㈠ 紫外可见分光光度法特点和适用范围
一、紫外可见分光光度法的特点
1、与其它光谱分析方法相比,紫外可见分光光度法事物仪器设备和操作都比较简单,费用少,分析速度快。
2、紫外可见分光光度法的灵敏度高。
3、紫外可见分光光度法的选择性好。
4、紫外可见分光光度法的精密度和准确度较高。
二、紫外可见分光光度法的适用范围
紫外可见分光光度法可适用于定性定量分析、纯度分析、结构分析。特别在定量分析和纯度检查方面,在许多领域更是必备的分析方法,例如食品等行业中的产品质量控制。
(1)光谱学方法检测农药扩展阅读
紫外可见分光光度法的注意点:
1、准备操作仪器前,需要先查看一下指针仪器在断电的情况下,表面指针是否指向零刻度。如若不是,理应先调零然后才能连接电源。
2、在使用的过程中,操作员应该尽量避免对镜灯的触碰,放大器使用过后,一定需要把档位归置到零。
3、在操作紫外可见分光光度计时,操作人员需要留意一下机器的干燥剂。
4、紫外可见分光光度计在开机前将样品室内的干燥剂取出,仪器自检过程中禁止打开样品室盖。
㈡ 有机磷农药的检测有哪些方法哪些是最新的方法
有机磷农药残留检测仪检测方法分类有:
1、酶联免疫法。有机磷农药对于生物体来说,是一种有害物质。因此,许多生物体对于有机磷农药会产生相应的抗体。利用这种抗原与抗体之间的反应,可以用来检测有机磷农药的残留。
2、薄层色谱法。经过长时间的发展,薄层色谱法已经成为一种比较成熟,应用非常广泛的微量快速检测方法。这种方法的检测过程是,先用合适的溶剂将有机磷农药提取出来,再将提取液浓缩,然后将浓缩液在薄层硅胶板上分离展开,待其显色后再与标准色板比较,或者用专用扫描仪进行定量检测,即可得出结果。
3、光谱分析。有机磷农药的水解、还原产物或者其某些官能团与特殊的显色剂在一定的条件下,发生氧化、磺酸化、酯化、络合等化学反应,产生特定波长的颜色反应。根据这些反应,可以用波谱法来定性或定量测定农产品中有机磷农药的残留量。
4、色谱分析,色谱法是根据分析物质在固定相和流动相之间分配系数的不同达到分离目的,并将分析物质的浓度转换成易被测量的电信号(电压、电流等),记录仪进行记录的一种分离分析方法。用于有机磷农药检测的色谱法主要包括薄层色谱法、气相色谱法和高效液相色谱法三种。
最新最快捷的的农药残留检测方法:纸片法:CSY-N12便携式农药残留测定仪是根据国标方法---速测卡法(纸片法)而专门设计的仪器。
仪器检测原理:采用单片机对温度和时间等参数进行控制,配合生化反应对蔬菜、水果等食品的有机磷和氨基甲酸酯类农药进行半定量检测。
㈢ 简述农药残留检测前处理步骤及检测方法
检测前处理程序
经典的农药残留分析步骤通常是:水溶性溶剂提取- 非水溶性溶剂再分配- 固相吸附柱净化- 气相或液相色谱检测。其中提取和净化是前处理部分,样品前处理不仅要求尽可能完全提取其中的待测组分,还要尽可能除去与目标物同时存在的杂质,避免对色谱柱和检测器等的污染,减少对检测结果的干扰,提高检测的灵敏度和准确性。
农药残留检测技术
农药残留量检测是微量或痕量分析,必须采用高灵敏度的检测技术才能实现。自20世纪50年代,各国科学家就开始研究农药残留的检测方法。常规检测的分析方法有光谱法、酶抑制法和色谱法。
1、光谱法
光谱法是根据有机磷农药中的某些官能团或水解、还原产物与特殊的显色剂在特定的环境下发生氧化、磺酸化、络合等化学反应,产生特定波长的颜色反应来进行定性或定量测定。检出限在微克级。它可直接检测固体、液体及气体样品,对样品前处理要求低、环境污染小,分析速度快。
但是,光谱法只能检测一种或具有相同基团的一类有机磷农药,灵敏度不高,一般只能作为定性方法。
2、酶抑制法
酶抑制法是根据有机磷和氨基甲酸酯类农药能抑制昆虫中枢和周围神经系统中乙酰胆碱的活性,造成神经传导介质乙酰胆碱的积累,影响正常神经传导,使昆虫中毒致死这一昆虫毒理学原理进行检测的。
3、色谱法
色谱法是农药残留分析的常用方法之一,它根据分析物质在固定相和流动相之间的分配系数的不同达到分离目的,并将分析物质的浓度转换成易被测量的电信号(电压、电流等) ,然后送到记录仪记录下来的方法。主要有薄层色谱法、气相色谱法和高效液相色谱法。
4、快速检测技术
常见的有化学速测法、免疫分析法、酶抑制法和活体检测法等。
化学速测法,主要根据氧化还原反应,水解产物与检测液作用变色,用于有机磷农药的快速检测,但是灵敏度低,使用局限性,且易受还原性物质干扰。
免疫分析法,主要有放射免疫分析和酶免疫分析,最常用的是酶联免疫分析(ELISA),基于抗原和抗体的特异性识别和结合反应,对于小分子量农药需要制备人工抗原,才能进行免疫分析。
酶抑制法,是研究最成熟、应用最广泛的快速农残检测技术,主要根据有机磷和氨基甲酸酯类农药对乙酰胆碱酶的特异性抑制反应。
活体检测法,主要利用活体生物对农药残留的敏感反应,例如给家蝇喂食样品,观察死亡率来判定农残量。该方法操作简单,但定性粗糙、准确度低,对农药的适用范围窄。
㈣ 农药残留物的分析方法
国外医学卫生学分册
1998年 第25卷 第3期
食物中农药残留分析方法的研究进展
中国预防医学科学院营养与食品卫生研究所 (北京 100050)
赵云峰综述 陈建民1 王绪卿审校
摘要 本文综述了近年来农药残留分析的前处理技术和测定方法的研究进展,着重介绍固相萃取法、凝胶渗透色谱法和超临界流体萃取法等前处理技术及气相色谱-质谱法、液相色谱-质谱法、超临界流体色谱法等色谱测定方法以及毛细管电泳和生物技术在农药残留分析中的应用。
