导航:首页 > 解决方法 > 机器三维检测方法

机器三维检测方法

发布时间:2022-09-10 03:01:26

1. 三维扫描仪的测量方法分类

时差测距,或称'飞时测距'的3D激光扫描仪是一种主动式的扫描仪,其使用激光光探测目标物。图中的光达即是一款以时差测距为主要技术的激光测距仪。此激光测距仪确定仪器到目标物表面距离的方式,是测定仪器所发出的激光脉冲往返一趟的时间换算而得。即仪器发射一个激光光脉冲,激光光打到物体表面后反射,再由仪器内的探测器接收信号,并记录时间。由于光速 为一已知条件,光信号往返一趟的时间即可换算为信号所行走的距离,此距离又为仪器到物体表面距离的两倍,故若令 为光信号往返一趟的时间,则光信号行走的距离等于。显而易见的,时差测距式的3D激光扫描仪,其量测精度受到我们能多准确地量测时间 ,因为大约 3.3 皮秒;微微秒)的时间,光信号就走了 1 公厘。
激光测距仪每发一个激光信号只能测量单一点到仪器的距离。因此,扫描仪若要扫描完整的视野(field of view),就必须使每个激光信号以不同的角度发射。而此款激光测距仪即可通过本身的水平旋转或系统内部的旋转镜(rotating mirrors)达成此目的。旋转镜由于较轻便、可快速环转扫描、且精度较高,是较广泛应用的方式。典型时差测距式的激光扫描仪,每秒约可量测10,000到100,000个目标点。 三角测距3D激光扫描仪,也是属于以激光光去侦测环境情的主动式扫描仪。相对于飞时测距法,三角测距法3D激光扫描仪发射一道激光到待测物上,并利用摄影机查找待测物上的激光光点。随着待测物(距离三角测距3D激光扫描仪)距离的不同,激光光点在摄影机画面中的位置亦有所不同。这项技术之所以被称为三角型测距法,是因为激光光点、摄影机,与激光本身构成一个三角形。在这个三角形中,激光与摄影机的距离、及激光在三角形中的角度,是我们已知的条件。通过摄影机画面中激光光点的位置,我们可以决定出摄影机位于三角形中的角度。这三项条件可以决定出一个三角形,并可计算出待测物的距离。在很多案例中,人们以一线形激光条纹取代单一激光光点,将激光条纹对待测物作扫描,大幅加速了整个测量的进程。
手持激光扫描仪通过上述的三角形测距法建构出3D图形:通过手持式设备,对待测物发射出激光光点或线性激光光。 以两个或两个以上的侦测器(电耦组件 或 位置传感组件)测量待测物的表面到手持激光产品的距离,通常还需要借助特定参考点-通常是具黏性、可反射的贴片-用来当作扫描仪在空间中定位及校准使用。这些扫描仪获得的数据,会被导入电脑中,并由软件转换成3D模型。手持式激光扫描仪,通常还会综合被动式扫描(可见光)获得的数据(如待测物的结构、色彩分布),建构出更完整的待测物3D模型。 个别厂商为了不当竞争目的,有时把结构光的三种具体形式(激光点,激光线,结构光栅)的扫描仪区分为一、二、三代。造成许多用户认识和选型上的误导和歧义。这是故意而为的错误,是严重的不当竞争和非法行为。
结构光的三种具体形式(激光点,激光线,结构光栅),其发展的主要目的,是针对不同的用途和不同的精度等级及工作效率的需求,而开发的产品。其使用和目的均有各自得市场,但随科技的发展,这几种产品,在用途上均会有部分交集的地方。比如,目前,国外百万左右的照相式扫描仪,也可以提供橄榄核级的细节精密测量。这就覆盖激光点线扫描仪的一些市场。 再如,国外高精密的激光线扫描仪,目前测量精度可到0.01微米。国内现在激光线扫描仪,其精度也可以做到0.05微米。那么,激光点扫描仪和激光线扫描仪相比,在精度上也没有了明显优势。但,显然,激光点,线扫描仪的市场与结构光栅扫描仪的市场,还是有明显区别的。这个区别就是通常在精度上,相差10倍或更多。
我们在选型和区分上。重点看的就是实际精度。这个是第一指标。举例:个别厂商,在销售上误导客户,客户需要测量皮纹,确买了一台照相式扫描仪。结果造成实际根本不能用。 扫描仪厂牌不同,型号不同。结构形式不同。其必然有其优势和劣势的地方。所以其测量精度等级各有不同。用户选型时,除了看标注的精度参数之外,还要通过实测产品样件,来获得正确评价。并且一般需要把精度指标写入合同中,以避免不法厂商的欺骗行为。

