1. 图像的分割和边缘检测是一回事吗
这个不是一回事,图像分割是从图像中把你感兴趣的目标提取出来,而边缘检测是图像分割的一种方法,是检测被分割目标的边缘,然后再进行图像分割。
2. 图像分割和图像边缘检测 到底是什么区别呢
图像分割是指将特定的影像分割成区域内部属性一致而区域间不一致的技术。一般图像分割方法分为基于阈值的方法,基于边缘的方法,基于区域的方法和基于特定理论的方法,基于边缘的方法就是首先进行边缘提取,认为边缘内的区域就是同一属性的,然后进行边缘连接把边缘闭合起来形成区域。因此可以说边缘处理只是图像分割的一种。
3. 什么叫图像分割
在计算机视觉领域,图像分割(Segmentation)指的是将数字图像细分为多个图像子区域(像素的集合)(也被称作超像素)的过程。图像分割的目的是简化或改变图像的表示形式,使得图像更容易理解和分析。[1]图像分割通常用于定位图像中的物体和边界(线,曲线等)。更精确的,图像分割是对图像中的每个像素加标签的一个过程,这一过程使得具有相同标签的像素具有某种共同视觉特性。
图像分割的结果是图像上子区域的集合(这些子区域的全体覆盖了整个图像),或是从图像中提取的轮廓线的集合(例如边缘检测)。一个子区域中的每个像素在某种特性的度量下或是由计算得出的特性都是相似的,例如颜色、亮度、纹理。邻接区域在某种特性的度量下有很大的不同。
4. 图像分割是指什么
图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。1998年以来,研究人员不断改进原有的图像分割方法并把其它学科的一些新理论和新方法用于图像分割,提出了不少新的分割方法。图像分割后提取出的目标可以用于图像语义识别,图像搜索等等领域。
5. 图象分割有哪三种不同的途径
图象分割有三种不同的途径,其一是将各象素划归到相应物体或区域的象素聚类方法即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘象素再将边缘象素连接起来构成边界形成分割。早期的图像分割方法可以分为两大类。一类是边界方法,这种方法假设图像分割结果的某个子区域在原来图像中一定会有边缘存在;一类是区域方法,这种方法假设图像分割结果的某个子区域一定会有相同的性质,而不同区域的像素则没有共同的性质。这两种方法都有优点和缺点,有的学者考虑把两者结合起来进行研究。现在,随着计算机处理能力的提高,很多方法不断涌现,如基于彩色分量分割、纹理图像分割。所使用的数学工具和分析手段也是不断的扩展,从时域信号到频域信号处理,小波变换等等。
图像分割主要包括4种技术:并行边界分割技术、串行边界分割技术、并行区域分割技术和串行区域分割技术。下面是分别对每一项做简单的介绍。
6. 数字图像处理的主要方法
数字图像处理的工具可分为三大类:
第一类包括各种正交变换和图像滤波等方法,其共同点是将图像变换到其它域(如频域)中进行处理(如滤波)后,再变换到原来的空间(域)中。
第二类方法是直接在空间域中处理图像,它包括各种统计方法、微分方法及其它数学方法。
第三类是数学形态学运算,它不同于常用的频域和空域的方法,是建立在积分几何和随机集合论的基础上的运算。
由于被处理图像的数据量非常大且许多运算在本质上是并行的,所以图像并行处理结构和图像并行处理算法也是图像处理中的主要研究方向。
(6)图像分割是特征检测的方法吗扩展阅读
1、数字图像处理包括内容:
图像数字化;图像变换;图像增强;图像恢复;图像压缩编码;图像分割;图像分析与描述;图像的识别分类。
2、数字图像处理系统包括部分:
输入(采集);存储;输出(显示);通信;图像处理与分析。
3、应用
图像是人类获取和交换信息的主要来源,因 此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。