关键词 食物 农药残留 多残留分析方法
食品的农药残留分析是在复杂的基质中对目标化合物进行鉴别和定量。由于食品中农药残留水平一般在mg/kg~μg/kg之间,因此要求分析方法灵敏度高、特异性强。对于未知农药施用史的食物样品,经常采用多组分残留分析的方法。由于各类食物样品组成成分复杂,而且不同农药品种的理化性质存在差异,因而没有一种多组分残留分析方法能够覆盖所有的农药品种。
近年来,农药残留分析方法趋向于选择性强、分辨率高和检测限低以及操作简便。主要表现在由单一种类农药多残留分析向多品种农药多残留分析发展,而且对农药的代谢物、降解物以及轭合物的残留分析给予了更多的关注[1]。本文简要综述近几年来农药残留分析技术及方法学的进展。
1 食物中农药残留的特点及样品前处理技术食物样品组成复杂,基质成分与目标物含量相差悬殊,且存在农药的同系物、异构体、降解产物、代谢产物以及轭合物的影响。由于环境的迁移作用,环境中残留的各种化学污染物也可能在农作物组织中蓄积,从而增加了食品农药残留分析的难度。农药残留测定之前要有适合于各种食品和目标物理化性质的萃取、净化、浓缩等预处理步骤,这些预处理过程往往在分析中起着主要作用。食物样品中农药提取、净化等前处理方法有其特殊性,对于不同性质样品中的不同目标物需要采用不同的前处理技术。
食品农药残留分析中,食物样品的净化要尽可能的除去与目标物同时存在的杂质,以减少色谱图中的干扰峰,同时避免杂质对色谱柱和检测器的污染。食物样品的净化,尤其是含脂质较多的食物样品净化,一直是分析工作者研究的重点,除采用常规的吸附柱分离、液-液分配、共沸蒸馏等净化措施外,更多的采用现代分离分析技术。
在农药残留分析技术发展的历程中,对气相色谱(gc)和液相色谱(lc)等各种仪器的分析速度、分辨能力和自动化程度进行了大量的研究,相比之下,对样品的制备技术关注不够。在很长的时间内,一直沿用经典的索氏提取、液-液分配、florisil、硅胶、硅藻土及氧化铝柱色谱、共沸蒸馏等技术,尽管这些技术不需要昂贵的设备和特殊仪器,但却是整个分析过程中最费时费力、最容易引起误差的环节,且大量有机溶剂的使用,造成了对环境的污染。进入90年代后,样品萃取净化技术有了较快的发展,最受普遍重视的如固相萃取法(spe)、凝胶渗透色谱法(gpc)及超临界流体萃取法(sfe),得到不断改进和应用。为此,样品前处理技术的研究成为分析化学领域中最为活跃的前沿课题之一[2]。
1.1 固相萃取法自美国waters公司的sep-pak投放市场后,固相萃取法(spe)技术取得很大进步,各种c8、c18、腈基、氨基和其它特殊填料的微柱相继得到应用。schenck[4]用florisil微柱净化,测定食物中有机氯农药(ocs)残留;wan[5]简化了植物油中ocs残留分析时硅胶柱的净化方法,减少了有机溶剂的使用;armishaw[6]比较了动物脂肪ocs残留测定时,gpc、吹扫共馏、florisil柱色谱的净化;bentabol[7]用半制备c18柱分离食用油中的ocs和有机磷农药(ops)。gillespie[8]用多柱spe净化植物油和牛脂中的ocs及ops,油或脂质样品用己烷溶解后,首先经diatoma-ceousearth(extrelutqe)柱和c18键合硅胶(ods)微柱处理,洗脱液分为两部分,一份浓缩后,丙酮溶解,用gc-火焰光度检测器(fpd)测定ops,另一份经氧化铝微柱处理,进一步除去脂质,用gc-电子捕获检测器(ecd)测定ocs。
1.2 凝胶渗透色谱法凝胶渗透色谱法(gpc)是一种快速的净化技术,应用于农药残留分析中脂类提取物与农药的分离,是含脂类食物样品农药残留分析的主要净化手段。stienwandter[9]总结了凝胶色谱在农药残留分析中的应用;李洪波[10]用交联聚苯乙烯凝胶(ngx-01)净化食物样品中ops;李怡[11]用bio-beadss-x3净化乳品中氨基甲酸酯类农药(nmcs)。chamberlain[12]采用10%乙酸乙酯和石油醚洗脱,以bio-beadss-x3解决了脂肪和油样的分离。hong[13]用溶剂提取,bio-beadss-x3净化,gc-ecd-氮磷检测器(npd)测定大豆和大米样品25种农药,并用gc-ms-选择离子监测(sim)确证。florisil、氧化铝及硅胶柱主要用于非脂质食品净化处理,采用常规的净化方法,不能保证极性农药ops在脂质性食品中的定量回收。sannino[14]用bio-beadss-x3的gpc净化方法,分析了7个脂质性食品中39种ops及其代谢产物,并进一步进行gc-ms-sim确证和定量。hop-per[15]用gpc净化,gc测定了谷物中ops、ocs及拟除虫菊酯;holstege[16]采用凝胶渗透色谱法净化,进行了43种ops、17种ocs及11种nmcs多残留分析。
