㈠ 高中物理怎么总结解题方法,技巧!!!!!
高中物理考试常见的类型无非包括以下16种,本文介绍了这16种常见题型的解题方法和思维模板,还介绍了高考各类试题的解题方法和技巧,提供各类试题的答题模版,飞速提升你的解题能力,力求做到让你一看就会,一想就通,一做就对!
题型1直线运动问题
题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.
思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系.
题型2物体的动态平衡问题
题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题.
思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.
题型3运动的合成与分解问题
题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.
思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析.
题型4抛体运动问题
题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.
思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解
题型5圆周运动问题
题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动.水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况.
思维模板:(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力.
(2)竖直面内的圆周运动可以分为三个模型:①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;③外轨模型:只能提供背离圆心方向的力,物体在最高点时,若v<(gR)1/2,沿轨道做圆周运动,若v≥(gR)1/2,离开轨道做抛体运动.
题型6牛顿运动定律的综合应用问题
题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高.
思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律.
对天体运动类问题,应紧抓两个公式:GMm/r2=mv2/r=mrω2=mr4π2/T2①。GMm/R2=mg②.对于做圆周运动的星体(包括双星、三星系统),可根据公式①分析;对于变轨类问题,则应根据向心力的供求关系分析轨道的变化,再根据轨道的变化分析其他各物理量的变化.
题型7机车的启动问题
题型概述:机车的启动方式常考查的有两种情况,一种是以恒定功率启动,一种是以恒定加速度启动,不管是哪一种启动方式,都是采用瞬时功率的公式P=Fv和牛顿第二定律的公式F-f=ma来分析.
思维模板:(1)机车以额定功率启动.机车的启动过程如图所示,由于功率P=Fv恒定,由公式P=Fv和F-f=ma知,随着速度v的增大,牵引力F必将减小,因此加速度a也必将减小,机车做加速度不断减小的加速运动,直到F=f,a=0,这时速度v达到最大值vm=P额定/F=P额定/f.
这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力).
(2)机车以恒定加速度启动.恒定加速度启动过程实际包括两个过程.如图所示,“过程1”是匀加速过程,由于a恒定,所以F恒定,由公式P=Fv知,随着v的增大,P也将不断增大,直到P达到额定功率P额定,功率不能再增大了;“过程2”就保持额定功率运动.
过程1以“功率P达到最大,加速度开始变化”为结束标志.过程2以“速度最大”为结束标志.过程1发动机做的功只能用W=F·s计算,不能用W=P·t计算(因为P为变功率).
题型8以能量为核心的综合应用问题
题型概述:以能量为核心的综合应用问题一般分四类.第一类为单体机械能守恒问题,第二类为多体系统机械能守恒问题,第三类为单体动能定理问题,第四类为多体系统功能关系(能量守恒)问题.多体系统的组成模式:两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体.
思维模板:能量问题的解题工具一般有动能定理,能量守恒定律,机械能守恒定律.(1)动能定理使用方法简单,只要选定物体和过程,直接列出方程即可,动能定理适用于所有过程;(2)能量守恒定律同样适用于所有过程,分析时只要分析出哪些能量减少,哪些能量增加,根据减少的能量等于增加的能量列方程即可;(3)机械能守恒定律只是能量守恒定律的一种特殊形式,但在力学中也非常重要.很多题目都可以用两种甚至三种方法求解,可根据题目情况灵活选取.
题型9力学实验中速度的测量问题
题型概述:速度的测量是很多力学实验的基础,通过速度的测量可研究加速度、动能等物理量的变化规律,因此在研究匀变速直线运动、验证牛顿运动定律、探究动能定理、验证机械能守恒等实验中都要进行速度的测量.速度的测量一般有两种方法:一种是通过打点计时器、频闪照片等方式获得几段连续相等时间内的位移从而研究速度;另一种是通过光电门等工具来测量速度.
思维模板:用第一种方法求速度和加速度通常要用到匀变速直线运动中的两个重要推论:①vt/2=v平均=(v0+v)/2,②Δx=aT2,为了尽量减小误差,求加速度时还要用到逐差法.用光电门测速度时测出挡光片通过光电门所用的时间,求出该段时间内的平均速度,则认为等于该点的瞬时速度,即:v=d/Δt.
题型10电容器问题
题型概述:电容器是一种重要的电学元件,在实际中有着广泛的应用,是历年高考常考的知识点之一,常以选择题形式出现,难度不大,主要考查电容器的电容概念的理解、平行板电容器电容的决定因素及电容器的动态分析三个方面.
思维模板:
(1)电容的概念:电容是用比值(C=Q/U)定义的一个物理量,表示电容器容纳电荷的多少,对任何电容器都适用.对于一个确定的电容器,其电容也是确定的(由电容器本身的介质特性及几何尺寸决定),与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关.
(2)平行板电容器的电容:平行板电容器的电容由两极板正对面积、两极板间距离、介质的相对介电常数决定,满足C=εS/(4πkd)
(3)电容器的动态分析:关键在于弄清哪些是变量,哪些是不变量,抓住三个公式[C=Q/U、C=εS/(4πkd)及E=U/d]并分析清楚两种情况:一是电容器所带电荷量Q保持不变(充电后断开电源),二是两极板间的电压U保持不变(始终与电源相连).
题型11带电粒子在电场中的运动问题
题型概述:带电粒子在电场中的运动问题本质上是一个综合了电场力、电势能的力学问题,研究方法与质点动力学一样,同样遵循运动的合成与分解、牛顿运动定律、功能关系等力学规律,高考中既有选择题,也有综合性较强的计算题.
思维模板:(1)处理带电粒子在电场中的运动问题应从两种思路着手
①动力学思路:重视带电粒子的受力分析和运动过程分析,然后运用牛顿第二定律并结合运动学规律求出位移、速度等物理量.
②功能思路:根据电场力及其他作用力对带电粒子做功引起的能量变化或根据全过程的功能关系,确定粒子的运动情况(使用中优先选择).
(2)处理带电粒子在电场中的运动问题应注意是否考虑粒子的重力
①质子、α粒子、电子、离子等微观粒子一般不计重力;
②液滴、尘埃、小球等宏观带电粒子一般考虑重力;
③特殊情况要视具体情况,根据题中的隐含条件判断.
(3)处理带电粒子在电场中的运动问题应注意画好粒子运动轨迹示意图,在画图的基础上运用几何知识寻找关系往往是解题的突破口.
题型12带电粒子在磁场中的运动问题
题型概述:带电粒子在磁场中的运动问题在历年高考试题中考查较多,命题形式有较简单的选择题,也有综合性较强的计算题且难度较大,常见的命题形式有三种:
(1)突出对在洛伦兹力作用下带电粒子做圆周运动的运动学量(半径、速度、时间、周期等)的考查;(2)突出对概念的深层次理解及与力学问题综合方法的考查,以对思维能力和综合能力的考查为主;(3)突出本部分知识在实际生活中的应用的考查,以对思维能力和理论联系实际能力的考查为主.