主要应用于航天和航空、生物医学工程、通信 工程、工业和工程、军事公安、文化艺术、机器人视觉、视频和多媒体系统、科学可视化、电子商务等方面。
7. 图像的特征提取都有哪些算法
常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。
一 颜色特征
(一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。
(二)常用的特征提取与匹配方法
(1) 颜色直方图
其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。
最常用的颜色空间:RGB颜色空间、HSV颜色空间。
颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。
(2) 颜色集
颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从 RGB颜色空间转化成视觉均衡的颜色空间(如 HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系
(3) 颜色矩
这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。
(4) 颜色聚合向量
其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。
(5) 颜色相关图
二 纹理特征
(一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实的纹理。
例如,水中的倒影,光滑的金属面互相反射造成的影响等都会导致纹理的变化。由于这些不是物体本身的特性,因而将纹理信息应用于检索时,有时这些虚假的纹理会对检索造成“误导”。
在检索具有粗细、疏密等方面较大差别的纹理图像时,利用纹理特征是一种有效的方法。但当纹理之间的粗细、疏密等易于分辨的信息之间相差不大的时候,通常的纹理特征很难准确地反映出人的视觉感觉不同的纹理之间的差别。
(二)常用的特征提取与匹配方法
纹理特征描述方法分类
(1)统计方法统计方法的典型代表是一种称为灰度共生矩阵的纹理特征分析方法Gotlieb 和 Kreyszig 等人在研究共生矩阵中各种统计特征基础上,通过实验,得出灰度共生矩阵的四个关键特征:能量、惯量、熵和相关性。统计方法中另一种典型方法,则是从图像的自相关函数(即图像的能量谱函数)提取纹理特征,即通过对图像的能量谱函数的计算,提取纹理的粗细度及方向性等特征参数
(2)几何法
所谓几何法,是建立在纹理基元(基本的纹理元素)理论基础上的一种纹理特征分析方法。纹理基元理论认为,复杂的纹理可以由若干简单的纹理基元以一定的有规律的形式重复排列构成。在几何法中,比较有影响的算法有两种:Voronio 棋盘格特征法和结构法。
(3)模型法
模型法以图像的构造模型为基础,采用模型的参数作为纹理特征。典型的方法是随机场模型法,如马尔可夫(Markov)随机场(MRF)模型法和 Gibbs 随机场模型法
(4)信号处理法
纹理特征的提取与匹配主要有:灰度共生矩阵、Tamura 纹理特征、自回归纹理模型、小波变换等。
灰度共生矩阵特征提取与匹配主要依赖于能量、惯量、熵和相关性四个参数。Tamura 纹理特征基于人类对纹理的视觉感知心理学研究,提出6种属性,即:粗糙度、对比度、方向度、线像度、规整度和粗略度。自回归纹理模型(simultaneous auto-regressive, SAR)是马尔可夫随机场(MRF)模型的一种应用实例。
三 形状特征