1.3 超临界流体萃取法继超临界流体色谱(sfc)之后,90年代出现了超临界流体萃取技术(sfe)。常规分析时,需要用有机溶剂提取样品,提取的样品量为50~100g,在进行溶剂浓缩的过程中,可能使易挥发的农药损失或使某些农药降解。sfe的样品用量少,样品提取在低温下进行,避免了农药的损失及降解,大大提高了分析方法的可靠性,并使得分析时间缩短,排除了有机溶剂的污染。lehotay[17]建立了食品中农药多残留分析的sfe方法;snyder[18]在ocs和ops测定中,比较了用3%甲醇为改性剂的co2净化与索氏提取法的效率。对于含水量高的样品,sfe的使用受到限制,为了提高sfe的使用效率,采用冻干样品和混合样品,以吸收水分。valverde-garcia[19]用硫酸镁为干燥剂吸收样品中的水分,以sfe提取甲胺磷;用无水硫酸镁制备蔬菜样品(硫酸镁∶样品=5∶7),用sfe提取辣椒和西红柿中非极性和中极性农药。sfe是食品农药多残留分析中具有发展前景的新技术,可以替代溶剂提取方法,但在常规分析中还未得到广泛应用。
2 测定方法色谱法仍是农药残留分析的常用方法。对于挥发性农药常用gc测定;对于挥发性差、极性和热不稳定性的农药则采用lc测定。目前,在农药残留分析中使用的方法有gc、高效液相色谱法(hplc)、气相色谱-质谱法(gc-ms)、液相色谱-质谱法(lc-ms)、sfc及毛细管电泳法(ce)和酶联免疫吸附测定法(elisa)等。fodor-csorba[20]综述了食物中农药分析的色谱方法,概括了薄层色谱法(tlc)、gc、sfc及hplc在食物样品分析中的应用;leim[21]总结了脂类食物中有机农药的分析方法;sharp[22]总结了谷物中ops、拟除虫菊酯和nmcs的提取、净化及测定方法;torres[23]总结了水果、蔬菜中农药残留的测定方法;宫田晶弘[24]用gc、gc-ms-电子轰击源(ei)及gc-离子阱质谱(itms)-化学电离源(ci)测定苹果、香蕉、小麦及大米中的41种ops、23种nmcs,并对三种方法进行了比较。色谱法在农药残留分析中发挥了重要的作用。
2.1 gc法和gc-ms法以非极性或弱极性为固定相的毛细管柱gc得到广泛使用,取代了传统的填充柱gc。gc-ms和gc-ms-ms联用技术日臻成熟,质谱法已成为农药残留分析的常用方法。由于串联质谱(ms-ms)可以减少干扰物的影响,提高仪器的灵敏度,所以ms-ms是化合物结构分析及确证的有效手段。由于gc-离子阱的串联质谱用于农药残留分析时,可得到fg水平的灵敏度,所以离子阱技术将是农药残留分析发展的趋势。lehotay[25]用sfe提取,gc-itms分析了水果、蔬菜中ocs、ops、氨基甲酸酯类农药(mcs)、拟除虫菊酯及其它农药,共46个品种。py-lypiw[26]用gc-单离子检测(msd)分析了18种ocs,最低检出量为10μg/kg;valaerd-garcia[27]用gc-msd检测了蔬菜中噻嗪酮的残留;fillion[28]用乙腈提取水果、蔬菜样品,盐析分层,活性炭柱净化,用gc-msd分析了189种农药残留,并用hplc的荧光检测法测定了10种氨基甲酸酯农药残留。hogendoorn[29]用改良方法分析了2000个水果、蔬菜样品中125种农药。miyahara[30]用sfe净化,gc-itms测定了蔬菜中五氯硝基苯(pcnb)及代谢物的残留;采用sfe与gc-itms联用检测蔬菜中六氯苯(hcb)的残留。但是,gc-itms用于常规的定量测定还有待进一步发展。
2.2 hplc法及lc-ms法对于受热易分解或失去活性的物质,不能直接或不适合用gc分析。正是由于许多有机化合物的强极性、热不稳定性、高分子量和低挥发性等原因,从而推动了液相色谱技术的进步。
农药残留分析中,通常使用c8及c18反相高效液相色谱法,而以硅胶、腈基、氨基为极性键合相的色谱柱则用于特定的分析;短柱或小口径柱可提高分析速度。除采用固定波长或可变波长的紫外检测器外,二极管矩列紫外检测器和质谱检测器可用于结构鉴定。
hplc与sfe联用可以提高分析方法的选择性,并使净化与分析过程结合,减少中间步骤造成被分析组分的丢失。hplc与ms联用研究起步于70年代,与gc-ms相比,lc-ms的衔接更为复杂,目前lc-ms联用已出现多种接口方式,如电喷雾接口(es)、热喷雾接口(ts)、离子喷雾接口(is)、大气压化学电离接口(apci)以及粒子束接口(pb)。lc与快原子轰击质谱(fab-ms)以及傅立叶变换红外光谱联用技术(ftir)在农药残留分析中也得到应用。
hplc和lc-ms广泛应用于不易挥发及热不稳定化合物的分析,是农药残留定性、定量分析的有效手段,尤其是氨基甲酸酯农药(mcs)的检测。yang[31]总结了nmcs残留分析的进展;krause[32]建立了氨基甲酸酯的荧光测定法,食物样品用甲醇提取,乙腈-二氯甲烷液液分配,活性炭-celite柱净化,反相lc分离,邻苯二醛衍生,检测限为5~50μg/kg,结果用ms确证。seiber[33]采用perfluorracyl衍生,分析了谷物中的氨基甲酸酯;lau[34]用trifluoroacetyl衍生分析了谷物中的混杀威;bakowski[35]用heptafluo-robutyryl衍生,用gc-eims测定了肝组织中10种苯基-n-甲基氨基甲酸酯;ali[36]对牛肉、猪肉和家禽组织的氨基甲酸酯进行分析。liu[37]等用lc-ms对水果、蔬菜中的涕灭威、增效砜等19种农药进行检测,检测限为0.025~1mg/kg。newsome[38]比较了lc-apci-ms和lc-柱后衍生荧光法测定食品中nmcs,在10~100μg/kg范围内,两种检测器的检测结果良好,但由于两种均为非特异性检测器,都存在基质干扰,为了准确测定含量,应使用高分辨的ms进行确证。