2. 如何实现机器视觉的3d测量

更多内容欢迎搜索:Eyevision软件中国技术服务中心—上海倍吉电子科技有限公司。 原理解析结构光3D测量技术是一种非接触式主动光学三维测量技术,该技术基本原理是通过投影一束编码光到待测物体表面,当物体表面形貌发生变化时,编码光的分布将受到物体高度的调制,再利用相机获取物体表面图像,并对获取的图片进行解调从而恢复包含物体高度信息的3D形貌。通过调整光源的类型和系统参数,可将测量物体范围从漫反射物体扩展到镜面反射物体,实现镜面物体表面平整度快速、高精度检测。

3. 三维扫描仪测量原理是怎样的

这种机器叫三坐标测量机,有关节臂的有龙门式的,就是在你产品上用探针接触测量,获得三维数据,这种方式是精度最高的,如果精度要求比这个稍微低点,那白光或者激光三维扫描仪是首选

4. 三维超声波是怎样扫描的

美国科学家已开发出一种三维超声波扫描技术,该技术能使医生们就像在病人身体上开了一扇窗子一样研究病人的体内器官。该技术的发明者之一、北卡罗来纳州杜克大学新兴心血管技术工程研究中心的主任奥拉夫•拉姆说:“这一技术使目前的超声波技术显得过时了。

“这种三维超声波处理技术,采用并行计算即时分析大量的声音反射波,非常迅速地生产图像,使外科医生能够在屏幕上从任何角度观看一整颗跳动的心脏。这台多用途机器能够加快诊断速度,增加诊断的精确性,并且可帮助医生不做外科手术的情况下,较以前大大增加对人的心脏了解。

“采用三维技术后,我们能够非常迅速地观察整个跳动的心脏,并且可观看我们选择的任何部位。我们能观看心脏的前面、侧面和横侧面,一切都是在心脏跳动时进行的。”

为了“实时”捕捉跳动的心脏以及胎儿活动图像,避免延迟,每个信号必须用大规模并行计算机处理技术同时处理。当有关内部组织的图像出现在观察屏上后,医生用一个接触垫能够同时调出多达16个切片的画面。

切片的视角可以不同,而且可把它们做得薄些和厚些。为了能随时观看它们,医生能够把所有的图像存储下来以便以后分析。

5. 什么是三维扫描技术及测量技术

随着信息和通信技术的发展,人们在生活和工作中接触到越来越多的图形图像。获取图像的方法包括使用各种摄像机、照相机、扫描仪等,利用这些手段通常只能得到物体的平面图像,即物体的二维信息。在许多领域,如机器视觉、面形检测、实物仿形、自动加工、产品质量控制、生物医学等,物体的三维信息是必不可少的。因此,如何获取物体的三维信息,即三维物体面形轮廓测量得以发展。随着计算机技术、光电子技术的迅速发展,新的光学三维扫描技术和计量方法也不断涌现。 常用的三维扫描技术根据传感方式的不同,分为接触式和非接触式两种。 接触式的采用探测头直接接触物体表面,通过探测头反馈回来的光电信号转换为数字面形信息,从而实现对物体面形的扫描和测量,包括三坐标测量机法和电磁数字法。三坐标测量法是现在最通用的测量方式之一。 接触式测量具有较高的准确性和可靠性;配合测量软件,可快速准确地测量出物体的基本几何形状,如面,圆,圆柱,圆锥,圆球等。其缺点是:测量费用较高;探头易磨损。测量速度慢;检测一些内部元件有先天的限制,故欲求得物体真实外形则需要对探头半径进行补偿,因此可能会导致修正误差的问题;接触探头在测量时,接触探头的力将使探头尖端部分与被测件之间发生局部变形而影响测量值的实际读数;由于探头触发机构的惯性及时间延迟而使探头产生超越现象,趋近速度会产生动态误差。 随着计算机机器视觉这一新兴学科的兴起和发展,用非接触的光电方法对曲面的三维形貌进行快速测量已成为大趋势。这种非接触式测量不仅避免了接触测量中需要对测头半径加以补偿所带来的麻烦,而且可以实现对各类表面进行高速三维扫描。
目前,非接触式三维测量方法很多,常用的有:激光扫描测量、结构光扫描测量和工业CT等。大体上可以分为以下两大类,一类是二维分析法,包括遮挡阴影法、莫尔条纹法、聚焦法,光度法等;另一类是三维模型法,包括飞行时间距离探测法、被动三角法和主动三角法。下面介绍几种常用的基于三角测量法的三维扫描技术:点激光测量技术: 通过激光发射单点到物体表面,采用传感器在另外一侧观测,通过每一次的测量点反映物体的三维信息。其特点是精度较高,但测量速度慢,用于检测相比三坐标系统要快。线激光扫描技术:通过激光发射一条光线(称为光刀)到物体表面,采用传感器在另外一侧观测变形的光刀,通过解调光刀变形还原物体的三维信息。相比点激光扫描技术,其扫描速度大大的提高了,但也要附加运动系统才能得到完整的三维物体面形表示。该测量方法同样具有精度较高的特征,代表系统有三维激光扫描仪,手持式扫描仪等。面扫描技术:该类技术发展成熟的主要是结构光扫描,采用发射系统发射面光(面激光或者条纹),采用传感器在另外一侧观测变形条纹,结合相位技术及计算机视觉技术解调变形条纹并还原物体的三维信息。该种技术近来得到极大的发展,能够迅速的获取物体表面的面形信息,同时具有很高的测量精度,对测量环境低,应用于三维扫描具有很大的优势,代表系统有照相式三维扫描仪。深圳市精易迅科技有限公司是一家长期致力于非接触式三维扫描及检测系统研发、销售及服务一体化的专业三维数字化高科技公司,拥有点、线、面不同系列的激光和白光三维扫描系统,为您提供从三维扫描、工业检测到工业设计、脚型鞋楦定制、逆向工程等一系列解决方案。

