‘壹’ 锻造生产危险因素及主要原因都有哪些内容
锻造生产危险因素及主要原因:
一、在锻造生产中,易发生的外伤事故,按其原因可分为三种:
第一、机械伤——由机器、工具或工件直接造成的刮伤、碰伤;
第二、烫伤;
第三、电触伤。
二、从安全技术劳动保护的角度来看,锻造车间的特点是:
1、锻造生产是在金属灼热的状态下进行的(如低碳钢锻造温度范围在1250~750℃之间),由于有大量的手工劳动,稍不小心就可能发生灼伤。
2、锻造车间里的加热炉和灼热的钢锭、毛坯及锻件不断地发散出大量的辐射热(锻件在锻压终了时,仍然具有相当高的温度),工人经常受到热辐射的侵害。
3、锻造车间的加热炉在燃烧过程中产生的烟尘排入车间的空气中,不但影响卫生,还降低了车间内的能见度(对于燃烧固体燃料的加热炉,情况就更为严重),因而也可能会引起工伤事故。
4、锻造生产所使用的设备如空气锤、蒸汽锤、摩擦压力机等,工作时发出的都是冲击力。设备在承受这种冲击载荷时,本身容易突然损坏(如锻锤活塞杆的突然折断),而造成严重的伤害事故。
压力机(如水压机、曲柄热模锻压力机、平锻机、精压机)剪床等,在工作时,冲击性虽然较小,但设备的突然损坏等情况也时有发生,操作者往往猝不及防,也有可能导致工伤事故。
5、锻造设备在工作中的作用力是很大的,如曲柄压力机、拉伸锻压机和水压机这类锻压设备,它们的工作条件虽较平稳,但其工作部件所发生的力量却是很大的,如我国已制造和使用了12000t的锻造水压机。就是常见的100~150t的压力机,所发出的力量已是够大的了。如果模子安装或操作时稍有不正确,大部分的作用力就不是作用在工件上,而是作用在模子、工具或设备本身的部件上了。这样,某种安装调整上的错误或工具操作的不当,就可能引起机件的损坏以及其他严重的设备或人身事故。
6、锻工的工具和辅助工具,特别是手锻和自由锻的工具、夹钳等名目繁多,这些工具都是一起放在工作地点的。在工作中,工具的更换非常频繁,存放往往又是杂乱的,这就必然增加对这些工具检查的困难,当锻造中需用某一工具而时常又不能迅速找到时,有时会“凑合”使用类似的工具,为此往往会造成工伤事故。
7、由于锻造车间设备在运行中发生的噪声和震动,使工作地点嘈杂不堪入耳,影响人的听觉和神经系统,分散了注意力,因而增加了发生事故的可能性。
三、锻造车间工伤事故的原因分析:
1、需要防护的地区、设备缺乏防护装置和安全装置。
2、设备上的防护装置不完善,或未使用。
3、生产设备本身有缺陷或毛病。
4、设备或工具损坏及工作条件不适当。
5、锻模和铁砧有毛病。
6、工作场地组织和管理上的混乱。
7、工艺操作方法及修理的辅助工作做得不适当。
8、个人防护用具如防护眼镜有毛病,工作服和工作鞋不符合工作条件。
9、几个人共同进行一项作业时,互相配合不协调。
10、缺乏技术教育和安全知识,以致采用了不正确的步骤和方法。
‘贰’ 高速钢反复锻造的原因
也许是买了假货!