思维模板:在处理此类运动问题时,着重把握“一找圆心,二找半径(R=mv/Bq),三找周期(T=2πm/Bq)或时间”的分析方法.
(1)圆心的确定:因为洛伦兹力f指向圆心,根据f⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点)的f的方向,沿两个洛伦兹力f作出其延长线的交点即为圆心.另外,圆心位置必定在圆中任一根弦的中垂线上(如图所示).
看大图
(2)半径的确定和计算:利用平面几何关系,求出该圆的半径(或运动圆弧对应的圆心角),并注意利用一个重要的几何特点,即粒子速度的偏向角(φ)等于圆心角(α),并等于弦AB与切线的夹角(弦切角θ)的2倍(如图所示),即φ=α=2θ.
(3)运动时间的确定:t=φT/2π或t=s/v,其中φ为偏向角,T为周期,s为轨迹的弧长,v为线速度.
题型13带电粒子在复合场中的运动问题
题型概述:带电粒子在复合场中的运动是高考的热点和重点之一,主要有下面所述的三种情况.
(1)带电粒子在组合场中的运动:在匀强电场中,若初速度与电场线平行,做匀变速直线运动;若初速度与电场线垂直,则做类平抛运动;带电粒子垂直进入匀强磁场中,在洛伦兹力作用下做匀速圆周运动.
(2)带电粒子在叠加场中的运动:在叠加场中所受合力为0时做匀速直线运动或静止;当合外力与运动方向在一直线上时做变速直线运动;当合外力充当向心力时做匀速圆周运动.
(3)带电粒子在变化电场或磁场中的运动:变化的电场或磁场往往具有周期性,同时受力也有其特殊性,常常其中两个力平衡,如电场力与重力平衡,粒子在洛伦兹力作用下做匀速圆周运动.
思维模板:分析带电粒子在复合场中的运动,应仔细分析物体的运动过程、受力情况,注意电场力、重力与洛伦兹力间大小和方向的关系及它们的特点(重力、电场力做功与路径无关,洛伦兹力永远不做功),然后运用规律求解,主要有两条思路.
(1)力和运动的关系:根据带电粒子的受力情况,运用牛顿第二定律并结合运动学规律求解.
(2)〖JP3〗功能关系:根据场力及其他外力对带电粒子做功的能量变化或全过程中的功能关系解决问题.(该部分内容在《试题调研》高分宝典系列之《高考决战压轴大题》第72页到114页有更详细的讲解,请同学们参阅)
题型14以电路为核心的综合应用问题
题型概述:该题型是高考的重点和热点,高考对本题型的考查主要体现在闭合电路欧姆定律、部分电路欧姆定律、电学实验等方面.主要涉及电路动态问题、电源功率问题、用电器的伏安特性曲线或电源的U-I图像、电源电动势和内阻的测量、电表的读数、滑动变阻器的分压和限流接法选择、电流表的内外接法选择等.有关实验的内容在《试题调研》第4辑中已详细讲述过,这里不再赘述.
思维模板:
(1)电路的动态分析是根据闭合电路欧姆定律、部分电路欧姆定律及串并联电路的性质,分析电路中某一电阻变化而引起整个电路中各部分电流、电压和功率的变化情况,即有R分→R总→I总→U端→I分、U分
(2)电路故障分析是指对短路和断路故障的分析,短路的特点是有电流通过,但电压为零,而断路的特点是电压不为零,但电流为零,常根据短路及断路特点用仪器进行检测,也可将整个电路分成若干部分,逐一假设某部分电路发生某种故障,运用闭合电路或部分电路欧姆定律进行推理.
(3)导体的伏安特性曲线反映的是导体的电压U与电流I的变化规律,若电阻不变,电流与电压成线性关系,若电阻随温度发生变化,电流与电压成非线性关系,此时曲线某点的切线斜率与该点对应的电阻值一般不相等.
电源的外特性曲线(由闭合电路欧姆定律得U=E-Ir,画出的路端电压U与干路电流I的关系图线)的纵截距表示电源的电动势,斜率的绝对值表示电源的内阻.
题型15以电磁感应为核心的综合应用问题
题型概述:此题型主要涉及四种综合问题
(1)动力学问题:力和运动的关系问题,其联系桥梁是磁场对感应电流的安培力.
(2)电路问题:电磁感应中切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,这样,电磁感应的电路问题就涉及电路的分析与计算.
(3)图像问题:一般可分为两类,一是由给定的电磁感应过程选出或画出相应的物理量的函数图像;二是由给定的有关物理图像分析电磁感应过程,确定相关物理量.
(4)能量问题:电磁感应的过程是能量的转化与守恒的过程,产生感应电流的过程是外力做功,把机械能或其他形式的能转化为电能的过程;感应电流在电路中受到安培力作用或通过电阻发热把电能转化为机械能或电阻的内能等.
思维模板:解决这四种问题的基本思路如下
(1)动力学问题:根据法拉第电磁感应定律求出感应电动势,然后由闭合电路欧姆定律求出感应电流,根据楞次定律或右手定则判断感应电流的方向,进而求出安培力的大小和方向,再分析研究导体的受力情况,最后根据牛顿第二定律或运动学公式列出动力学方程或平衡方程求解.
(2)电路问题:明确电磁感应中的等效电路,根据法拉第电磁感应定律和楞次定律求出感应电动势的大小和方向,最后运用闭合电路欧姆定律、部分电路欧姆定律、串并联电路的规律求解路端电压、电功率等.
(3)图像问题:综合运用法拉第电磁感应定律、楞次定律、左手定则、右手定则、安培定则等规律来分析相关物理量间的函数关系,确定其大小和方向及在坐标系中的范围,同时注意斜率的物理意义.
(4)能量问题:应抓住能量守恒这一基本规律,分析清楚有哪些力做功,明确有哪些形式的能量参与了相互转化,然后借助于动能定理、能量守恒定律等规律求解.
题型16电学实验中电阻的测量问题
题型概述:该题型是高考实验的重中之重,每年必有命题,可以说高考每年所考的电学实验都会涉及电阻的测量.针对此部分的高考命题可以是测量某一定值电阻,也可以是测量电流表或电压表的内阻,还可以是测量电源的内阻等.
思维模板:测量的原理是部分电路欧姆定律、闭合电路欧姆定律;常用方法有欧姆表法、伏安法、等效替代法、半偏法等.