6. 3D视觉检测/测量、三维视觉检测、工业三维是一样的么

三维的英文翻译简称为"3d”,3D视觉检测/测量和三维视觉检测是一样的,工业三维一般都包含了强两者。真实世界的物体有三个维度:高度,宽度和深度。为了使机器人等自动化系统成功运行,他们需要能够“看到”这三个维度。它们通过3D视觉检测/测量或者三维视觉检测提供这种“视觉”功能,其包括相机,照明和用于图像处理的PC。

7. 三维扫描仪的工作原理是什么

三维扫描仪(3D scanner)是一种科学仪器,用来侦测并分析现实世界中物体或环境的形状(几何构造)与外观数据(如颜色、表面反照率等性质)。搜集到的数据常被用来进行三维重建计算,在虚拟世界中创建实际物体的数字模型。这些模型具有相当广泛的用途,举凡工业设计、瑕疵检测、逆向工程、机器人导引、地貌测量、医学信息、生物信息、刑事鉴定、数字文物典藏、电影制片、游戏创作素材等等都可见其应用。三维扫描仪的制作并非仰赖单一技术,各种不同的重建技术都有其优缺点,成本与售价也有高低之分。目前并无一体通用之重建技术,仪器与方法往往受限于物体的表面特性。例如光学技术不易处理闪亮(高反照率)、镜面或半透明的表面,而激光技术不适用于脆弱或易变质的表面。

功能
三维扫描仪的用途是创建物体几何表面的点云(point cloud),这些点可用来插补成物体的表面形状,越密集的点云可以创建更精确的模型(这个过程称做三维重建)。若扫描仪能够获取表面颜色,则可进一步在重建的表面上粘贴材质贴图,亦即所谓的材质印射(texture mapping)。

三维扫描仪可模拟为照相机,它们的视线范围都呈现圆锥状,信息的搜集皆限定在一定的范围内。两者不同之处在于相机所抓取的是颜色信息,而三维扫描仪测量的是距离。由于测得的结果含有深度信息,因此常以深度视频(depth image)或距离视频(ranged image)称之。

由于三维扫描仪的扫描范围有限,因此常需要变换扫描仪与物体的相对位置或将物体放置于电动转盘(turnable table)上,经过多次的扫描以拼凑物体的完整模型。将多个片面模型集成的技术称做视频配准(image registration)或对齐(alignment),其中涉及多种三维比对(3D-matching)方法。
三维扫描仪类型
三维扫描仪分类为接触式(contact)与非接触式(non-contact)两种,后者又可分为主动扫描(active)与被动扫描(passive),这些分类下又细分出众多不同的技术方法。使用可见光视频达成重建的方法,又称做基于机器视觉(vision-based)的方式,是今日机器视觉研究主流之一。

接触式扫描:
接触式三维扫描仪透过实际触碰物体表面的方式计算深度,如座标测量机(CMM,CoordinateMeasuring Machine)即典型的接触式三维扫描仪。此方法相当精确,常被用于工程制造产业,然而因其在扫描过程中必须接触物体,待测物有遭到探针破坏损毁之可能,因此不适用于高价值对象如古文物、遗迹等的重建作业。此外,相较于其他方法接触式扫描需要较长的时间,现今最快的座标测量机每秒能完成数百次测量,而光学技术如激光扫描仪运作频率则高达每秒一万至五百万次。