(一)特点:各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索,但它们也有一些共同的问题,包括:①目前基于形状的检索方法还缺乏比较完善的数学模型;②如果目标有变形时检索结果往往不太可靠;③许多形状特征仅描述了目标局部的性质,要全面描述目标常对计算时间和存储量有较高的要求;④许多形状特征所反映的目标形状信息与人的直观感觉不完全一致,或者说,特征空间的相似性与人视觉系统感受到的相似性有差别。另外,从 2-D 图像中表现的 3-D 物体实际上只是物体在空间某一平面的投影,从 2-D 图像中反映出来的形状常不是 3-D 物体真实的形状,由于视点的变化,可能会产生各种失真。
(二)常用的特征提取与匹配方法
Ⅰ几种典型的形状特征描述方法
通常情况下,形状特征有两类表示方法,一类是轮廓特征,另一类是区域特征。图像的轮廓特征主要针对物体的外边界,而图像的区域特征则关系到整个形状区域。
几种典型的形状特征描述方法:
(1)边界特征法该方法通过对边界特征的描述来获取图像的形状参数。其中Hough 变换检测平行直线方法和边界方向直方图方法是经典方法。Hough 变换是利用图像全局特性而将边缘像素连接起来组成区域封闭边界的一种方法,其基本思想是点—线的对偶性;边界方向直方图法首先微分图像求得图像边缘,然后,做出关于边缘大小和方向的直方图,通常的方法是构造图像灰度梯度方向矩阵。
(2)傅里叶形状描述符法
傅里叶形状描述符(Fourier shape descriptors)基本思想是用物体边界的傅里叶变换作为形状描述,利用区域边界的封闭性和周期性,将二维问题转化为一维问题。
由边界点导出三种形状表达,分别是曲率函数、质心距离、复坐标函数。
(3)几何参数法
形状的表达和匹配采用更为简单的区域特征描述方法,例如采用有关形状定量测度(如矩、面积、周长等)的形状参数法(shape factor)。在 QBIC 系统中,便是利用圆度、偏心率、主轴方向和代数不变矩等几何参数,进行基于形状特征的图像检索。
需要说明的是,形状参数的提取,必须以图像处理及图像分割为前提,参数的准确性必然受到分割效果的影响,对分割效果很差的图像,形状参数甚至无法提取。
(4)形状不变矩法
利用目标所占区域的矩作为形状描述参数。
(5)其它方法
近年来,在形状的表示和匹配方面的工作还包括有限元法(Finite Element Method 或 FEM)、旋转函数(Turning Function)和小波描述符(Wavelet Descriptor)等方法。
Ⅱ 基于小波和相对矩的形状特征提取与匹配
该方法先用小波变换模极大值得到多尺度边缘图像,然后计算每一尺度的 7个不变矩,再转化为 10 个相对矩,将所有尺度上的相对矩作为图像特征向量,从而统一了区域和封闭、不封闭结构。
四 空间关系特征
(一)特点:所谓空间关系,是指图像中分割出来的多个目标之间的相互的空间位置或相对方向关系,这些关系也可分为连接/邻接关系、交叠/重叠关系和包含/包容关系等。通常空间位置信息可以分为两类:相对空间位置信息和绝对空间位置信息。前一种关系强调的是目标之间的相对情况,如上下左右关系等,后一种关系强调的是目标之间的距离大小以及方位。显而易见,由绝对空间位置可推出相对空间位置,但表达相对空间位置信息常比较简单。
空间关系特征的使用可加强对图像内容的描述区分能力,但空间关系特征常对图像或目标的旋转、反转、尺度变化等比较敏感。另外,实际应用中,仅仅利用空间信息往往是不够的,不能有效准确地表达场景信息。为了检索,除使用空间关系特征外,还需要其它特征来配合。
(二)常用的特征提取与匹配方法
提取图像空间关系特征可以有两种方法:一种方法是首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;另一种方法则简单地将图像均匀地划分为若干规则子块,然后对每个图像子块提取特征,并建立索引。
8. 基于影像特征的图像分割