㈡ 动力学基础
动力学是理论力学的一个分支学科,它主要研究作用于物体的力与物体运动的关系。动力学的研究对象是运动速度远小于光速的宏观物体。动力学是物理学和天文学的基础,也是许多工程学科的基础。许多数学上的进展也常与解决动力学问题有关,所以数学家对动力学有着浓厚的兴趣。
动力学的研究以牛顿运动定律为基础;牛顿运动定律的建立则以实验为依据。动力学是牛顿力学或经典力学的一部分,但自20世纪以来,动力学又常被人们理解为侧重于工程技术应用方面的一个力学分支。
动力学的发展简史
力学的发展,从阐述最简单的物体平衡规律,到建立运动的一般规律,经历了大约二十个世纪。前人积累的大量力学知识,对后来动力学的研究工作有着重要的作用,尤其是天文学家哥白尼和开普勒的宇宙观。
17世纪初期,意大利物理学家和天文学家伽利略用实验揭示了物质的惯性原理,用物体在光滑斜面上的加速下滑实验,揭示了等加速运动规律,并认识到地面附近的重力加速度值不因物体的质量而异,它近似一个常量,进而研究了抛射运动和质点运动的普遍规律。伽利略的研究开创了为后人所普遍使用的,从实验出发又用实验验证理论结果的治学方法。
17世纪,英国大科学家牛顿和德国数学家莱布尼兹建立了的微积分学,使动力学研究进入了一个崭新的时代。牛顿在1687年出版的巨着《自然哲学的数学原理》中,明确地提出了惯性定律、质点运动定律、作用和反作用定律、力的独立作用定律。他在寻找落体运动和天体运动的原因时,发现了万有引力定律,并根据它导出了开普勒定律,验证了月球绕地球转动的向心加速度同重力加速度的关系,说明了地球上的潮汐现象,建立了十分严格而完善的力学定律体系。
动力学以牛顿第二定律为核心,这个定律指出了力、加速度、质量三者间的关系。牛顿首先引入了质量的概念,而把它和物体的重力区分开来,说明物体的重力只是地球对物体的引力。作用和反作用定律建立以后,人们开展了质点动力学的研究。
牛顿的力学工作和微积分工作是不可分的。从此,动力学就成为一门建立在实验、观察和数学分析之上的严密科学,从而奠定现代力学的基础。
17世纪荷兰科学家惠更斯通过对摆的观察,得到了地球重力加速度,建立了摆的运动方程。惠更斯又在研究锥摆时确立了离心力的概念;此外,他还提出了转动惯量的概念。
牛顿定律发表100年后,法国数学家拉格朗日建立了能应用于完整系统的拉格朗日方程。这组方程式不同于牛顿第二定律的力和加速度的形式,而是用广义坐标为自变量通过拉格朗日函数来表示的。拉格朗日体系对某些类型问题(例如小振荡理论和刚体动力学)的研究比牛顿定律更为方便。
刚体的概念是由欧拉引入的。18世纪瑞士学者欧拉把牛顿第二定律推广到刚体,他应用三个欧拉角来表示刚体绕定点的角位移,又定义转动惯量,并导得了刚体定点转动的运动微分方程。这样就完整地建立了描述具有六个自由度的刚体普遍运动方程。对于刚体来说,内力所做的功之和为零。因此,刚体动力学就成为研究一般固体运动的近似理论。
1755年欧拉又建立了理想流体的动力学方程;1758年伯努利得到关于沿流线的能量积分(称为伯努利方程);1822年纳维得到了不可压缩性流体的动力学方程;1855年许贡纽研究了连续介质中的激波。这样动力学就渗透到各种形态物质的领域中去了。例如,在弹性力学中,由于研究碰撞、振动、弹性波传播等问题的需要而建立了弹性动力学,它可以应用于研究地震波的传动。
19世纪英国数学家汉密尔顿用变分原理推导出汉密尔顿正则方程,此方程是以广义坐标和广义动量为变量,用汉密尔顿函数来表示的一阶方程组,其形式是对称的。用正则方程描述运动所形成的体系,称为汉密尔顿体系或汉密尔顿动力学,它是经典统计力学的基础,又是量子力学借鉴的范例。汉密尔顿体系适用于摄动理论,例如天体力学的摄动问题,并对理解复杂力学系统运动的一般性质起重要作用。
拉格朗日动力学和汉密尔顿动力学所依据的力学原理与牛顿的力学原理,在经典力学的范畴内是等价的,但它们研究的途径或方法则不相同。直接运用牛顿方程的力学体系有时称为矢量力学;拉格朗日和汉密尔顿的动力学则称为分析力学。
动力学的基本内容
动力学的基本内容包括质点动力学、质点系动力学、刚体动力学、达朗贝尔原理等。以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论,陀螺力学、外弹道学、变质量力学,以及正在发展中的多刚体系统动力学等。
质点动力学有两类基本问题:一是已知质点的运动,求作用于质点上的力;二是已知作用于质点上的力,求质点的运动。求解第一类问题时只要对质点的运动方程取二阶导数,得到质点的加速度,代入牛顿第二定律,即可求得力;求解第二类问题时需要求解质点运动微分方程或求积分。
动力学普遍定理是质点系动力学的基本定理,它包括动量定理、动量矩定理、动能定理以及由这三个基本定理推导出来的其他一些定理。动量、动量矩和动能是描述质点、质点系和刚体运动的基本物理量。作用于力学模型上的力或力矩,与这些物理量之间的关系构成了动力学普遍定理。
刚体的特点是其质点之间距离的不变性。欧拉动力学方程是刚体动力学的基本方程,刚体定点转动动力学则是动力学中的经典理论。陀螺力学的形成说明刚体动力学在工程技术中的应用具有重要意义。多刚体系统动力学是20世纪60年代以来,由于新技术发展而形成的新分支,其研究方法与经典理论的研究方法有所不同。
达朗贝尔原理是研究非自由质点系动力学的一个普遍而有效的方法。这种方法是在牛顿运动定律的基础上引入惯性力的概念,从而用静力学中研究平衡问题的方法来研究动力学中不平衡的问题,所以又称为动静法。
动力学的应用
对动力学的研究使人们掌握了物体的运动规律,并能够为人类进行更好的服务。例如,牛顿发现了万有引力定律,解释了开普勒定律,为近代星际航行,发射飞行器考察月球、火星、金星等等开辟了道路。
自20世纪初相对论问世以后,牛顿力学的时空概念和其他一些力学量的基本概念有了重大改变。实验结果也说明:当物体速度接近于光速时,经典动力学就完全不适用了。但是,在工程等实际问题中,所接触到的宏观物体的运动速度都远小于光速,用牛顿力学进行研究不但足够精确,而且远比相对论计算简单。因此,经典动力学仍是解决实际工程问题的基础。
在目前所研究的力学系统中,需要考虑的因素逐渐增多,例如,变质量、非整、非线性、非保守还加上反馈控制、随机因素等,使运动微分方程越来越复杂,可正确求解的问题越来越少,许多动力学问题都需要用数值计算法近似地求解,微型、高速、大容量的电子计算机的应用,解决了计算复杂的困难。
目前动力学系统的研究领域还在不断扩大,例如增加热和电等成为系统动力学;增加生命系统的活动成为生物动力学等,这都使得动力学在深度和广度两个方面有了进一步的发展。
㈢ 求力学问题的研究方法及原因,如平抛运动,圆周运动,行星运动中力与运动探究关系,即根据什么求什么
运动与力之间靠牛顿第二定律联系,抓住牛顿顿第二定律。
研究v-t的关系:v=v0+at,F合=ma
研究S-T的关系:s=v0t+0.5at^2,F合=ma
研究平抛运动及类平抛等抛体运动,一般用解析法,通过数学方法解决相关问题
研究圆周运动,抓住Fn=mv^2/r,注意向心力为各种力的垂直于V的方向上的分量,(注:平行于v的力的分量改变V的大小,Ft(t不出头)
研究天体运动,一般就考虑Fn=GMm/r^2,在研究一些T,W等问题,都可以用v,r表示的,(研究比较深入可以看一些竞赛书籍)
㈣ 物理牛顿第二定律解题技巧
解题技巧:
1.明确研究对象
这一步就是要让同学们明确我们要研究谁,是研究一个隔离体,还是要研究一个整体.