8. 三维试验是什么检测方法

纸片扩散法药敏试验,将细菌接种在琼脂平板表面,贴上药物纸片。纸片上的药物向周围的培养基中扩散,构成一维。琼脂平板表面的细菌生长,产生了抗药性酶,向培养基中扩散,构成另一维。所以,纸片扩散法是二维试验。三维试验,在纸片旁边的琼脂刻一深纹,其中加入受试菌液。细菌生长后医学|教育网搜集整理,产生的抗药性酶向四周的琼脂中扩散,构成第三维。检测ESBL,接种细菌后,贴上第三代头孢菌素纸片,在纸片边上的深纹中加被测菌液。纹中的细菌生长时产生ESBL,扩散到周围的培养基中。扩散到培养基中的抗生素,遇到ESBL后被水解,不能对细菌生长产生抑制效应,形成的只能是变形的抑菌环。细菌不产生ESBL,抑菌环规则。

9. 三维测量技术的方法及应用

光学主动式三维测量

目前,主动式光学三维测量测量技术已广泛用于工业检测、反求工程、生物医学、机器视觉等领域。例如,复杂的叶轮和叶片的面形检测,汽车车身的检测,人类口腔牙型测量,整形外科效果评价,用于制鞋CAD的鞋楦三维数据采集,各种实物模型的三维信息记录与仿形等。三维高速度、高精度测量技术将随着测量方法的完善和信息获取与处理技术的改进而进一步发展,在新的更加广阔的研究和应用领域中发挥重要作用。

主动式光学非接触测量技术大体上可分为飞行时间法、主动三角法、莫尔轮廓术、投影结构光法、自动聚焦法、离焦法、全息干涉测量法、相移测量法等。以下对几种主要的方法进行以下简单介绍。

3.2.1.飞行时间法

飞行时间法是基于三维面形对结构光束产生的时间调制,一般采用激光,通过测量光波的飞行时间来获得距离信息,结合附加的扫描装置使光脉冲扫描整个待测对象就可以得到三维数据。飞行时间法以对信号检测的时间分辨率来换取距离测量精度,要得到高的测量精度,测量系统必须要有极高的时间分辨率,常用于大尺度远距离的测量。

3.2.2.干涉法

干涉测量是将一束相干光通过分光系统分成测量光和参考光,利用测量光波与参考光波的相干叠加来确定两束光之间的相位差,从而获得物体表面的深度信息。这种方法测量精度高,但测量范围受到光波波长的限制,只能测量微观表面的形貌和微小位移,不适于大尺度物体的检测。

3.2.3.主动三角法

光学三角法是最常用的一种光学三维测量技术,以传统的三角测量为基础,通过待测点相对于光学基准线偏移产生的角度变化计算该点的深度信息。根据具体照明方式的不同,光学三角法可分为两大类:被动三角法和基于结构光的主动三角法。双目视觉是典型的被动三维测量技术,它的优点在于其适应性强,可以在多种条件下灵活地测量物体的立体信息,缺点是需要大量的相关匹配运算以及较为复杂的空间几何参数的校准等问题,测量精度低,计算量较大,不适于精密计量,常用于三维目标的识别、理解以及位形分析等场合,在航空领域应用较多。主动三维测量技术根据三维面形对于结构光场的调制方式不同,可分为时间调制和空间调制两大类。飞行时间法是典型的时间调制方法,激光逐点扫描法、光切法和光栅投射法是典型的空间调制方法。

3.2.4.相移测量法

相移测量法是一种重要的三维测量方法,它采用正弦光栅投影和相移技术,投影在物体上的光栅,根据物体的高度而产生变形,变形的光栅图像叫做条纹图,它包含了三维信息。

相移法是一种在时间轴上的逐点运算,不会造成全面影响,计算量少。另外,这种方法具有一定抗静态噪声的能力。缺点是不能消除条纹中高频噪声引起的误差。在传统相移系统中,精确移动光栅的需要增加了系统的复杂性。而在数字相移系统中,用软件控制精确地实现相位移动。某些应用场合不允许测量多幅图像,但只要没有以上限制,相移法仍然是首选方案。

阅读全文

与机器三维检测方法相关的资料

热点内容
力量训练肩颈劳损最佳自愈方法 浏览:411
pvc塑胶扣板吊顶安装方法 浏览:75
蛋挞快速脱壳的方法 浏览:180
发针使用方法 浏览:308
鲁班尺的使用方法 浏览:132
电脑赚钱方法之一 浏览:20
治疗尿道下裂方法 浏览:177
钻机外形尺寸测量方法 浏览:154
圆梁计算方法 浏览:892
飞利浦牙刷使用方法 浏览:276
战国红玛瑙鉴别方法 浏览:863
tp登录方法怎么写 浏览:459
锅炉常用设计方法 浏览:775
安全教育平台在哪里登录的方法 浏览:984
抖音视频调节快慢的方法 浏览:856
羊脊骨治疗腰疼的方法 浏览:401
脊椎膨出怎么锻炼方法 浏览:249
金字塔泳速训练方法 浏览:81
汽车工程研究数学方法 浏览:461
国外花球啦啦操教学方法 浏览:996