2.3 sfc方法sfc是以超临界流体为流动相的色谱方法。超临界流体既具有液体的强溶解性能,适合于分离挥发性差和热不稳定的物质;又具有气体的低粘度和高扩散性能,传质速度快,使得分析速度提高;同时,sfc可以使用gc或hplc的检测器以及与ms、傅立叶变换红外光谱仪(ftir)联用。毛细管超临界流体色谱(csfc)的进展,促进了sfc技术的进步。csfc-ms是近年来发展的联用技术,由于csfc克服了gc和lc的不足且具有二者的优点,所以csfc-ms联用较gc-ms和lc-ms联用有更多的优越性。csfc-ms主要用于大分子量、热不稳定的复杂混合物分析,尤其对热不稳定的物质,不能用gc直接分析,而lc的选择性和灵敏度又不够,如采用csfc-ms,可较方便地分离检测。农药中含有s、p等杂原子时,极性较强,用gc和lc难于分析,痕量分析尤为困难。采用cs-fc结合选择性强的检测器,如fpd、npd、ecd等,是农药痕量分析的理想方法。在co2中添加1%甲醇作为改性剂,使极性农药得到很好地分离,消除了色谱峰的拖尾。但是农药残留分析中,sfc主要用于非极性或弱极性的物质,如何分析极性物质,将是今后的研究方向[39]。
2.4 tlc方法tlc无需特殊设备,简便易行,可同时分析多个样品,多用于复杂混合物的分离和筛选。tlc除用特殊的显色剂观察斑点颜色和用rf值定性外,与其它技术的联用不仅可以定性,而且可对样品中被分离的一种或多种成分进行定量分析。80年代发展起来的高效薄层色谱法(hptlc)与扫描技术结合,是一种易于建立和掌握的半定量技术。欧盟国家采用自动化多通道展开技术,用hptlc定量筛选了饮水中256种农药残留。
2.5 ce方法由于ce具有分离效率高、快速、样品用量少等特点,近年来得到了迅速发展,各种分离模式相继建立,高性能的商品仪器不断推向市场。对于无电荷的分子,开发了胶束电动色谱法(mekc),拓宽了ce的应用范围。毛细管电泳与质谱联用(ce-ms)可用于谷物和其它基质中带电荷基团的农药及其代谢物残留检测。ce可与原子分光光度法联用[2],如与原子吸收分光光度计(aas)、电感耦合等离子体-原子发射光谱仪(icp-aes)和icp-ms联用。cancalon[40]综述了ce和ce-ms在农药残留分析中的应用。
2.6 生物技术生物技术在农药残留分析中的应用不断增加,尤其是乳制品工业[41]。生物技术包括免疫测定法、生物测定法和生物传感器技术及免疫亲和色谱法。免疫测定法取决于抗体与底物的相互作用,目标物与抗体结合后,酶促反应产生颜色变化,用比色法测定目标物浓度。kramer[42]总结了生物传感器和免疫传感器的构件、技术特点及其应用。
抗体与抗原的特异结合为农药残留分析提供了技术保证,许多市售试剂盒的应用,使免疫测定成为各类农药残留检测的有效手段,使农药残留分析时间缩短,操作人员劳动负荷量减少。免疫方法常与其它技术联用[43],如elisa与传统的提取和净化方法、sfe、hplc及gc-ms联用;免疫亲和色谱法与ms联用以及在机器人辅助下自动的免疫化学方法都有应用报道。有报道[41]用sfe-elisa分析了大麦中杀螟硫磷、甲基毒死蜱及甲基嘧啶磷;用hplc-elisa测定水果、蔬菜中噻菌灵。由于免疫分析成本低、快速、可靠,且传感器灵敏度高,并有自动化装置,因而广泛用于农药残留的监测及人与环境接触等研究。
3 结 语
随着各种新技术的应用,农药残留分析方法日趋系统化、规范化,并向小型化、自动化方向发展。同时,由于在线联用技术可避免样品转移的损失,减少各种人为的偶然误差,因此将是农药残留分析方法研究的重点。
㈤ 拉曼光谱的应用方向
拉曼光谱的应用
通过对拉曼光谱的分析可以知道物质的振动转动能级情况,从而可以鉴别物质,分析物质的性质.下面举几个例子:
l 天然鸡血石和仿造鸡血石的拉曼光谱有本质的区别,前者主要是地开石和辰砂的拉曼光谱,后者主要是有机物的拉曼光谱,利用拉曼光谱可以区别二者。
天然鸡血石的拉曼光谱:仿造鸡血石的拉曼光谱:
上两个图中,a是地(黑色),b是血(红色)
查阅资料,对不同物质的拉曼光谱进行比对,可以知道,天然鸡血石“地”的主要成分为地开石,天然鸡血石样品“血”既有辰砂又有地开石,实际上是辰砂与地开石的集合体。仿造鸡血石“地”的主要成分是聚苯乙烯-丙烯腈,“血”与一种名为PermanentBordo的红色有机染料的拉曼光谱基本吻合。
鉴别毒品:使用拉曼光谱法对毒品和某些白色粉末进行了分析,谱图如下:
常见毒品均有相当丰富的拉曼特征位移峰,且每个峰的信噪比较高,表明用拉曼光谱法对毒品进行成分分析方法可行,得到的谱图质量较高。由于激光拉曼光谱具有微区分析功能,即使毒品和其它白色粉末状物质混和在一起,也可以通过显微分析技术对其进行识别,得到毒品和其它白色粉末分别的拉曼光谱图。
利用拉曼光谱可以监测物质的制备:担载型硫化钼、硫化钨催化剂是由相应的担载型金属氧化物在H2和H2S气氛下程序升温制得的,在工业上主要用作加氢精制催化剂。在这样的工业条件下,二维表面金属氧化物转变为二维或三维金属硫化物。与负载金属氧化物相比,负载金属硫化物的拉曼光谱研究相对较少,这是由于黑色的硫化物相对可见光的吸收较强,导致信号较弱。然而拉曼光谱能较易检测到小的金属硫化物微晶。下图给出了非负载的晶相MoS2的拉曼光谱