2.对研究对象进行受力分析
这是正确解题很关键的一步.要注意做到以下两点:(1)分析受力时,只分析性质力,不分析效果力,以防将力重复分析;(2)按照重力──弹力──摩擦力──电磁力──其它力的顺序分析,以防止漏力.
3.建立直角坐标系,进行正交分解,列方程
这一步是解题的核心,在建立坐标系时,一般以加速度a的方向为x轴的正方向,以垂直于加速度a的方向为y轴正方向,将不在坐标轴上的力全部分解到两坐标轴上,分别列方程。
4.根据方程组,解出所要求解的问题
牛顿第二定律是联系运动和力的桥梁,此类问题有两大类,一类是已知力学问题求解运动学问题,另一类是已知运动学问题求解力学问题,中间通过牛顿第二定律过渡,只是解决力学问题和运动学问题的先后顺序不同而已,他们的实质是相同的,换言之就是根据力来求加速度还是根据运动来求加速度的问题。
牛顿第二定律简介:
物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。该定律是由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中提出的。牛顿第二运动定律和第一、第三定律共同组成了牛顿运动定律,阐述了经典力学中基本的运动规律。
㈤ 如何学好力学
力学
【简介】
力学是研究物质机械运动规律的科学。自然界物质有多种层次,从宇观的宇宙体系,宏观的天体和常规物体,细观的颗粒、纤维、晶体,到微观的分子、原子、基本粒子。通常理解的力学以研究天然的或人工的宏观对象为主。但由于学科的互相渗透,有时也涉及宇观或细观甚至微观各层次中的对象以及有关的规律。
力学又称经典力学,是研究通常尺寸的物体在受力下的形变,以及速度远低于光速的运动过程的一门自然科学。力学是物理学、天文学和许多工程学的基础,机械、建筑、航天器和船舰等的合理设计都必须以经典力学为基本依据。
机械运动是物质运动的最基本的形式。机械运动亦即力学运动,是物质在时间、空间中的位置变化,包括移动、转动、流动、变形、振动、波动、扩散等。而平衡或静止,则是其中的特殊情况。物质运动的其他形式还有热运动、电磁运动、原子及其内部的运动和化学运动等。
力是物质间的一种相互作用,机械运动状态的变化是由这种相互作用引起的。静止和运动状态不变,则意味着各作用力在某种意义上的平衡。因此,力学可以说是力和(机械)运动的科学。
力学在汉语中的意思是力的科学。汉语“力”字最初表示的是手臂使劲,后来虽又含有他义,但都同机械或运动没有直接联系。“力学”一词译自英语mechanics(源于希腊语μηχανη——机械)。在英语中,mechanics是一个多义词,既可释作“力学”,也可释作“机械学”、“结构”等。在欧洲其他语种中,此词的语源和语义都与英语相同。汉语中没有同它对等的多义词。mechanics在19世纪50年代作为研究力的作用的学科名词传入中国时,译作“重学”,后来改译作“力学”,一直使用至今。“力学的”和“机械的” 在英语中同为mechanical,而现代汉语中“机械的”又可理解为“刻板的”。这种不同语种中词义包容范围的差异,有时引起国际学术交流中的周折。例如机械的(mechanical)自然观,其实指用力学解释自然的观点,而英语mechanist是指机械师,不是指力学家。
[编辑本段]【发展简史】
力学知识最早起源于对自然现象的观察和在生产劳动中的经验。人们在建筑、灌溉等劳动中使用杠杆、斜面、汲水等器具,逐渐积累起对平衡物体受力情况的认识。古希腊的阿基米德对杠杆平衡、物体重心位置、物体在水中受到的浮力等作了系统研究,确定它们的基本规律,初步奠定了静力学即平衡理论的基础。
古代人还从对日、月运行的观察和弓箭、车轮等的使用中,了解一些简单的运动规律,如匀速的移动和转动。但是对力和运动之间的关系,只是在欧洲文艺复兴时期以后才逐渐有了正确的认识。
伽利略在实验研究和理论分析的基础上,最早阐明自由落体运动的规律,提出加速度的概念。牛顿继承和发展前人的研究成果(特别是开普勒的行星运动三定律),提出物体运动三定律。伽利略、牛顿奠定了动力学的基础。牛顿运动定律的建立标志着力学开始成为一门科学。
此后,力学的研究对象由单个的自由质点,转向受约束的质点和受约束的质点系。这方面的标志是达朗贝尔提出的达朗贝尔原理,和拉格朗日建立的分析力学。其后,欧拉又进一步把牛顿运动定律用于刚体和理想流体的运动方程,这看作是连续介质力学的开端。
运动定律和物性定律这两者的结合,促使弹性固体力学基本理论和粘性流体力学基本理论孪生于世,在这方面作出贡献的是纳维、柯西、泊松、斯托克斯等人。弹性力学和流体力学基本方程的建立,使得力学逐渐脱离物理学而成为独立学科。
从牛顿到汉密尔顿的理论体系组成了物理学中的经典力学。在弹性和流体基本方程建立后,所给出的方程一时难于求解,工程技术中许多应用力学问题还须依靠经验或半经验的方法解决。这使得19世纪后半叶,在材料力学、结构力学同弹性力学之间,水力学和水动力学之间一直存在着风格上的显着差别。
20世纪初,随着新的数学理论和方法的出现,力学研究又蓬勃发展起来,创立了许多新的理论,同时也解决了工程技术中大量的关键性问题,如航空工程中的声障问题和航天工程中的热障问题等。
这时的先导者是普朗特和卡门,他们在力学研究工作中善于从复杂的现象中洞察事物本质,又能寻找合适的解决问题的数学途径,逐渐形成一套特有的方法。从20世纪60年代起,计算机的应用日益广泛,力学无论在应用上或理论上都有了新的进展。
力学在中国的发展经历了一个特殊的过程。与古希腊几乎同时,中国古代对平衡和简单的运动形式就已具备相当水平的力学知识,所不同的是未建立起像阿基米德那样的理论系统。到明末清初,中国科学技术已显着落后于欧洲。
[编辑本段]【学科性质】
物理科学的建立是从力学开始的。在物理科学中,人们曾用纯粹力学理论解释机械运动以外的各种形式的运动,如热、电磁、光、分子和原子内的运动等。当物理学摆脱了这种机械(力学)的自然观而获得健康发展时,力学则在工程技术的推动下按自身逻辑进一步演化,逐渐从物理学中独立出来。
