,解决问题的策略还有很多,在解决一个问题时,往往是多种策略的综合运用。我们在解决问题时,要重视渗透解决问题的策略,进而逐步提升学生解决问题的能力。

③ 常见解决问题的策略有( )、( )、( )

画图的策略、推理的策略、尝试调整的策略,模拟操作的策略。

一、画图的策略。

由于小学生认知水平的局限,他们对符号、运算性质的推理可能会发生困难,在解决问题时,引导他们自己在纸上涂一涂、画一画,可以拓展解题思路,找到解题关键,领悟解题方法。因此,画图应该是学生们应该掌握的一种基本的解题策略,尤其用算术法解题的小学生来说,非常重要。

主要是因为这种方法直观、形象,能够帮助学生将抽象的数学问题具体化,复杂的问题简单化。可以弥补小学生思维能力的不足,逐步提升其思维水平。

常用的画图方法有:直观图、线段图、示意图、思维导图、集合图等。

二、推理的策略。

数学教学的价值追求就是学生思维的发展,数学教育的最高境界就是培养人的思维方式。而推理是数学的基本思维方法,也是学生数学学习中经常使用的思维方式。

推理包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比得到某些结果。演绎推理是从定义、公式、法则等出发,进行证明与计算。

在小学数学问题解决的过程中,更多采用合情推理。比如常用的假设法、设数法等。以往数学教学中常说的“分析法”与“综合法”,都是简单的推理。

三、尝试调整的策略。

尝试的策略,简单地说就是你不知道从哪儿开始的时候,可以先猜一猜。猜测的结果如果合理但不合乎要求,再把结果放到问题中去考虑,进一步调整、寻找答案。

小学数学学习中常用的表格法、枚举法、筛选法等,其实就是尝试调整的策略。比如我们在解决鸡兔同笼问题时,用列举鸡和兔的只数算对应腿数,就是这种策略。

四、模拟操作的策略。

模拟操作是通过探索性的动手操作活动来模拟问题情境,从而获得解决问题的一种策略。通过这种策略的训练,可以培养学生的创造性思维。

比如,在解决火车过桥问题时,让学生将文具盒当做桥,将自己用的笔当做火车,自己模拟火车过桥。通过类似问题的模拟,把这种不清晰的数量关系很直观地表现出来,这种问题就容易理解解决了。

其他策略:

1、简化策略

所谓简化就是把复杂的问题简单化,我们在解决问题的过程可能会发现有些结合实际的问题,不管在语言的表述还是信息的传递上可能要说一大堆有关情境的事,我们怎么样把这个生活中的实际问题,把它抽象成数学问题,简化策略就是指在解决问题过程中,先抛开问题的细节,直接抓住问题的关键信息,将抽象的问题简化成简单的形式,解决简化了的问题,再解决复杂的问题,这就是一个简化的过程。

正如着名数学家华罗庚所说的“善于‘退’,足够地‘退’,‘退’到最原始而不失去重要性的地方,是学好数学的一个诀窍”。运用简化策略除了可以将复杂的问题明了、简洁,还可以运用简化策略将陌生的问题转化为熟悉的问题,使我们便于抓住问题的关键部分进行思考从而解决问题。

2、倒推策略

倒推策略也叫还原策略,就是在解决问题时,有些问题用顺向推理的方法很难解答,如果从问题的结果出发,从后往前逐步推理,问题很容易就解决了。这种从问题出发推理寻求解题途径的方法就是逆推法。

在解决实际问题的过程中让学生了解适合用这个策略来解决问题的特点,学会用“逆推”的策略解决问题的思考方法,增强解决问题的策略的意识,获得解决问题的成功体验,提高学好数学的信心。例如:男生比女生的2倍多10人,男生有50人,求女生有多少人?就可以使用倒推的策略。

3、类比推理策略

当学生面临新问题时,教师及时启发学生用他们所熟悉的知识经验对新问题进行分析、比较,发现其内在联系,从而获得新问题的解决方法。引导学生类比,进行推测和引申,串联了知识点,拓宽了知识面,强化了解决问题的能力。