(图)非负载的晶相MoS2的拉曼光谱
在380和450cm-1处出现两个归属为晶相和的谱峰,而担载型晶相硫化钼的谱峰比晶相硫化钼的谱峰宽得多。钴助剂的加入导致硫化钼的谱峰发生位移,强度减弱,这是由于相以及黑色的相的形成造成的。
拉曼光谱可以监测水果表面残留的农药
在处理好的水果表面撕取一小片果皮,在水果表面分别滴上一滴不同的农药,农药就会浸润到果皮上。用吸水纸擦拭果皮上的农药液体,然后把残留有农药的果皮压入铝片的小槽中,保证使残留农药的果皮表面呈现在铝片小槽的外面,然后把压出来的汁液用吸水纸擦拭干净。光谱如下:
不同种类的水果表面滴加植保博士后得到的拉曼谱(见左图)。很明显,除了水果原本的拉曼峰外,植保博士的特征峰为993cm-1、1348cm-1、1591cm-1都出现了由于实验中模拟农药喷洒的方式比实际喷洒时的农药量少得多,尽管如此,农药的残留仍然清晰地显示出来,这表明这一方法是灵敏而适用的。定量地分析农药残留可以从农药特征谱线和水果特征谱线的相对强度比获得。
激光拉曼光谱法的应用
激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。
有机化学:拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。
高聚物:拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。电活性聚合物如聚吡咯、聚噻吩等的研究常利用拉曼光谱为工具,在高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的观测,以及聚乙烯磨损碎片结晶度的测量等研究中都彩了拉曼光谱。
生物:拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。拉曼光谱在蛋白质二级结构的研究、DNA和致癌物分子间的作用、视紫红质在光循环中的结构变化、动脉硬化操作中的钙化沉积和红细胞膜的等研究中的应用均有文献报道。
利用FT-Raman消除生物大分子荧光干扰等,有许多成功的示例。
表面和薄膜
拉曼光谱在材料的研究方面,在相组成界面、晶界等课题中可以做很多例作。
最近,对于拉曼光谱在金刚石和类金刚石薄膜的研究工作中的应用,国内外学者的兴趣有增无减。
拉曼光谱已成CVD(化学气相沉积法)制备薄膜的检测和鉴定手段。
另外,LB膜的拉曼光谱研究、二氧化硅薄膜氮化的拉曼光谱研究都已见报道。
尽管拉曼散射很弱,拉曼光谱通常不够灵敏,但利用共振或表面增强拉曼技术就可以大大加强拉曼光谱的灵敏度。表面增强拉曼光谱学(SERS)已成为拉曼光谱研究中活跃的一个领域。
发展
传统的光栅分光拉曼光谱仪,彩的是逐点扫描,单道记录的方法,十分浪费时间。而且激光拉曼光谱仪所用的激光很容易激发出荧光来,影响测定。为避免传统激光光谱仪的弊端近来研制出了两种新型的光谱仪:
傅里叶变换近红外激光拉曼光谱仪和共焦激光光谱仪。
傅里叶拉曼光谱仪由激光光源、试样室、迈克尔逊干涉仪、特殊滤光器、检测器组成。
傅里叶拉曼光谱仪和光路与傅里叶红外光谱仪的光路比较相象。检测到的信号经放大器由计算机收集处理。
㈥ 农药的残留是怎么检测的
农药速测卡的使用方法
一、整体测定法
1、选取有代表性的蔬菜样品,擦去表面泥土,剪成1cm左右见方碎片,取5g放入带盖瓶中,加入10mL纯净水或缓冲溶液,震摇50次,静置2min以上。
2、取一片速测卡,撕去上盖膜,用白色药片沾取提取液,放置10min以上进行预反应,有条件时,在37℃恒温装置中放置10min。预反应后的药片表面必须保持湿润。
3、将速测卡对折,用手捏3min或用恒温装置恒温3min,使红色药片与白色药片叠合发生反应。根据白色药品的颜色变化判读结果。
4、每批测定应设一个纯净水或缓冲液的空白对照卡。
二、表面测定法(粗筛法)
1、擦去蔬菜表面泥土,滴2-3滴洗脱液在蔬菜表面,用另一片蔬菜在滴液处轻轻摩擦。
2、取一片速测卡,撕去上盖膜,将蔬菜上的液滴滴在白色药片上。
3、放置10min以上进行预反应,有条件时,在37℃恒温装置中放置10min。预反应后的药片表面必须保持湿润。
4、将速测卡对折,用手捏3min或用恒温装置恒温3min,使红色药片与白色药片叠合发生反应。根据白色药品的颜色变化判读结果。
5、每批测定应设一个洗脱液的空白对照卡。
结果判定:
与空白对照卡比较,白色药片不变色或略有浅蓝色均为阳性结果,不变蓝为强阳性结果,说明农药残留量较高,显浅蓝色为弱阳性结果,说明农药残留量相对较低。白色药片变为天蓝色或与空白对照卡相同,为阴性结果。 对阳性结果的样品,可用其它分析方法进一步确定具体农药品种和含量。
附加说明:
1、葱、蒜、萝卜、韭菜、芹菜、香菜、茭白、蘑菇及番茄汁液中,含有对酶有影响的植物次生物质,容易产生假阳性。处理这类样品时,可采取整株(体)蔬菜浸提或采用表面测定法。对一些含叶绿素较高的蔬菜,也可采取整株(体)蔬菜浸提的方法,减少色素的干扰。
2、当温度条件低于37℃,酶反应的速度随之放慢,药片加液后放置反应的时间应相对延长,延长时间的确定,应以空白对照卡用手指(体温)捏3min时可以变蓝,即可往下操作。注意样品放置的时间应与空白对照卡放置的时间一致才有可比性。空白对照卡不变色的原因:一是药片表面缓冲溶液加的少、预反应后的药片表面不够湿润,二是温度太低。需进行适当的保温。