20世纪初,相对论指出牛顿力学不适用于高速或宇宙尺度内的物体运动;20年代,量子论指出牛顿力学不适用于微观世界。这反映人们对力学认识的深化,即认识到物质在不同层次上的机械运动规律是不同的。所以通常理解的力学,是指以宏观的机械运动为研究内容的物理学分支学科。许多带“力学”名称的学科,如热力学、统计力学、相对论力学、电动力学、量子力学等,在习惯上被认为是物理学的其它分支,不属于力学的范围。
力学与数学在发展中始终相互推动,相互促进。一种力学理论往往和相应的一个数学分支相伴产生,如运动基本定律和微积分,运动方程的求解和常微分方程,弹性力学及流体力学和数学分析理论,天体力学中运动稳定性和微分方程定性理论等,因此有人甚至认为力学应该也是一门应用数学。但是力学和其它物理学分支一样,还有需要实验基础的一面,而数学寻求的是比力学更带普遍性的数学关系,两者有各自不同的研究对象。
力学不仅是一门基础科学,同时也是一门技术科学,它是许多工程技术的理论基础,又在广泛的应用过程中不断得到发展。当工程学还只分民用工程学(即土木工程学)和军事工程学两大分支时,力学在这两个分支中就已经起着举足轻重的作用。工程学越分越细,各个分支中许多关键性的进展,都有赖于力学中有关运动规律、强度、刚度等问题的解决。
力学和工程学的结合,促使了工程力学各个分支的形成和发展。现在,无论是历史较久的土木工程、建筑工程、水利工程、机械工程、船舶工程等,还是后起的航空工程、航天工程、核技术工程、生物医学工程等,都或多或少有工程力学的活动场地。
力学既是基础科学又是技术科学这种二重性,有时难免会引起分别侧重基础研究和应用研究的力学家之间的不同看法。但这种二重性也使力学家感到自豪,它们为沟通人类认识自然和改造自然两个方面作出了贡献。
[编辑本段]【学科分类】
力学可粗分为静力学、运动学和动力学三部分,静力学研究力的平衡或物体的静止问题;运动学只考虑物体怎样运动,不讨论它与所受力的关系;动力学讨论物体运动和所受力的关系。
力学也可按所研究对象区分为固体力学、流体力学和一般力学三个分支,流体包括液体和气体;固体力学和流体力学可统称为连续介质力学,它们通常都采用连续介质的模型。固体力学和流体力学从力学分出后,余下的部分组成一般力学。
一般力学通常是指以质点、质点系、刚体、刚体系为研究对象的力学,有时还把抽象的动力学系统也作为研究对象。一般力学除了研究离散系统的基本力学规律外,还研究某些与现代工程技术有关的新兴学科的理论。
一般力学、固体力学和流体力学这三个主要分支在发展过程中,又因对象或模型的不同出现了一些分支学科和研究领域。属于一般力学的有理论力学(狭义的)、分析力学、外弹道学、振动理论、刚体动力学、陀螺力学、运动稳定性等;属于固体力学的有材料力学、结构力学、弹性力学、塑性力学、断裂力学等;流体力学是由早期的水力学和水动力学这两个风格迥异的分支汇合而成,现在则有空气动力学、气体动力学、多相流体力学、渗流力学、非牛顿流体力学等分支。各分支学科间的交叉结果又产生粘弹性理论、流变学、气动弹性力学等。
力学也可按研究时所采用的主要手段区分为三个方面:理论分析、实验研究和数值计算。实验力学包括实验应力分析、水动力学实验和空气动力实验等。着重用数值计算手段的计算力学,是广泛使用电子计算机后才出现的,其中有计算结构力学、计算流体力学等。对一个具体的力学课题或研究项目,往往需要理论、实验和计算这三方面的相互配合。
力学在工程技术方面的应用结果形成工程力学或应用力学的各种分支,诸如土力学、岩石力学、爆炸力学复合材料力学、工业空气动力学、环境空气动力学等。
力学和其他基础科学的结合也产生一些交又性的分支,最早的是和天文学结合产生的天体力学。在20世纪特别是60年代以来,出现更多的这类交叉分支,其中有物理力学、化学流体动力学、等离子体动力学、电流体动力学、磁流体力学、热弹性力学、理性力学、生物力学、生物流变学、地质力学、地球动力学、地球构造动力学、地球流体力学等。
[编辑本段]【主要理论】
1.物体运动三定律。
2.达朗贝尔原理
3.分析力学理论
4连续介质力学理论
5.弹性固体力学基本理论
6.粘性流体力学基本理论
[编辑本段]【研究方法】
力学研究方法遵循认识论的基本法则:实践——理论——实践。
力学家们根据对自然现象的观察,特别是定量观测的结果,根据生产过程中积累的经验和数据,或者根据为特定目的而设计的科学实验的结果,提炼出量与量之间的定性的或数量的关系。为了使这种关系反映事物的本质,力学家要善于抓住起主要作用的因素,屏弃或暂时屏弃一些次要因素。
力学中把这种过程称为建立模型。质点、质点系、刚体、弹性固体、粘性流体、连续介质等是各种不同的模型。在模型的基础上可以运用已知的力学或物理学的规律,以及合适的数学工具,进行理论上的演绎工作,导出新的结论。
依据所得理论建立的模型是否合理,有待于新的观测、工程实践或者科学实验等加以验证。在理论演绎中,为了使理论具有更高的概括性和更广泛的适用性,往往采用一些无量纲参数如雷诺数、马赫数、泊松比等。这些参数既反映物理本质,又是单纯的数字,不受尺寸、单位制、工程性质、实验装置类型的牵制。
力学研究工作方式是多样的:有些只是纯数学的推理,甚至着眼于理论体系在逻辑上的完善化;有些着重数值方法和近似计算;有些着重实验技术等等。而更大量的则是着重在运用现有力学知识,解决工程技术中或探索自然界奥秘中提出的具体问题。
现代的力学实验设备,诸如大型的风洞、水洞,它们的建立和使用本身就是一个综合性的科学技术项目,需要多工种、多学科的协作。应用研究更需要对应用对象的工艺过程、材料性质、技术关键等有清楚的了解。在力学研究中既有细致的、独立的分工,又有综合的、全面的协作。
[编辑本段]【应用领域】
力学是物理学、天文学和许多工程学的基础,机械、建筑、航天器和船舰等的合理设计都必须以经典力学为基本据。机械运动是物质运动的最基本的形式。机械运动亦即力学运动。