高速钢一般不做抗拉强度检验,而以金相、硬度检验为主。
钨系和钼系高速钢经正确的热处理后,洛氏硬度能达到63以上,钴系高速钢在65以上。钢材的酸浸低倍组织不得有肉眼可见的缩孔 、翻皮。中心疏松,一般疏松应小于1级。
金相检验的内容主要包括脱碳层、显微组织和碳化物不均匀度3个项目。
1.高速钢不应有明显的脱碳。显微组织不得有鱼骨状共晶莱氏体存在。
2.高速钢中碳化物不均匀度对质量影响最大,目前冶金和机械部门对碳化物不均匀度的级别 十分重视。根据钢的不同用途可对碳化物不均匀度提出不同的级别要求,通常情况下应小于3级。
3.用高速钢制造切削工具,除因其具有高硬度、高耐磨性和足够的韧性之外,还有一个重要因素是具有红硬性。(红硬性是指刀具在高速切削时,刀刃在红热状态下抵抗软化的能力。)
一种衡量红硬性的方法是先把钢加热至580~650℃,保温1小时,然后冷却,这样反复4次后测量其硬度值。高速钢的淬火温度一般均接近钢的熔点,如钨系高速钢为1210~1240℃,高钼系高速钢为1180~1210℃。淬火后一般需在 540~560℃之间回火3次。提高淬火温度可以增加钢的红硬性。为了提高高速钢刀具的使用寿命,可对其表面进行强化处理,如低温氰化、氮化、硫氮共渗等。[1]
‘叁’ 锻造的目的是什么
使坯料成形及控制其内部组织性能达到所需几何形状、尺寸以及品质的锻件。
坯料锻前加热是整个锻造过程中一个不可缺少的重要环节,对提高锻造生产率,保证锻件质量,以及节约能源消耗和降低产品成本等都有直接的影响。在金属材料所允许的导温性和内应力的条件下,以最快的速度加热到预定的温度,提高效率,节约能源。
锻造操作注意事项
每次镦粗都要避免纵弯和轴心偏斜。高速钢镦歪后是不能在锤砧边矫正的,只能在锤砧中央倒棱、放正,重新镦粗。原材料应锯切,两端平行,并与轴心线垂直。若下料长度与直径之比较大,为实现正常镦粗,必须先将坯料回转倒棱,即采用“铆镦法”镦粗。
拔长时应使锻锤每次打击时的送进量和压下量均匀一致, 决不能在坯料表面造成任何硬性压痕。翻转也应勤快均匀,要坚决避免坯料在同一部位受到反复锤击,以防锤击变形能量变成很大的热能,使金属局部升温、过热而引起开裂。
‘肆’ 锻造起重机车轮时产生的毛刺是什么原因呢
切边模与锻模配合不当;切边模间隙不合理;切边模磨损。以上几种发生都会产生毛刺。这是山西永鑫生锻造厂实际生产锻造时总结出来的。在冲裁加工中,产生不同程度的毛刺是不可避免的。毛刺过大的主要原因:1)凸、凹模之间的间隙不当或不均匀;2)刃口由于磨损和其他原因而变钝。
尽管冲压件毛刺不可避免,但改善冲压条件则有可能减少毛刺。解决方法如下:
1)保证凸、凹模加工精度和装配精度,保证凸模的垂直度和承受测压的刚性;整个模具要有足够的刚度。在模具使用中经常检查凸、凹模刃口的锋利程度,发现磨损后及时修理。
2)保证模具安装后上模与下模的间隙均匀;安装要牢固,防止在冲压加工过程中松动;要保证模具与压力机的平行度。
3)压力机的刚性好,弹性变形小;滑块导轨精度高,滑块运动平稳,垫板与滑块底面平行,要有足够大的工作压力。
对于冲压件上的毛刺可以通过后处理的方法去除,最常用的方法就是利用滚光处理
‘伍’ 如何探讨锻件的质量问题
生产锻件时,除了必须保证所要求的形状和尺寸外,还必须满足零件在使用过程中所提出的性能要求,其中主要包括:强度指标、塑性指标、冲击韧性、疲劳韧性和抗应力腐蚀性能要求,对高温工作的零件,还有高温瞬时拉伸性能、持久性能、抗蠕变性能和热疲劳性能等。而大型锻件的性能又取决于其组织和结构(以下简称为组织)。