通过遥感变化信息检测方法对两时相遥感影像进行处理分析后,得到 “变化信息”影像,同时为了便于后续震害信息的识别,需要把这些变化信息从复杂的环境背景中提取出来,得到一个仅包含变化信息的二值影像,这里就需要用到图像分割 ( ImageSegmentation ) 技术。图 像 分 割 包括 手 动分 割 和 自动分割两种,手动分割是指操作者利用相关的经验进行小图斑的合并、提取和取舍,但是对于大区域遥感影像来说,手工操作工作量大、效率低、速度慢、周期长、容易漏掉小图斑,并且分割图斑的边界容易受到操作者的主观控制,对精度的影响也较大,所以本研究中的图像分割一般指的是自动分割。
退化废弃地遥感信息提取研究
图 4 -11 基于 MNF/ICA 多源遥感变化信息检测法结果从 20 世纪 70 年代起,图像分割方法一直受到各国学者的关注,至今已经提出了很多种分割方法,FuK. S. ( 1981) 将分割方法分成阈值分割、边缘分割和区域分割,实际上区域分割包含了阈值分割。蔡殉、朱波 ( 2002) 则将图像分割方法分成更多的类别,包括阈值分割、彩色分割、基于模糊集法、深度分割、像素分割、区域增长法,其中彩色分割、深度分割和像素分割都属于阈值分割。
由于现今遥感变化信息检测还处于像元级别 ( 钟家强,2005) ,通过不同检测方法,对灰度、彩色影像进行处理变换,使得变化信息的灰度 ( 像素值) 和色彩信息得到加强,通常表现出灰白色 ( 图 4 - 8、图 4 - 9) 和亮绿色 ( 图 4 - 11) ,与周围地物的色标不协调,可以通过确定相关的变化阈值把变化区域分割出来。但是由于变化信息受到太阳辐射、大气干扰、传感器参数、空间分辨率、光谱分辨率以及季节差异等因素影响,变化图斑的灰度有时在一定的范围内波动,增加了变化信息精确分割的难度,这使得变化阈值的确定显得尤为重要。
( 一) 变化影像特征分析
通过多时相遥感变化信息检测方法得到的灰度或彩色影像通常具有以下特征: ① 影像中光谱特征复杂,包含的地物类型众多,但是变化信息和背景环境的光谱性质不一致。② 灰度影像的变换信息图斑一般分布在灰度轴的两端 ( 就是较亮的区域) ,不过有时也可能位于暗端,极少数情况下也可能位于两者之间,这要根据具体的遥感数据和采用何种检测方法来定; 彩色影像变化信息图斑一般为亮绿色,是否能够和周围地物类型明显区分要根据实际情况而定。③ 变化信息图斑内部的灰度值比较均匀,但是会在一定范围内波动,所以图像分割时很容易丢失细小的图斑。④ 变化信息图斑之间灰度特征比较相似 ( 一致) ,但是纹理特征的差别通常较明显,因为变化信息的图斑可能属于不同的地物类型,所以通常不能用纹理信息来分割变化信息图斑。⑤ 由于非人为控制的因素,影像中不可避免地存在一些噪声信息,这些噪声信息一般表现在与变化信息图斑接近的小图斑( 图 4 - 9 表现得特别明显) ,所以分割的时候要区分哪些是变化信息图斑,哪些是噪声图斑。⑥ 对于不同的环境和区域,变化信息图斑是服从随机分布的,有的地方稀疏,有的地方密集。
( 二) 单阈值区域分割法
单阈值区域分割是一种简单有效的图像分割方法,其用一个阈值将变化图像的灰度级分为两个部分: 变化与未变化。其最大特点是计算简单,在重视运算效率的应用场合 ( 例如用于硬件实现) 得到了广泛应用 ( 冯德俊,2004) 。一般是利用图像的灰度直方图来确定分割阈值。在计算分割阈值时,常在去除噪声的基础上将灰度直方图包络成一条曲线,如果图像上有多个特征区域,其直方图就会出现多个峰值,每个峰值对应一个特征区域,而谷底值点就为分割阈值,用以划分不同的特征区域。
复杂图像的目标和背景的灰度值时常有部分交错,为了在分割时使这种错误分割的概率最小,需要寻找出最优的分割阈值,所以单阈值区域分割法也叫最优阈值法,意指能够使分割误差最小。图像的灰度直方图可以看成是像元灰度值的概率分布密度函数,假设一幅图像仅含有目标和背景两个主要的灰度值区域,那么其直方图就表示对应目标和背景两个单峰值的概率分布密度函数之和,如果已知密度函数的形式,就可以计算出使误差最小的最优阈值。其计算原理如下:
假设一幅含有高斯噪声的图像,其背景和目标的直方图(概率密度函数)分别为pb(z)和po(z),那么整个图像的混合概率密度p(z)为(章毓晋,2001):
退化废弃地遥感信息提取研究
式中:σb和σo分别为背景和目标均值的均方差;μb和μo分别为背景和目标的平均灰度值;pb和po分别为背景和目标区域灰度的先验概率,二者之和为1。如果μb<μo,需要确定阈值T,将小于阈值的分割作为背景,大于阈值的分割作为目标,假设将目标像元错误地划分为背景以及把背景错误地划分为目标的概率分别为Eb(T)和Eo(T),则总的误差为两者之和E(T)。为了使该误差最小,将总误差对T求导数,并令导数为零,得到
退化废弃地遥感信息提取研究
将该式代入式(4-3),可得二项式
退化废弃地遥感信息提取研究
求解该二项式得到最优阈值
退化废弃地遥感信息提取研究
最优阈值T的选取原理如图4-12所示,其原理可以概括为:将经过平滑去噪后的直方图看成一条曲线h(x),最优阈值T必须满足以下两个条件:
退化废弃地遥感信息提取研究
图4-12 最优阈值选取原理
设原始图像 f( x,y) 的灰度值范围为 G =[0,L -1],用最优单阈值法把图像分成两类,最优分割阈值为 T ( 0 < T < L -1) ,分割后生成的二值影像为 g( x,y) :
退化废弃地遥感信息提取研究
本研究在 ERDAS 软件下利用空间建模语言 ( SML) 实现了单阈值 ( 最优阈值) 法,分别分析了图 4 -8、图 4 -9 和图 4 -11 变化影像的直方图分布情况 ( 图 4 -13) ,并进行了最优阈值区域分割,把得到的三幅二值变化信息影像取合集,即把三幅影像相加,保留所有大于 1 的像素点,最后得到变化区域二值影像,如图 4 -14 所示。
图 4 -13 三幅变化影像的直方图曲线
图 4 -14 单阈值法提取的变化信息二值影像( 白色区域为发生变化的区域)
图 4 -15 双阈值模糊识别法计算流程
(三)双阈值模糊识别分割法
由于单阈值区域分割法只有一个全局阈值参与影像分割,然而影像受到大气、噪声、光照以及背景灰度变化的共同影响,导致了变化信息的灰度值总是在一定范围内波动,常常出现变化信息和噪声以及其他地物类别交错的现象。在这种情况下,单阈值区域分割难以满足精度的要求,如何区分出其中的变化信息?本研究提出了双阈值模糊识别分割法,其流程如图4-15所示。
利用变化图像的灰度直方图计算得到两个阈值T1和T2,并且T1<T2,然后利用双阈值法对变化图像进行分割(DaneKottkeetal.,1989、1998),将图像f(x,y)分割为三个类别:背景、不确定类、变化信息:
退化废弃地遥感信息提取研究
对其中不确定的像元保留其灰度值不变,利用模糊识别算子构建目标函数,分别计算出该像元属于两种不同类别(背景和变化信息)的模糊隶属度,通过比较两种隶属度的大小判断其归属(把它归类到隶属度大的那一类当中),划分到背景与变化信息当中,直到完成所有不确定像元的划分,即完成了整个分割过程。
1.双阈值T1和T2的计算
核心阈值T1的计算按照公式4-5的单阈值(最优阈值法)区域分割法得到。核心阈值T2则是利用灰度直方图中大于T1阈值的像元灰度求平均值得到。
设影像的灰度值在0到255之间(8维图像),利用离散积分的原理来计算灰度的均值。如果利用单阈值法计算出来的最优阈值为T1,那么核心阈值T2的计算公式如下:
退化废弃地遥感信息提取研究
式中:ni表示变化图像中灰度为i的像元出现的个数。
2.模糊识别算法
模糊识别算法的基本思想如下(李希灿等,2003、2008):
首先将样本集规格化,就是把样本集的特征值规格化到0到1之间,设样本特征值y规格化为x,样本集n个样本划分为C个类别,则模糊识别矩阵为