在力学理论的指导或支持下取得的工程技术成就不胜枚举。最突出的有:以人类登月、建立空间站、航天飞机等为代表的航天技术;以速度超过5倍声速的军用飞机、起飞重量超过300t、尺寸达大半个足球场的民航机为代表的航空技术;以单机功率达百万千瓦的汽轮机组为代表的机械工业,可以在大风浪下安全作业的单台价值超过10亿美元的海上采油平台;以排水量达5×105t的超大型运输船和航速可达30多节、深潜达几百米的潜艇为代表的船舶工业;可以安全运行的原子能反应堆;在地震多发区建造高层建筑;正在陆上运输中起着越来越重要作用的高速列车,等等,甚至如两弹引爆的核心技术,也都是典型的力学问题。
总之还有许多的问题。
[编辑本段]【重要着作】
1687年7月出版的《自然哲学的数学原理》(拉丁文:Philosophiae Naturalis Principia Mathematica),牛顿介绍了力学的基本运动三定律与基本的力学量。
[编辑本段]【着名人物】
1.阿基米德
古希腊的阿基米德对杠杆平衡、物体重心位置、物体在水中受到的浮力等作了系统研究,确定它们的基本规律,初步奠定了静力学即平衡理论的基础。
2.伽利略
伽利略在实验研究和理论分析的基础上,最早阐明自由落体运动的规律,提出加速度的概念。
3.牛顿
牛顿继承和发展前人的研究成果(特别是开普勒的行星运动三定律),提出物体运动三定律。
[编辑本段]【发展趋势】
(1)固体力学
经典的连续介质力学将可能会被突破。新的力学模型和体系,将会概括某些对宏观力学行为起敏感作用的细观和微观因素,以及这些因素的演化,从而使复合材料(包括陶瓷、聚合物和金属)的强化、韧化和功能化立足于科学的认识之上。
固体力学将融汇力-热-电-磁等效应。机械力与热、电、磁等效应的相互转化和控制,目前大都还限于测量和控制元件上,但这些效应的结合孕育着极有前途的新机会。近来出现的数百层叠合膜“摩天大厦”式的微电子元器件,已迫切要求对这类力-热-电耦合效应做深入的研究。以“Mechronics”为代表的微机械、微工艺、微控制等方面的发展,将会极大地推动对力-热-电-磁耦合效应的研究。
(2)流体力学
今后,空天飞机和新一代的超声速民航机的成功研制将首先取决于流体力学的进展。在有关的高温空气动力学中必须放弃原先的热力学平衡的假定。吸气式发动机中H2,O2在超声速流动状态下的混合、点火等,都是过去的理论和实践未能解决的难题。超声速流边界层的控制、减阻以及降噪控制等也带来一系列新问题。
(3)一般力学
一般力学近来已开始进入生物体运动问题的研究,研究了人和动物行走、奔跑及跳跃中的力学问题。这种在宏观范围内对生物体进行的研究,已经带来了一些新的结果。亿万年生物进化的结果,的确把优化的运动机能赋与了生存下来的物种。对其进一步研究,可以提供生物进化方向的理性认识,也可为人类进一步提高某些机构或机械的性能提供方向性的指导。以下几个方面的问题应当给予充分重视:(1)固体的非平衡/不可逆热力学理论;(2)塑性与强度的统计理论;(3)原子乃至电子层次上子系统(原子键,位错,空位等缺陷)的动力学理论。为深入进行这些研究,应当充分利用与开发计算机模拟(如分子动力学)和现代宏、细、微观实验与观测技术。 工科离不开力学,在工科基础课中,开设了不同的力学课程:理论力学,假设物体不发生变形,用传统数学物理方法研究一切质点,物体的运动,静力学和动力学原理,机械原理的理论基础。材料力学,传统方法研究物体在各种载荷下,包括静力,静扭矩,静弯矩,振动,碰撞等,机械零部件和装配设计,机械加工的理论基础。流体力学,研究一切流体在容器、管道中运动规律和力学特性,液压、气动、热分析的理论基础。分析力学,使用计算数学方法分析力学有限元素法,把受力对象拆解成有限个元素,对每个元素进行受力分析,通过联立偏微分方程组,用泛函求解,计算出每个元素,每个节点的应力应变。联立方程组可化为刚度矩阵和自由度组成的矩阵方程。
参考资料:http://ke..com/view/34946.html?tp=0_11
http://ke..com/w?ct=17&lm=0&tn=WikiSearch&pn=0&rn=10&word=%C1%A6%D1%A7&submit=search
㈥ 运动生物力学三种主要实验研究方法是什么
运动生物力学运动生物力学
biomechanics
应用力学原理和方法研究生物体的外在机械运动的生物力学分支。狭义的运动生物力学研究体育运动中人体的运动规律。按照力学观点,人体或一般生物体的运动是神经系统、肌肉系统和骨骼系统协同工作的结果。神经系统控制肌肉系统,产生对骨骼系统的作用力以完成各种机械动作。运动生物力学的任务是研究人体或一般生物体在外界力和内部受控的肌力作用下的机械运动规律,它不讨论神经、肌肉和骨骼系统的内部机制,后者属于神经生理学、软组织力学和骨力学的研究范畴(生物固体力学)。在运动生物力学中,神经系统的控制和反馈过程以简明的控制规律代替 , 肌肉活动简化为受控的力矩发生器,作为研究对象的人体模型可忽略肌肉变形对质量分布的影响,简化为由多个刚性环节组成的多刚体系统。相邻环节之间以关节相连接,在受控的肌力作用下产生围绕关节的相对转动,并影响系统的整体运动。
对于人体运动的研究最早可追溯到15世纪达·芬奇在力学和解剖学基础上对人体运动器官的形态和机能的解释。18世纪已出现对猫在空中转体现象的实验和理论研究。运动生物力学作为一门学科是20世纪60年代在体育运动、计算技术和实验技术蓬勃发展的推动下形成的。70年代中H.哈兹将人体的神经-肌肉-骨骼大系统作为研究对象,利用复杂的数学模型进行数值计算,以解释最基本的实验现象。T.R.凯恩将描述人体运动的坐标区分为内变量和外变量,前者描述肢体的相对运动,为可控变量;后者描述人体的整体运动,由动力学方程确定。这种简化的研究方法有可能将力学原理直接用于人体实际运动的仿真和理论分析。由于生物体存在个体之间的差异性,实验研究在运动生物力学中占有特殊重要地位。实验运动生物力学利用高速摄影和计算机解析、光电计时器、加速度计、关节角变化、肌电仪和测力台等工具量测人体运动过程中各环节的运动学参数以及外力和内力的变化规律。
在实践中,运动生物力学主要用于确定各专项体育运动的技术原理,作为运动员的技术诊断和改进训练方法的理论依据。此外,运动生物力学在运动创伤的防治,运动和康复器械的改进,仿生机械如步行机器人的设计等方面也有重要作用。同时还为运动员选材提供了依据.