3、速测卡对农药非常敏感,测定时如果附近喷洒农药或使用卫生杀虫剂,以及操作者和器具沾有微量农药,都会造成对照和测定药片不变蓝。
4、红色药片与白色药片叠合反应的时间以3min为准,3min后蓝色会逐渐加深,24h后颜色会逐渐褪去。
保存条件:
阴凉、干燥、避光保存,有条件者放于4℃冰箱中最佳。农药速测卡开封后最好在三天内用完,如一次用不完可存放在干燥器中,一周内用完。保质期1年。
㈦ 食品中的农药残留应采用什么方法测定
农药残留的主要检测方法:
生化检测法是利用生物体内提取出的某种生化物质进行的生化反应来判断农药残留是否存在以及农药污染情况,在测定时样本无需经过净化,或净化比较简单,检测速度快。生化检测法中又以酶抑制法和酶联免疫法应用最为广泛。
普通家庭还是别想了,需要专业知识和仪器,可以用用我账号名字的护食安智能家用食品检测仪,轻松几下就能看到农药残留是否超标,吃起来也放心安心,欢迎wx/wb 我账号名字护食安。
㈧ 你好!我想问下,农药残留的光学检测方法共有哪几种
紫光、荧光、光谱,似乎就这样吧
㈨ 谷物中的农药残留,有时可以采用什么方法
楼主,您好。 食品的农药残留分析是在复杂的基质中对目标化合物进行鉴别和定量。由于食品中农药残留水平一般在mg/kg~μg/kg之间,因此要求分析方法灵敏度高、特异性强。对于未知农药施用史的食物样品,经常采用多组分残留分析的方法。由于各类食物样品组成成分复杂,而且不同农药品种的理化性质存在差异,因而没有一种多组分残留分析方法能够覆盖所有的农药品种。近年来,农药残留分析方法趋向于选择性强、分辨率高和检测限低以及操作简便。主要表现在由单一种类农药多残留分析向多品种农药多残留分析发展,而且对农药的代谢物、降解物以及轭合物的残留分析给予了更多的关注。本文简要综述近几年来农药残留分析技术及方法学的进展。1、食物中农药残留的特点及样品前处理技术食物样品组成复杂,基质成分与目标物含量相差悬殊,且存在农药的同系物、异构体、降解产物、代谢产物以及轭合物的影响。由于环境的迁移作用,环境中残留的各种化学污染物也可能在农作物组织中蓄积,从而增加了食品农药残留分析的难度。农药残留测定之前要有适合于各种食品和目标物理化性质的萃取、净化、浓缩等预处理步骤,这些预处理过程往往在分析中起着主要作用。食物样品中农药提取、净化等前处理方法有其特殊性,对于不同性质样品中的不同目标物需要采用不同的前处理技术。食品农药残留分析中,食物样品的净化要尽可能的除去与目标物同时存在的杂质,以减少色谱图中的干扰峰,同时避免杂质对色谱柱和检测器的污染。食物样品的净化,尤其是含脂质较多的食物样品净化,一直是分析工作者研究的重点,除采用常规的吸附柱分离、液-液分配、共沸蒸馏等净化措施外,更多的采用现代分离分析技术。在农药残留分析技术发展的历程中,对气相色谱(GC)和液相色谱(LC)等各种仪器的分析速度、分辨能力和自动化程度进行了大量的研究,相比之下,对样品的制备技术关注不够。在很长的时间内,一直沿用经典的索氏提取、液-液分配、Florisil、硅胶、硅藻土及氧化铝柱色谱、共沸蒸馏等技术,尽管这些技术不需要昂贵的设备和特殊仪器,但却是整个分析过程中最费时费力、最容易引起误差的环节,且大量有机溶剂的使用,造成了对环境的污染。进入90年代后,样品萃取净化技术有了较快的发展,最受普遍重视的如固相萃取法(SPE)、凝胶渗透色谱法(GPC)及超临界流体萃取法(SFE),得到不断改进和应用。为此,样品前处理技术的研究成为分析化学领域中最为活跃的前沿课题之一。1.1 固相萃取法自美国Waters公司的Sep-pak投放市场后,固相萃取法(SPE)技术取得很大进步,各种C8、C18、腈基、氨基和其它特殊填料的微柱相继得到应用。Schenck用Florisil微柱净化,测定食物中有机氯农药(OCs)残留;Wan简化了植物油中OCs残留分析时硅胶柱的净化方法,减少了有机溶剂的使用;Armishaw比较了动物脂肪OCs残留测定时,GPC、吹扫共馏、Florisil柱色谱的净化;Bentabol用半制备C18柱分离食用油中的OCs和有机磷农药(OPs)。Gillespie用多柱SPE净化植物油和牛脂中的OCs及OPs,油或脂质样品用己烷溶解后,首先经Diatoma-ceousearth(extrelutQE)柱和C18键合硅胶(ODS)微柱处理,洗脱液分为两部分,一份浓缩后,丙酮溶解,用GC-火焰光度检测器(FPD)测定OPs,另一份经氧化铝微柱处理,进一步除去脂质,用GC-电子捕获检测器(ECD)测定OCs。1.2 凝胶渗透色谱法凝胶渗透色谱法(GPC)是一种快速的净化技术,应用于农药残留分析中脂类提取物与农药的分离,是含脂类食物样品农药残留分析的主要净化手段。Stienwandter总结了凝胶色谱在农药残留分析中的应用;李洪波[用交联聚苯乙烯凝胶(NGX-01)净化食物样品中OPs;李怡用Bio-BeadsS-X3净化乳品中氨基甲酸酯类农药(NMCs)。Chamberlain采用10%乙酸乙酯和石油醚洗脱,以Bio-BeadsS-X3解决了脂肪和油样的分离。Hong用溶剂提取,Bio-BeadsS-X3净化,GC-ECD-氮磷检测器(NPD)测定大豆和大米样品25种农药,并用GC-MS-选择离子监测(SIM)确证。