退化废弃地遥感信息提取研究
式中:Uhj为样本j归属于第h类的相对隶属度,h=1,2,…,C,且应当满足以下条件:
退化废弃地遥感信息提取研究
设C个类别的特征值为标准指数或模糊聚类中心指标,则C个类别的中心指标向量为:
退化废弃地遥感信息提取研究
式中:Sh为第h类的中心指标,0≤Sh≤1且h=1,2,…,c,为了求解最优模糊识别矩阵U和模糊最优中心指标S,建立目标函数(李希灿,1998):
退化废弃地遥感信息提取研究
式4-14的意义是:样本集对于全体类别的加权广义海明距离平方和为最小。显然,在不分类别(h=1,Uhj=1)的情况下,该公式变为通常的最小二乘最优准则。在式4-14的目标函数下,计算出最优模糊划分的隶属度和中心指标向量:
退化废弃地遥感信息提取研究
式中:u*hj为样本j隶属于h类的隶属度。
3.分割归类
通过构造的目标函数(隶属度函数),分别计算出每个像素点属于“目标”(变化信息)和“背景”(非变化信息)的隶属度,并把它分入到隶属度大的那一类当中,从而完成图像分割的过程。
图4-16 双阈值模糊识别分割法二值影像
(白色区域为变化信息)
通过在ERDAS下利用空间建模语言(SML)实现该分割算法,分别将图4-8、图4-9和图4-11变化图像作为输入对象,进行双阈值模糊识别分割,得到的二值变化图像取合集最终结果如图4-16所示。从图4-16中可以看出,双阈值模糊识别分割法能够在一定程度上消除单阈值区域分割法中混杂在变化信息中的离散噪声和个别地物类型,使变化信息更加准确、集中,从而提高了分割的精度。实践证明,双阈值模糊识别分割法有着坚实的理论基础,并且在实际变化信息的分割中能够取得很好的效果,是一种可行、可靠的图像分割自动算法。
9. 什么是图像分割
1 数字图像处理技术是一个跨学科的领域。随着计算机科学技术的不断发展,图像处理和分析逐渐形成了自己的科学体系,新的处理方法层出不穷,尽管其发展历史不长,但却引起各方面人士的广泛关注。首先,视觉是人类最重要的感知手段,图像又是视觉的基础,因此,数字图像成为心理学、生理学、计算机科学等诸多领域内的学者们研究视觉感知的有效工具。其次,图像处理在军事、遥感、气象等大型应用中有不断增长的需求。
基于图论的图像分割技术是近年来国际上图像分割领域的一个新的研究热点。该方法将图像映射为带权无向图,把像素视作节点。利用最小剪切准则得到图像的最佳分割 该方法本质上将图像分割问题转化为最优化问题。是一种点对聚类方法。对数据聚类也具有很好的应用前景。但由于其涉及的理论知识较多,应用也还处在初级阶段。因此国内这方面的研究报道并不多见,本文将对图论方法用于图像分割的基本理论进行简要介绍,并对当前图论方法用于图像分割的最新研究进展进行综述,并着重介绍基于等周图割的图像分割的方法。
2 图像目标分割与提取技术综述
图像分割是一种重要的图像技术,在理论研究和实际应用中都得到了人们的广泛重视。图像分割的方法和种类有很多,有些分割运算可直接应用于任何图像,而另一些只能适用于特殊类别的图像。有些算法需要先对图像进行粗分割,因为他们需要从图像中提取出来的信息。例如,可以对图像的灰度级设置门限的方法分割。值得提出的是,没有唯一的标准的分割方法。许多不同种类的图像或景物都可作为待分割的图像数据,不同类型的图像,已经有相对应的分割方法对其分割,同时,某些分割方法也只是适合于某些特殊类型的图像分割。分割结果的好坏需要根据具体的场合及要求衡量。图像分割是从图像处理到图像分析的关键步骤,可以说,图像分割结果的好坏直接影响对图像的理解。
3 定义及分割方法
为后续工作有效进行而将图像划分为若干个有意义的区域的技术称为图像分割(Image Segmentation)
目前,有许多的图像分割方法,从分割操作策略上讲,可以分为基于区域生成的分割方法,基于边界检测的分割方法和区域生成与边界检测的混合方法.