㈦ 快速解物理题的13个高效方法
高中物理并不是那么简单的,但是还是有比较高效的解题方法存在,接下来我为大家介绍主要方法,一起来看看吧!
匀变速直线运动基本公式和推论的应用
1.对三个公式的理解
速度时间公式 、位移时间公式 、位移速度公式 ,是匀变速直线运动的三个基本公式,是解决匀变速直线运动的基石。三个公式中的四个物理量x、a、v0、v均为矢量(三个公式称为矢量式),在应用时,一般以初速度方向为正,凡是与v0方向相同的x、a、v均为正值,反之为负值,当v0=0时,一般以a的方向为正。这样就将矢量运算转化为代数运算,使问题简化。
2.巧用推论式简化解题过程
推论① 中间时刻瞬时速度等于这段时间内的平均速度;
推论② 初速度为零的匀变速直线运动,第1秒、第2秒、第3秒...内的位移之比为1∶3∶5∶...;
推论③ 连续相等时间间隔T内的位移之差相等Δx=aT2,也可以推广到xm-xn=(m-n)aT 2(式中m、n表示所取的时间间隔的序号)。
正确处理追及、图像、表格三类问题
1.追及类问题及其解答技巧和通法
一般是指两个物体同方向运动,由于各自的速度不同后者追上前者的问题。追及问题的实质是分析讨论两物体在相同时间内能否到达相同的空间位置问题。解决此类问题要注意"两个关系"和"一个条件","两个关系"即时间关系和位移关系;"一个条件"即两者速度相等,它往往是物体间能否追上或两物体距离最大、最小的临界条件,也是分析判断问题的切入点。画出运动示意图,在图上标出已知量和未知量,再探寻位移关系和速度关系是解决此类问题的通用技巧。
2.如何分析图像类问题
图像类问题是利用数形结合的思想分析物体的运动,是高考必考的一类题型。探寻纵坐标和横坐标所代表的两个物理量间的函数关系,将物理过程"翻译"成图像,或将图像还原成物理过程,是解此类问题的通法。弄清图线的形状是直线还是曲线,截距、斜率、面积所代表的物理意义是解答问题的突破口。
3.何为表格类问题
表格类问题就是将两个或几个物理量间的关系以表格的形式展现出来,让考生从表格中获取信息的一类试题。这也是近年来高考经常出现的一类试题。既可以出现在实验题中也可以出现在计算题中。解决此类试题的通法是观察表格中的数据,结合运动学公式探寻相关物理量间的联系,然后求解。
追及问题中的多解问题
1.注意追及问题中的多解现象
在以下几种情况中一般存在2次相遇的问题:①两个匀加速运动之间的追及(加速度小的追赶加速度大的);②匀减速运动追匀速运动;③匀减速运动追赶匀加速运动;④两个匀减速运动之间的追及(加速度大的追赶加速度小的)。
2.追及问题中是否多解的条件
除上面提到的两个物体的运动性质外,两物体间的初始距离s0是制约着能否追上、能相遇几次的条件。
3.养成严谨的思维习惯,谨防漏解
①认真审题,分析两物体的运动性质,画出物体间的运动示意图。②根据两物体的运动性质,紧扣前面提到的"两个关系"和"一个条件"分别列出两个物体的位移方程,要注意将两个物体运动时间的关系,反映在方程中,然后由运动示意图找出两物体位移间的关联方程。思维程序如图所示。
受力分析的基本技巧和方法
对物体进行受力分析,主要依据力的概念,分析物体所受到的其他物体的作用。具体方法如下:
1.明确研究对象,即首先确定要分析哪个物体的受力情况。
2.隔离分析:将研究对象从周围环境中隔离出来,分析周围物体对它施加了哪些作用。
3.按一定顺序分析:口诀是"一重、二弹、三摩擦、四其他",即先分析重力,再分析弹力和摩擦力。其中重力是非接触力,容易遗漏;弹力和摩擦力的有无要依据其产生条件,切忌想当然凭空添加力。
4.画好受力分析图。要按顺序检查受力分析是否全面,做到不"多力"也不"少力"。
求解平衡问题的三种矢量解法
1.合成法
所谓合成法,是根据力的平行四边形定则,先把研究对象所受的某两个力合成,然后根据平衡条件分析求解。合成法是解决共点力平衡问题的常用方法,此方法简捷明了,非常直观。
2.分解法
所谓分解法,是根据力的作用效果,把研究对象所受的某一个力分解成两个分力,然后根据平衡条件分析求解。分解法是解决共点力平衡问题的常用方法。运用此方法要对力的作用效果有着清楚的认识,按照力的实际效果进行分解。
3.正交分解法
正交分解法,是把力沿两个相互垂直的坐标轴(x轴和y轴)进行分解,再在这两个坐标轴上求合力的方法。由物体的平衡条件可知,Fx = 0,Fy= 0。
(1)正交分解法是解决共点力平衡问题的常用方法,尤其是当物体受力较多且不在同一直线上时,应用该法可以起到事半功倍的效果。
(2)正交分解法是一种纯粹的数学方法,建立坐标轴时可以不考虑力的实际作用效果。这也是此法与分解法的不同。分解的最终目的是为了合成(求某一方向的合力或总的合力)。
(3)坐标系的建立技巧。应当本着需要分解的力尽量少的原则来建立坐标系,比如斜面上的平衡问题,一般沿平行斜面和垂直斜面建立直角坐标系,这样斜面的支持力和摩擦力就落在坐标轴上,只需分解重力即可。当然,具体问题要具体分析,坐标系的选取不是一成不变的,要依据题目的具体情景和设问灵活选取。
关于摩擦力的分析与判断
1.摩擦力产生的条件
两物体直接接触、相互挤压、接触面粗糙、有相对运动或相对运动的趋势。这四个条件缺一不可。两物体间有弹力是这两物体间有摩擦力的必要条件(没有弹力不可能有摩擦力)。
2.摩擦力的方向
(1)摩擦力方向总是沿着接触面,和物体间相对运动(或相对运动趋势)的方向相反。(2)摩擦力的方向和物体的运动方向可能相同(作为动力),可能相反(作为阻力),可能垂直(作为匀速圆周运动的向心力),可能成任意角度。
学习牛顿第一定律必须要注意的三个问题
1.牛顿第一定律包含了两层含义:①保持匀速直线运动状态或静止状态是物体的固有属性;物体的运动不需要力来维持;②要使物体的运动状态改变,必须施加力的作用,力是改变物体运动状态的原因。