不同材料,或同一材料的不同状态的锻件,其性能不同,归根到底都是由其组织决定的。金属的组织与材料的化学成分、冶炼方法、压力加工过程和工艺等因素有关。其中压力加工过程对锻件的组织有重要的影响,尤其对那些在加热和冷却过程中没有同素异构转变的材料,如:奥氏体和铁素体耐热不锈钢、高温合金、铝合金和镁合金等,主要依靠在压力加工过程中,正确控制热力学工艺参数来改善锻件的组织和提高其性能。
‘陆’ 不锈钢锻件在锻造过程中造成缺陷的原因是什么
缺陷原因---高温回炉后变形量太小,通过缺陷原因和产生部位的分析,我们分析出的结果是锻造班组在这些不锈钢锻件即将成形时,又装回到高温炉内加热。经过一段短时间保温后(因为里面的晶粒长大不太严重),夹出来只平了平端面,基本上没有滚外圆。所以,其内外表面一定厚度中的晶粒在高温下长大、合并了。这种缺陷做锻后热处理是无法消除的(内外表面附近并非没有缺陷,而是探头下面存在探伤盲区)。看到以上的缺陷产生原因分析,大家更应该明白:为什么一再强调,后一火的锻造,绝不允许无变形或小变形。按以上所述永鑫生锻造厂提醒各位一定要注意。
‘柒’ 锻件裂纹的产生是什么原因
首先,需对“原材料裂纹”和“锻造裂纹”先确定概念,对锻造后出现的裂纹,都应理解为“锻造裂纹”,只不过,导致锻造裂纹产生的主要因素可以再分成:
1、原材料缺陷所致的锻造裂纹;
2、锻造工艺不当所致的锻造裂纹。
从裂纹宏观形态先进行大致区分,横向一般与母材无关,纵向裂纹需要结合裂纹形态与锻打工艺等结合分析。
裂纹两侧有脱碳,肯定是锻造过程中产生的,至于是原材料还是锻造工艺造成的,这就需要根据金相和工艺过程去分析。
对同一批次同种型号的工件,锻造裂纹基本都在一个位置,在显微镜下延伸比较浅,两边有脱碳。而材料裂纹不一定在同一位置重复出现,显微镜下深浅不一。多看多分析,还是有一定规律的。
材料裂纹多半是与材料纵向一致的。而锻打裂纹有两种,一种是过热过烧造成的,裂纹附近有氧化脱碳现象。还有一种是打冷铁也会造成发裂,这一种有晶格破坏撕裂的现象。从金相上可以区别开来。
锻造的目的:
1、成形要求;
2、改善材料内部组织,细化晶粒,均匀元素成分与组织;
3、使材料更致密(锻合材料内部原有未暴露空气的缩孔或疏松等等),流线分布更合理;
4、通过合理的锻后热处理方式,为下道工序服务。
因此,锻造锻合原材料内部一定的缺陷是职责所在。大型铸锻件往往是直接由钢锭锻压开始的,钢锭内部必然存在大量的冶铸缺陷,显然,合理的锻造,都可以将其中的所谓“缺陷”锻合。所以,锻造工艺的合理性是决定锻件是否会开裂的主要原因。
当然,相对某一稳定的锻造工艺,如果事前对锻造前原材料提出明确的原材料缺陷等级控制要求的,当因原材料缺陷等级超出要求并在原锻造工艺下锻造出现的开裂现象,我们可以认作“原材料缺陷所致的锻造裂纹”。
裂纹问题具体问题具体分析,结合工艺过程分析,包括加热过程有没有保护气氛都应该考虑,锻造应该是把原材料裂纹锻打密合才对。氧化皮通常致密是灰色的,制样过程造成的脏东西很疏松的颜色偏黑,高倍下一看就知道,实在无法分辨直接打能谱一定能分辨。
锻造裂纹
锻造裂纹一般在高温时形成,锻造变形时由于裂纹扩大并接触空气,故在100X或500X的显微镜下观察,可见到裂纹内充有氧化皮,且两侧是脱碳的,组织为铁素体,其形态特征是裂纹比较粗壮且一般经多条形式存在,无明细尖端,比较圆纯,无明细的方向性,除以上典型
‘捌’ 锻造裂纹的产生原因主要有哪几方面