就如同搭桥引渡,使学生温故知新,能帮助学生有效的认识事物的基本规律,更好地理解问题、提高分析问题和解决问题的能力。

4、转化策略

转化是小学生在学习和解决问题时常用的一种策略,所谓转化就是一个人运用已有的知识的、已经习得的经验,将一些新问题转化成旧有问题进而解答的过程,也就是人的思维方式转变的过程。学生运用转化策略,不仅可以熟练运用旧有知识,又可将新问题的解决方式纳入到旧有的策略中,以形成更完整的知识体系。

曹冲称象的方法就是一个很典型的转化策略。例如:一支钢笔和三支圆珠笔的价钱相等,小明买了5支钢笔和4支铅笔,一共用了38元,求每支钢笔和铅笔各多少元?就可以运用转化的策略来解决,可以把钢笔转化为铅笔,就很容易解决了。

④ 解决问题的策略与方法(急需)

1、画图的策略

根据孩子的年龄特点,他们对符号、运算性质的推理可能会发生一些困难,如果适时地让孩子们自己在纸上涂一涂、画一画,可以拓展学生解决问题的思路,帮助他们找到解决问题的关键。因为画图比较直观,通过画图能够把一些抽象的数学问题具体化,把一些复杂的问题简单化,从而有效地解决问题。

(1)、线段图。

线段图在解答分数问题时的作用是显而易见的,教过小学高年级数学的教师都对运用线段图来解答分数问题情有独钟,但线段图在解决其它类型的问题时同样也会发挥其直观、形象的作用。

(2)、连线图。

在解决诸如互相通电话、上下衣搭配、比赛场上有多少场比赛等问题时,运用连线的方法解答既直观又快捷还不容易出错,可以说是解答此类问题的最佳选择策略。

(3)、范围图

在解决长方形长不变,而宽减少,面积减少,求原长方形面积;长方形长增加或宽增加,面积增加,求原长方形面积;长方形长增加,宽增加,求增加面积。可以通过画范围图,就比较直观,不容易出错。

2、列表、尝试的策略。

在解决问题的过程当中,教师可以引导学生将问题的条件信息用表格的形式把它列举出来,起到事半功倍的效果。如在解决诸如租船、租车、购票或得分问题以及解决比较困难的鸡兔同笼问题时经常用到。

3、借助手来学习的策略。

每个人都有两只手,10个手指头,5个手指4个空(间隔),10个手指就有9个间隔,首先使学生明确手指数与间隔数的关系,明确了这两者之间的关系后,就可以用手来解决植树、锯木头、上楼梯、钟打点等问题。例如:小红家住5楼,每层楼之间有20个台阶,从1楼到5楼要走多少个台阶?手一伸,5个手指代表5层楼,共4个间隔,4×20=80个台阶,就不会出现5×20=100个台阶的错误了。用手来帮我们解决问题的策略可以说是简便易行,应用广泛。

4、模拟操作策略。

模拟操作是通过探索性的动手操作活动,来模拟问题情境,从而获得问题解决的一种策略。学生是通过自己探索的过程,将需要解决的问题,转化为一个已知的问题来进行推导性的研究。通过这种开发性的操作的策略的训练,不仅能够使学生获得问题的解决,而且在这个过程当中,也能培养学生的创造性思维。

5、推理的策略。

除了以上介绍的这些策略外,我们以前经常用到的从问题出发思考问题(可称作逆推的策略),从条件出发思考问题(可称作顺推的策略)既是过去我们经常用到的“分析法”和“综合法”,这些方法都可以看作推理的策略。

事实上,当一个数学问题呈现在面前时,其思维的触须是多端的。以上所述的几种问题解决的策略只是平时常用的导引途径,为了能够更有效地提高数学问题解决的能力,教师还要引导学生在数学问题解决的实践中注意不断思索探求、逐步积累解题经验,以掌握更多、更具体的解题方法和思维策略。