2.牛顿第一定律导出了两个概念:①力的概念。力是改变物体运动状态(即改变速度)的原因。又根据加速度定义 ,速度变化就一定有加速度,所以可以说力是使物体产生加速度的原因(不能说"力是产生速度的原因"、"力是维持速度的原因",也不能说"力是改变加速度的原因")。②惯性的概念。一切物体都有保持原有运动状态的性质,这就是惯性。惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。质量是物体惯性大小的量度。
3.牛顿第一定律描述的是理想情况下物体的运动规律。它描述了物体在不受任何外力时怎样运动。而不受外力的物体是不存在的。物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F=0时的特例,因此不能说牛顿第一定律是实验定律。
应用牛顿第二定律的常用方法
1.合成法
首先确定研究对象,画出受力分析图,沿着加速度方向将各个力按照力的平行四边形定则在加速度方向上合成,直接求出合力,再根据牛顿第二定律列式求解。此方法被称为合成法,具有直观简便的特点。
2.分解法
确定研究对象,画出受力分析图,根据力的实际作用效果,将某一个力分解成两个分力,然后根据牛顿第二定律列式求解。此方法被称为分解法。分解法是应用牛顿第二定律解题的常用方法。但此法要求对力的作用效果有着清楚的认识,要按照力的实际效果进行分解。
3.正交分解法
确定研究对象,画出受力分析图,建立直角坐标系,将相关作用力投影到相互垂直的两个坐标轴上,然后在两个坐标轴上分别求合力,再根据牛顿第二定律列式求解的方法被称为正交分解法。直角坐标系的选取,原则上是任意的。但建立的不合适,会给解题带来很大的麻烦。如何快速准确的建立坐标系,要依据题目的具体情景而定。正交分解的最终目的是为了合成。
4.用正交分解法求解牛顿定律问题的一般步骤
①受力分析,画出受力图,建立直角坐标系,确定正方向;②把各个力向x轴、y轴上投影;③分别在x轴和y轴上求各分力的代数和Fx、Fy;④沿两个坐标轴列方程Fx=max,Fy=may。如果加速度恰好沿某一个坐标轴,则在另一个坐标轴上列出的是平衡方程。
牛顿第二定律在两类动力学基本问题中的应用
不论是已知运动求受力,还是已知受力求运动,做好"两分析"是关键,即受力分析和运动分析。受力分析时画出受力图,运动分析时画出运动草图能起到"事半功倍"的效果。
滑块与滑板类问题的解法与技巧
1.处理滑块与滑板类问题的基本思路与方法是什么?
判断滑块与滑板间是否存在相对滑动是思考问题的着眼点。方法有整体法隔离法、假设法等。即先假设滑块与滑板相对静止,然后根据牛顿第二定律求出滑块与滑板之间的摩擦力,再讨论滑块与滑板之间的摩擦力是不是大于最大静摩擦力。
2.滑块与滑板存在相对滑动的临界条件是什么?
(1)运动学条件:若两物体速度和加速度不等,则会相对滑动。
(2)动力学条件:假设两物体间无相对滑动,先用整体法算出一起运动的加速度,再用隔离法算出其中一个物体"所需要"的摩擦力f;比较f与最大静摩擦力fm的关系。
3.滑块滑离滑板的临界条件是什么?当滑板的长度一定时,滑块可能从滑板滑下,恰好滑到滑板的边缘达到共同速度是滑块滑离滑板的临界条件。
求解平抛运动的基本思路和方法
1.求解平抛运动的基本思路和方法是什么?
将平抛运动分解为水平方向的匀速运动和竖直方向的自由落体运动,是处理平抛运动的基本思路和方法,而适用于这两种基本运动形式的规律和推论,在这两个方向上仍然适用,这为解决平抛运动以及电场中的类平抛运动提供了极大的方便。
2.平抛运动的基本规律。
水平分运动:竖直分运动;
平抛质点在t秒末的合速度v:大小 ,方向 ( 为v与v0的夹角);
平抛质点在t秒内的合位移s:大小 ,方向tanθ = (θ为s与v0的夹角)。
竖直面内的圆周运动巧理解
1.竖直面内圆周运动的两类模型的动力学条件
在竖直平面内做圆周运动的物体,按运动至轨道最高点时的受力情况可分为两类。一是无支撑(如球与绳连结,沿内轨道的"过山车"等),称为"绳(环)约束模型",二是有支撑(如球与杆连接,在弯管内的运动等),称为"杆(管道)约束模型"。
(1)对于"绳约束模型",在圆轨道最高点,当弹力为零时,物体的向心力最小,仅由重力提供, 由mg= mv2/r,得临界速度 。 (2)对于"杆约束模型",在圆轨道最高点,因有支撑,故最小速度可为零,不存在脱离轨道的情况。物体除受向下的重力外,还受相关弹力作用,其方向可向下,也可向上。当物体速度 产生离心运动,弹力应向下;当 弹力向上。
2.解答竖直面内圆周运动的基本思路和解题方法
"两点一过程"是解决竖直面内圆周运动问题的基本思路。"两点",即最高点和最低点。在最高点和最低点对物体进行受力分析,找出向心力的来源,列牛顿第二定律的方程;"一过程",即从最高点到最低点,用动能定理将这两点的动能(速度)联系起来。
"绳连"问题的解法与技巧
1.求解"绳连"问题的依据是什么?
"绳连"问题,即绳子末端速度的分解问题,是学习运动的合成与分解知识的一个难点,问题是搞不清哪一个是合速度,哪一个是分速度。求解"绳连"问题的依据,即合运动与分运动的效果相同,具有等效性。物体相对于给定参照物(一般为地面)的实际运动是合运动,实际运动的方向就是合运动的方向。物体的实际运动,可以按照其实际效果,分解为两个分运动。
2.求解"绳连"问题的具体方法是什么?
解决"绳连"问题的具体方法可以概括为:绳端的速度是合速度,绳端的运动包含了两个分效果:沿绳分运动(伸长或缩短),垂直绳的分运动(转动),故可以将绳端的速度分解为,沿绳(伸长或收缩)方向的分速度和垂直于绳的分速度。另外,同一条绳子的两端沿绳的分速度大小相等。