Ⅰ 弦长公式最简单计算方法
1、 y^2=2px,过焦点直线交抛物
线于A(x1,y1)和B(x2,y2)两点,则AB弦长:d=p+x1+x2
2、y^2=-2px,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙x1+x2﹚
3、x^2=2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p+y1+y2
4、x^2=-2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙y1+y2﹚
(1)求双曲线弦长最简单的方法扩展阅读:
关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长;
这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。
Ⅱ 双曲线的弦长公式怎么推的啊
(引):
由直线的斜率公式:k
=
(y1
-
y2)
/
(x1
-
x2)
得y1
-
y2
=
k(x1
-
x2)
或
x1
-
x2
=
(y1
-
y2)/k
分别代入两点间的距离公式:|AB|
=
√[(x1
-
x2)
+
(y1
-
y2)
]
稍加整理即得:
|AB|
=
|x1
-
x2|√(1
+
k)
或
|AB|
=
|y1
-
y2|√(1
+
1/k)
Ⅲ 双曲线的玄长咋求
直线与圆锥曲线相交所得弦长d为:
公式一:
d = √(1+k^2)|x1-x2| = √(1+k^2)[(x1+x2)^2 - 4x1x2] = √(1+1/k^2)|y1-y2| = √(1+1/k^2)[(y1+y2)^2 - 4y1y2]
关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式√(1+k^2)[(x1+x2)^2 - 4x1x2]求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。
公式二:(鱼鱼补充)
d =√[(1+k^2)△/a^2] =√(1+k^2)√(△)/|a|
个人感觉,在知道圆和直线方程求弦长时,可利用方法二,将直线方程代入圆方程,消去一未知数,得到一个两元一次方程,其中△为两元一次方程中的 B^2-4AC ,a为二次项系数。
Ⅳ 双曲线的弦长公式是什么
公式是设直线y=kx+b与双曲线交于A(x1,y1),B(x2,y2)两点,则|AB|=√(1+k²)[(X1+X2)²-4X1X2]。
注意
关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换。
设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。
Ⅳ 双曲线弦长公式适用范围
在数学中,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的半实轴。
弦长公式概念:弦长公式,在这里指直线与圆锥曲线相交所得弦长d的公式。 PS:圆锥曲线,是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,双曲线等。 公式一: 一、引入 直线与圆锥曲线的位置关系是平面解析几何的重要内容之一,也是高考的热点,反复考查。考查的主要内容包括:直线与圆锥曲线公共点的个数问题;弦的相关问题(弦长问题、中点弦问题、垂直问题、定比分点问题等);对称问题;最值问题、轨迹问题等。 二、证明 弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1] 其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,"││"为绝对值符号,"√"为根号 证明方法如下: 假设直线为:Y=kx+b 圆的方程为:(x-a)^+(y-u)^2=r^2 假设相交弦为AB,点A为(x1.y1)点B为(X2.Y2) 则有AB=√(x1-x2)^2+(y1-y2)^ 把y1=kx1+b. y2=kx2+b分别带入, 则有: AB=√(x1-x2)^2+(kx1-kx2)^2 =√(x1-x2)^2+k^2(x1-x2)^2 =√1+k^2*│x1-x2│ 证明ABy1-y2│√[(1/k^2)+1] 的方法也是一样的 公式二: 抛物线y^2=2px,过焦点直线交抛物抛物线线于A(x1,y1)和B(x2,y2)两点,则AB弦长:d=x1+x2+p 公式三: d=√(1+k^2)|x1-x2|=√(1+k^2)[(x1+x2^2-4x1x2]=√(1+1/k^2)|y1-y2|=√(1+1/k^2)[(y1+y2^2-4y1y2] 关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式√(1+k^2)[(x1+x2^2-4x1x2]求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。 d=√[(1+k^2)△/a^2]=√(1+k^2)√(△)/|a| 在知道圆和直线方程求弦长时,可利用方法二,将直线方程代入圆方程,消去一未知数,得到一个一元二次方程,其中△为一元二次方程中的b^2-4ac,a为二次项系数。 补遗:公式2符合椭圆等圆锥曲线不光是圆。公式/|a|是在整个平方根运算后再进行的……(先开平方了然后再除) 2式可以由1推出,很简单,由韦达定理,x1+x2=-b/ax1x2=c/a带入再通分即可…… 在知道圆和直线方程求弦长时也可以用勾股定理(点到直线距离、半径、半弦)。
Ⅵ 椭圆双曲线弦长求法
可以用弦长公式啊:这个要求先知道与椭圆或双曲线相交的直线方程,因为要用到斜率,然后将直线方程代入椭圆或双曲线的表达式、消去y,得到只含x的一元二次方程,再利用韦达定理,找出X1+X2=_;
X1*X2=_.
全部代入弦长公式就可以求了!不明白再问我,希望能帮你
Ⅶ 双曲线抛物线弦长公式
设弦所在直线的方程为 y=kx+b;代入抛物线或双曲线方程,化简得二次方程,
设该二次方程的两个根为x₁,x₂(根不用求出);由韦达定理可求得x₁+x₂及x₁x₂,
那么弦长∣AB∣=√{(1+k²)[(x₁+x₂)²-4x₁x₂]}
Ⅷ 双曲线弦长公式是什么
设直线y=kx+b与双曲线交于A(x1,y1),B(x2,y2)两点,则|AB|=√(1+k²)[(X1+X2)²-4X1X2]。
在数学中,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的半实轴。