教案版

⑤ 小学数学问题解决策略有几种

小学生数学问题解决策略有:作图解决问题的策略、列举信息的策略、动手做的策略、尝试的策略等。教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去。
1、作图解决问题的策略
线段图在解答分数问题时的作用是显而易见,教过小学高年级数学的教师都会对运用线段图来解答分数问题情有独钟,但线段图在解决其他类型的问题同样也会发挥其直观、形象作用。
2、列举信息的策略
枚举筛选法是指解某些数学题时,有时要根据题目的一部分条件,先把可能的答案一一列举出来,然后再根据另一部分条件检验,筛选出题目的答案。数学问题的解决过程既是一种不断地变更问题的过程,也是一种不断试错与筛选的过程。
3、动手做的策略
这是一种通过探索性动手操作而获得问题解决的策略。在学习空间与图形这一块内容时,动手做的策略就会显得很有效。如在讲授认识平行四边形这一新课时,教学目标就是要让学生能够自己动手操作探索出平行四边形的基本特征两条对边互相平行且相等。需要注意的是,在学生动手之前,教师不要给太多的暗示,要把实际操作策略的选择权留给学生,让学生在自主探索中实现操作策略的多样化。
4、尝试的策略
美国着名心理学家桑代克曾把人和动物的学习定义为刺激与反应之间的联结,联结是通过盲目尝试、逐步减少错误而形成的,即通过试误形成的。桑代克的尝试--错误说早在一百年前就提出来了,也被大多数人所认同。这里的尝试策略也就是多种方法的“试误”过程。不同的学生有着不同的数学水平,因此,要允许学生以不同的方式去学习数学。教师所要做的,就是要充分尊重每一个学生的个体差异,让学生采用尝试的策略去解决问题。

⑥ 利用大学所学的心理学知识说一下 问题解决的策略有哪些

答:影响问题解决的心理因素:

(1)对问题的表征方式,问题的表征是我们在头脑中对于问题的描述和理解,对问题表征是否完整正确,这是大大地影响着问题解决。

(2)定势:是指重复先前的心理操作引起的对于活动的准备状态,即人们在已有的知识经验的影响下,以某种特定方式解决问题的倾向。在某些情况下,思维定式可以很快地解决问题,但有可能阻碍新问题的解决。

(3)功能固着:它是指人们把某种功能赋予某个物体的倾向,某些物体的功能在头脑中被过于强化,以至于人们看不到他的新功能,这对问题解决有很重要的影响。

(4)动机、情绪,在一定限度内,动机强度和解决问题的效率成正比,但是动机太强或太弱都会削弱问题解决的效果。中等强度的动机才能使人们的思维活动有较大的灵活性。消极情绪不利于问题的解决,乐观平静的情绪有利于问题的解决。

(5)问题解决的策略:1)尝试错误:就是通过简单地尝试不同的反应来发现正确的答案,当通常在没有足够的信息来发现切实可行的,系统的解决方法时,就采取这种方法

2)算法策略:就是一个保证能解决问题的系统程序,对于任何一个有答案的问题来说,算法程序就是在问题空间中搜索所有可能的解决问题的方法,知道找到一种有效的方法解决问题。算法策略虽然保证能解决问题,但是效率低下。

3)启发式策略:手段目的分析;爬山法;逆向搜索:从问题的目标状态出发,以扎到一条通往初始状态的通路。这对于解决几何证明你个问题十分有效

参考书籍:彭聃龄《普通心理学》

阅读全文

与问题解决的策略与方法相关的资料

热点内容
髋关节痛有哪些治疗方法 浏览:635
常用的药敏试验方法有哪些 浏览:663
美术课堂组织方法研究前期调查表 浏览:511
鼻窦炎好的治疗方法 浏览:588
如何保护和发展眼睛视力的方法 浏览:151
各方法之间对比分析 浏览:434
红菇最佳食用方法 浏览:158
放线找水平线最简单的方法视频 浏览:948
计算特别多0有简单方法吗 浏览:980
剩余可动油计算方法 浏览:715
防范木马和病毒的方法有哪些 浏览:785
科比膝盖受伤用什么方法 浏览:667
肩晒伤后痒疼怎么处理方法 浏览:832
压力传感器固定方法图片 浏览:563
脓性分泌物可选用哪些处理方法 浏览:519
雕刻神仙鱼的方法有哪些 浏览:890
打开手机屏保的方法 浏览:317
元宝简单方法视频 浏览:708
小车无损安装方法 浏览:254
龟头敏感脱敏治疗方法 浏览:47