锻造裂纹是一个永久性话题,不能完全根治,只能改进。
1、设计裂纹:是金属回流产生的折裂纹,需要有经验的人才能改进;
2、模具老化,模具产生凸肉,完成折裂纹:需要周期性模具检查保养;
3、原材料带来的裂纹:可能是原材料本身有裂纹,这样锻件一般会产生通裂;或者下料端面有缺陷。
4、热处理裂纹:热处理时,锻件应力开裂,这种时候需要调整淬火液冷速和淬火温度
‘玖’ 不锈钢锻件出现裂纹的原因
不锈钢锻件出现裂纹的原因解决办法:
1、原材料缺陷引起的锻造裂纹。
原材料不纯,残余缩孔、钢中夹杂物会导致不锈钢锻件出现裂纹。需要用符合要求的原材料。
2、锻打前温度偏低,致使锻打中积聚应力过大,之后保温又不利就会开裂。
出炉温度高一些,锻打过后回炉温度不宜太低,过后保温良好。
3、锻造本身引起锻造裂纹。
热不当、变形不当及锻后冷却不当、未及时热处理均会导致裂纹。需要用更规范的锻造工艺进行处理。
‘拾’ 请问锻造对金属组织、性能的影响与锻件缺陷有哪些
锻件的缺陷包括表面缺陷和内部缺陷。有的锻件缺陷会影响后续工序的加工质量,有的则严重影响锻件的性能,降低所制成品件的使用寿命,甚至危及安全。因此,为提高锻件质量,避免锻件缺陷的产生,应采取相应的工艺对策,同时还应加强生产全过程的质量控制。本章概要介绍三方面的问题:锻造对金属组织、性能的影响与锻件缺陷;锻件质量检验的内容和方法;锻件质量分析的一般过程。
(一)锻造对金属组织和性能的影响锻造生产中,除了必须保证锻件所要求的形状和尺寸外,还必须满足零件在使用过程中所提出的性能要求,其中主要包括:强度指针、塑性指针、冲击韧度、疲劳强度、断裂韧度和抗应力腐蚀性能等,对高温工作的零件,还有高温瞬时拉伸性能、持久性能、抗蠕变性能和热疲劳性能等。锻造用的原材料是铸锭、轧材、挤材和锻坯。而轧材、挤材和锻坯分别是铸锭经轧制、挤压及锻造加工后形成的半成品。锻造生产中,采用合理的工艺和工艺参数,可以通过下列几方面来改善原材料的组织和性能:1)打碎柱状晶,改善宏观偏析,把铸态组织变为锻态组织,并在合适的温度和应力条件下,焊合内部孔隙,提高材料的致密度;2)铸锭经过锻造形成纤维组织,进一步通过轧制、挤压、模锻,使锻件得到合理的纤维方向分布;3)控制晶粒的大小和均匀度;4)改善第二相(例如:莱氏体钢中的合金碳化物)的分布;5)使组织得到形变强化或形变相变强化等。由于上述组织的改善,使锻件的塑性、冲击韧度、疲劳强度及持久性能等也随之得到了提高,然后通过零件的最后热处理就能得到零件所要求的硬度、强度和塑性等良好的综合性能。但是,如果原材料的质量不良或所采用的锻造工艺不合理,则可能产生锻件缺陷,包括表面缺陷、内部缺陷或性能不合格等。
(二)原材料对锻件质量的影响原材料的良好质量是保证锻件质量的先决条件,如原材料存在缺陷,将影响锻件的成形过程及锻件的最终质量。如原材料的化学元素超出规定的范围或杂质元素含量过高,对锻件的成形和质量都会带来较大的影响,例如:S、B、Cu、Sn等元素易形成低熔点相,使锻件易出现热脆。为了获得本质细晶粒钢,钢中残余铝含量需控制在一定范围内,例如Al酸0.02%~0.04%(质量分数)。含量过少,起不到控制晶粒长大的作用,常易使锻件的本质晶粒度不合格;含铝量过多,压力加工时在形成纤维组织的条件下易形成木纹状断口、撕痕状断口等。又如,在1Cr18Ni9Ti奥氏体不锈钢中,Ti、Si、Al、Mo的含量越多,则铁素体相越多,锻造时愈易形成带状裂纹,并使零件带有磁性。如原材料内存在缩管残余、皮下起泡、严重碳化物偏析、粗大的非金属夹杂物(夹渣)等缺陷,锻造时易使锻件产生裂纹。原材料内的树枝状晶、严重疏松、非金属夹杂物、白点、氧化膜、偏析带及异金属混人等缺陷,易引起锻件性能下降。原材料的表面裂纹、折叠、结疤、粗晶环等易造成锻件的表面裂纹。