Florisil、氧化铝及硅胶柱主要用于非脂质食品净化处理,采用常规的净化方法,不能保证极性农药OPs在脂质性食品中的定量回收。Sannino用Bio-BeadsS-X3的GPC净化方法,分析了7个脂质性食品中39种OPs及其代谢产物,并进一步进行GC-MS-SIM确证和定量。Hop-per用GPC净化,GC测定了谷物中OPs、OCs及拟除虫菊酯;Holstege采用凝胶渗透色谱法净化,进行了43种OPs、17种OCs及11种NMCs多残留分析。1.3 超临界流体萃取法继超临界流体色谱(SFC)之后,90年代出现了超临界流体萃取技术(SFE)。常规分析时,需要用有机溶剂提取样品,提取的样品量为50~100g,在进行溶剂浓缩的过程中,可能使易挥发的农药损失或使某些农药降解。SFE的样品用量少,样品提取在低温下进行,避免了农药的损失及降解,大大提高了分析方法的可靠性,并使得分析时间缩短,排除了有机溶剂的污染。Lehotay建立了食品中农药多残留分析的SFE方法;Snyder在OCs和OPs测定中,比较了用3%甲醇为改性剂的CO2净化与索氏提取法的效率。对于含水量高的样品,SFE的使用受到限制,为了提高SFE的使用效率,采用冻干样品和混合样品,以吸收水分。Valverde-Garcia用硫酸镁为干燥剂吸收样品中的水分,以SFE提取甲胺磷;用无水硫酸镁制备蔬菜样品(硫酸镁∶样品=5∶7),用SFE提取辣椒和西红柿中非极性和中极性农药。SFE是食品农药多残留分析中具有发展前景的新技术,可以替代溶剂提取方法,但在常规分析中还未得到广泛应用。2、测定方法色谱法仍是农药残留分析的常用方法。对于挥发性农药常用GC测定;对于挥发性差、极性和热不稳定性的农药则采用LC测定。目前,在农药残留分析中使用的方法有GC、高效液相色谱法(HPLC)、气相色谱-质谱法(GC-MS)、液相色谱-质谱法(LC-MS)、SFC及毛细管电泳法(CE)和酶联免疫吸附测定法(ELISA)等。Fodor-Csorba综述了食物中农药分析的色谱方法,概括了薄层色谱法(TLC)、GC、SFC及HPLC在食物样品分析中的应用;Leim总结了脂类食物中有机农药的分析方法;Sharp总结了谷物中OPs、拟除虫菊酯和NMCs的提取、净化及测定方法;Torres总结了水果、蔬菜中农药残留的测定方法;宫田晶弘用GC、GC-MS-电子轰击源(EI)及GC-离子阱质谱(ITMS)-化学电离源(CI)测定苹果、香蕉、小麦及大米中的41种OPs、23种NMCs,并对三种方法进行了比较。色谱法在农药残留分析中发挥了重要的作用。2.1 GC法和GC-MS法以非极性或弱极性为固定相的毛细管柱GC得到广泛使用,取代了传统的填充柱GC。GC-MS和GC-MS-MS联用技术日臻成熟,质谱法已成为农药残留分析的常用方法。由于串联质谱(MS-MS)可以减少干扰物的影响,提高仪器的灵敏度,所以MS-MS是化合物结构分析及确证的有效手段。由于GC-离子阱的串联质谱用于农药残留分析时,可得到fg水平的灵敏度,所以离子阱技术将是农药残留分析发展的趋势。Lehotay用SFE提取,GC-ITMS分析了水果、蔬菜中OCs、OPs、氨基甲酸酯类农药(MCs)、拟除虫菊酯及其它农药,共46个品种。Py-lypiw用GC-单离子检测(MSD)分析了18种OCs,最低检出量为10μg/kg;Valaerd-Garcia用GC-MSD检测了蔬菜中噻嗪酮的残留;Fillion用乙腈提取水果、蔬菜样品,盐析分层,活性炭柱净化,用GC-MSD分析了189种农药残留,并用HPLC的荧光检测法测定了10种氨基甲酸酯农药残留。Hogendoorn用改良方法分析了2000个水果、蔬菜样品中125种农药。Miyahara用SFE净化,GC-ITMS测定了蔬菜中五氯硝基苯(PCNB)及代谢物的残留;采用SFE与GC-ITMS联用检测蔬菜中六氯苯(HCB)的残留。但是,GC-ITMS用于常规的定量测定还有待进一步发展。2.2 HPLC法及LC-MS法对于受热易分解或失去活性的物质,不能直接或不适合用GC分析。正是由于许多有机化合物的强极性、热不稳定性、高分子量和低挥发性等原因,从而推动了液相色谱技术的进步。农药残留分析中,通常使用C8及C18反相高效液相色谱法,而以硅胶、腈基、氨基为极性键合相的色谱柱则用于特定的分析;短柱或小口径柱可提高分析速度。除采用固定波长或可变波长的紫外检测器外,二极管矩列紫外检测器和质谱检测器可用于结构鉴定。HPLC与SFE联用可以提高分析方法的选择性,并使净化与分析过程结合,减少中间步骤造成被分析组分的丢失。HPLC与MS联用研究起步于70年代,与GC-MS相比,LC-MS的衔接更为复杂,目前LC-MS联用已出现多种接口方式,如电喷雾接口(ES)、热喷雾接口(TS)、离子喷雾接口(IS)、大气压化学电离接口(APCI)以及粒子束接口(PB)。LC与快原子轰击质谱(FAB-MS)以及傅立叶变换红外光谱联用技术(FTIR)在农药残留分析中也得到应用。HPLC和LC-MS广泛应用于不易挥发及热不稳定化合物的分析,是农药残留定性、定量分析的有效手段,尤其是氨基甲酸酯农药(MCs)的检测。Yang[31]总结了NMCs残留分析的进展;Krause建立了氨基甲酸酯的荧光测定法,食物样品用甲醇提取,乙腈-二氯甲烷液液分配,活性炭-celite柱净化,反相LC分离,邻苯二醛衍生,检测限为5~50μg/kg,结果用MS确证。