(三)锻造工艺过程对锻件质量的影响锻造工艺过程一般由以下工序组成,即下料、加热、成形、锻后冷却、酸洗及锻后热处理。锻造过程中如果工艺不当将可能产生一系列的锻件缺陷。加热工艺包括装炉温度、加热温度、加热速度、保温时间、炉气成分等。如果加热不当,例如加热温度过高和加热时间过长,将会引起脱碳、过热、过烧等缺陷。对于断面尺寸大及导热性差、塑性低的坯料,若加热速度太快,保温时间太短,往往使温度分布不均匀,引起热应力,并使坯料发生开裂。锻造成形工艺包括变形方式、变形程度、变形温度、变形速度、应力状态、工模具的情兄和润滑条件等,如果成形工艺不当,将可能引起粗大晶粒、晶粒不均、各种裂纹、折叠。寒流、涡流、铸态组织残留等。锻后冷却过程中,如果工艺不当可能引起冷却裂纹、白点、网状碳化物等。
(四)锻件组织对最终热处理后的组织和性能的影响奥氏体和铁素体耐热不锈钢、高温合金、铝合金、镁合金等在加热和冷却过程中,没有同素异构转变的材料,以及一些铜合金和钛合金等,在锻造过程中产生的组织缺陷用热处理的办法不能改善。在加热和冷却过程中有同素异构转变的材料,如结构钢和马氏体不锈钢等,由于锻造工艺不当引起的某些组织缺陷或原材料遗留的某些缺陷,对热处理后的锻件质量有很大影响。现举例说明如下:
1)有些锻件的组织缺陷,在锻后热处理时可以得到改善,锻件最终热处理后仍可获得满意的组织和性能。例如,在一般过热的结构钢锻件中的粗晶和魏氏组织,过共析钢和轴承钢由于冷却不当引起的轻微的网状碳化物等。
2)有些锻件的组织缺陷,用正常的热处理较难消除,需用高温正火、反复正火、低温分解、高温扩散退火等措施才能得到改善。例如,低倍粗晶、9Cr18不锈钢的孪晶碳化物等。
3)有些锻件的组织缺陷,用一般热处理工艺不能消除,结果使最终热处理后的锻件性能下降,甚至不合格。例如,严重的石状断口和棱面断口、过烧、不锈钢中的铁素体带、莱氏体高合金工具钢中的碳化物网和带等。
4)有些锻件的组织缺陷,在最终热处理时将会进一步发展,甚至引起开裂。例如,合金结构钢锻件中的粗晶组织,如果锻后热处理时未得到改善,在碳、氮共渗和淬火后常引起马氏体针粗大和性能不合格;高速钢中的粗大带状碳化物,淬火时常引起开裂。锻造过程中常见的缺陷及其产生原因在第二章中将具体介绍。应当指出,各种成形方法中的常见缺陷和各类材料锻件的主要缺陷都是有其规律的。不同成形方法,由于其受力情况不同,应力应变特点不一样,因而可能产生的主要缺陷也是不一样的。例如,坯料镦粗时的主要缺陷是侧表面产生纵向或45°方向的裂纹,锭料镦粗后上、下端常残留铸态组织等;矩形截面坯料拔长时的主要缺陷是表面的横向裂纹和角裂,内部的对角线裂纹和横向裂纹;开式模锻时的主要缺陷则是充不满、折叠和错移等。各主要成形工序中常见的缺陷将在第四章中详细介绍。不同种类的材料,由于其成分、组织不同,在加热、锻造和冷却过程中,其组织变化和力学行为也不同,因而锻造工艺不当时,可能产生的缺陷也有其特殊性。例如,莱氏体高合金工具钢锻件的缺陷主要是碳化物颗粒粗大、分布不均匀和裂纹,高温合金锻件的缺陷主要是粗晶和裂纹;奥氏体不锈钢锻件的缺陷主要是晶间贫铬,抗晶间腐蚀能力下降,铁素体带状组织和裂纹等;铝合金锻件的缺陷主要是粗晶、折叠、涡流、穿流等。