Seiber采用perfluorracyl衍生,分析了谷物中的氨基甲酸酯;Lau用trifluoroacetyl衍生分析了谷物中的混杀威;Bakowski用heptafluo-robutyryl衍生,用GC-EIMS测定了肝组织中10种苯基-N-甲基氨基甲酸酯;Ali对牛肉、猪肉和家禽组织的氨基甲酸酯进行分析。Liu等用LC-MS对水果、蔬菜中的涕灭威、增效砜等19种农药进行检测,检测限为0.025~1mg/kg。Newsome[38]比较了LC-APCI-MS和LC-柱后衍生荧光法测定食品中NMCs,在10~100μg/kg范围内,两种检测器的检测结果良好,但由于两种均为非特异性检测器,都存在基质干扰,为了准确测定含量,应使用高分辨的MS进行确证。2.3 SFC方法SFC是以超临界流体为流动相的色谱方法。超临界流体既具有液体的强溶解性能,适合于分离挥发性差和热不稳定的物质;又具有气体的低粘度和高扩散性能,传质速度快,使得分析速度提高;同时,SFC可以使用GC或HPLC的检测器以及与MS、傅立叶变换红外光谱仪(FTIR)联用。毛细管超临界流体色谱(CSFC)的进展,促进了SFC技术的进步。CSFC-MS是近年来发展的联用技术,由于CSFC克服了GC和LC的不足且具有二者的优点,所以CSFC-MS联用较GC-MS和LC-MS联用有更多的优越性。CSFC-MS主要用于大分子量、热不稳定的复杂混合物分析,尤其对热不稳定的物质,不能用GC直接分析,而LC的选择性和灵敏度又不够,如采用CSFC-MS,可较方便地分离检测。农药中含有S、P等杂原子时,极性较强,用GC和LC难于分析,痕量分析尤为困难。采用CS-FC结合选择性强的检测器,如FPD、NPD、ECD等,是农药痕量分析的理想方法。在CO2中添加1%甲醇作为改性剂,使极性农药得到很好地分离,消除了色谱峰的拖尾。但是农药残留分析中,SFC主要用于非极性或弱极性的物质,如何分析极性物质,将是今后的研究方向。2.4 TLC方法TLC无需特殊设备,简便易行,可同时分析多个样品,多用于复杂混合物的分离和筛选。TLC除用特殊的显色剂观察斑点颜色和用Rf值定性外,与其它技术的联用不仅可以定性,而且可对样品中被分离的一种或多种成分进行定量分析。80年代发展起来的高效薄层色谱法(HPTLC)与扫描技术结合,是一种易于建立和掌握的半定量技术。欧盟国家采用自动化多通道展开技术,用HPTLC定量筛选了饮水中256种农药残留。2.5 CE方法由于CE具有分离效率高、快速、样品用量少等特点,近年来得到了迅速发展,各种分离模式相继建立,高性能的商品仪器不断推向市场。对于无电荷的分子,开发了胶束电动色谱法(MEKC),拓宽了CE的应用范围。毛细管电泳与质谱联用(CE-MS)可用于谷物和其它基质中带电荷基团的农药及其代谢物残留检测。CE可与原子分光光度法联用,如与原子吸收分光光度计(AAS)、电感耦合等离子体-原子发射光谱仪(ICP-AES)和ICP-MS联用。Cancalon[40]综述了CE和CE-MS在农药残留分析中的应用。2.6 生物技术生物技术在农药残留分析中的应用不断增加,尤其是乳制品工业。生物技术包括免疫测定法、生物测定法和生物传感器技术及免疫亲和色谱法。免疫测定法取决于抗体与底物的相互作用,目标物与抗体结合后,酶促反应产生颜色变化,用比色法测定目标物浓度。Kramer总结了生物传感器和免疫传感器的构件、技术特点及其应用。抗体与抗原的特异结合为农药残留分析提供了技术保证,许多市售试剂盒的应用,使免疫测定成为各类农药残留检测的有效手段,使农药残留分析时间缩短,操作人员劳动负荷量减少。免疫方法常与其它技术联用,如ELISA与传统的提取和净化方法、SFE、HPLC及GC-MS联用;免疫亲和色谱法与MS联用以及在机器人辅助下自动的免疫化学方法都有应用报道。有报道[41]用SFE-ELISA分析了大麦中杀螟硫磷、甲基毒死蜱及甲基嘧啶磷;用HPLC-ELISA测定水果、蔬菜中噻菌灵。由于免疫分析成本低、快速、可靠,且传感器灵敏度高,并有自动化装置,因而广泛用于农药残留的监测及人与环境接触等研究。3、结语随着各种新技术的应用,农药残留分析方法日趋系统化、规范化,并向小型化、自动化方向发展。同时,由于在线联用技术可避免样品转移的损失,减少各种人为的偶然误差,因此将是农药残留分析方法研究的重点。
㈩ 红外光谱法如何进行定量分析
红外定量分析的原理和可见紫外光谱的定量分析一样,也是基于比耳朗勃特(Beer-Lambert)定律。
比尔—朗伯定律数学表达式:A=lg(1/T)=Kbc
A为吸光度,T为透射比(透光度),是出射光强度(I)比入射光强度(I0).
K为摩尔吸光系数.它与吸收物质的性质及入射光的波长λ有关.
c为吸光物质的浓度,单位为mol/L,b为吸收层厚度,单位为cm。【b也常用L替换,含义一致】
(10)光谱学方法检测农药扩展阅读:
红外光谱有许多谱带可供选择,更有利于排除干扰。Ø 红外光源发光能量较低,红外检测器的灵敏度也很低,ε<103。
Ø 吸收池厚度小、单色器狭缝宽度大,测量误差也较大。
☆对于农药组份、土壤表面水份、田间二氧化碳含量的测定和谷物油料作物及肉类食品中蛋白质、脂肪和水份含量的测定,红外光谱法是较好的分析方法。