㈠ 常见解决问题的策略有( )、( )、( )
画图的策略、推理的策略、尝试调整的策略,模拟操作的策略。
一、画图的策略。
由于小学生认知水平的局限,他们对符号、运算性质的推理可能会发生困难,在解决问题时,引导他们自己在纸上涂一涂、画一画,可以拓展解题思路,找到解题关键,领悟解题方法。因此,画图应该是学生们应该掌握的一种基本的解题策略,尤其用算术法解题的小学生来说,非常重要。
主要是因为这种方法直观、形象,能够帮助学生将抽象的数学问题具体化,复杂的问题简单化。可以弥补小学生思维能力的不足,逐步提升其思维水平。
常用的画图方法有:直观图、线段图、示意图、思维导图、集合图等。
二、推理的策略。
数学教学的价值追求就是学生思维的发展,数学教育的最高境界就是培养人的思维方式。而推理是数学的基本思维方法,也是学生数学学习中经常使用的思维方式。
推理包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比得到某些结果。演绎推理是从定义、公式、法则等出发,进行证明与计算。
在小学数学问题解决的过程中,更多采用合情推理。比如常用的假设法、设数法等。以往数学教学中常说的“分析法”与“综合法”,都是简单的推理。
三、尝试调整的策略。
尝试的策略,简单地说就是你不知道从哪儿开始的时候,可以先猜一猜。猜测的结果如果合理但不合乎要求,再把结果放到问题中去考虑,进一步调整、寻找答案。
小学数学学习中常用的表格法、枚举法、筛选法等,其实就是尝试调整的策略。比如我们在解决鸡兔同笼问题时,用列举鸡和兔的只数算对应腿数,就是这种策略。
四、模拟操作的策略。
模拟操作是通过探索性的动手操作活动来模拟问题情境,从而获得解决问题的一种策略。通过这种策略的训练,可以培养学生的创造性思维。
比如,在解决火车过桥问题时,让学生将文具盒当做桥,将自己用的笔当做火车,自己模拟火车过桥。通过类似问题的模拟,把这种不清晰的数量关系很直观地表现出来,这种问题就容易理解解决了。
其他策略:
1、简化策略
所谓简化就是把复杂的问题简单化,我们在解决问题的过程可能会发现有些结合实际的问题,不管在语言的表述还是信息的传递上可能要说一大堆有关情境的事,我们怎么样把这个生活中的实际问题,把它抽象成数学问题,简化策略就是指在解决问题过程中,先抛开问题的细节,直接抓住问题的关键信息,将抽象的问题简化成简单的形式,解决简化了的问题,再解决复杂的问题,这就是一个简化的过程。
正如着名数学家华罗庚所说的“善于‘退’,足够地‘退’,‘退’到最原始而不失去重要性的地方,是学好数学的一个诀窍”。运用简化策略除了可以将复杂的问题明了、简洁,还可以运用简化策略将陌生的问题转化为熟悉的问题,使我们便于抓住问题的关键部分进行思考从而解决问题。
2、倒推策略
倒推策略也叫还原策略,就是在解决问题时,有些问题用顺向推理的方法很难解答,如果从问题的结果出发,从后往前逐步推理,问题很容易就解决了。这种从问题出发推理寻求解题途径的方法就是逆推法。
在解决实际问题的过程中让学生了解适合用这个策略来解决问题的特点,学会用“逆推”的策略解决问题的思考方法,增强解决问题的策略的意识,获得解决问题的成功体验,提高学好数学的信心。例如:男生比女生的2倍多10人,男生有50人,求女生有多少人?就可以使用倒推的策略。
3、类比推理策略
当学生面临新问题时,教师及时启发学生用他们所熟悉的知识经验对新问题进行分析、比较,发现其内在联系,从而获得新问题的解决方法。引导学生类比,进行推测和引申,串联了知识点,拓宽了知识面,强化了解决问题的能力。
就如同搭桥引渡,使学生温故知新,能帮助学生有效的认识事物的基本规律,更好地理解问题、提高分析问题和解决问题的能力。
4、转化策略
转化是小学生在学习和解决问题时常用的一种策略,所谓转化就是一个人运用已有的知识的、已经习得的经验,将一些新问题转化成旧有问题进而解答的过程,也就是人的思维方式转变的过程。学生运用转化策略,不仅可以熟练运用旧有知识,又可将新问题的解决方式纳入到旧有的策略中,以形成更完整的知识体系。
曹冲称象的方法就是一个很典型的转化策略。例如:一支钢笔和三支圆珠笔的价钱相等,小明买了5支钢笔和4支铅笔,一共用了38元,求每支钢笔和铅笔各多少元?就可以运用转化的策略来解决,可以把钢笔转化为铅笔,就很容易解决了。
㈡ 常用的解决问题的策略有哪些
解决问题策略的学习,和解决问题的学习是统一的。在小学数学学习中,往往通过例题的学习来使学生掌握解决问题的策略,又通过练习题的应用,使学生掌握解决问题的策略。可以说解决问题的策略是数学例题学习的核心,作为一名教师要知道小学数学中常用的解决问题的策略有哪些?下面尝试列举一二。
模拟操作是通过探索性的动手操作活动来模拟问题情境,从而获得解决问题的一种策略。通过这种策略的训练,可以培养学生的创造性思维。
比如,在解决火车过桥问题时,让学生将文具盒当做桥,将自己用的笔当做火车,自己模拟火车过桥。通过类似问题的模拟,把这种不清晰的数量关系很直观地表现出来,这种问题就容易理解解决了。
当然,解决问题的策略还有很多,在解决一个问题时,往往是多种策略的综合运用。我们在解决问题时,要重视渗透解决问题的策略,进而逐步提升学生解决问题的能力。
㈢ 画图解决的问题有哪些
借助画图解题,是孩子打开解决问题大门的一把“金钥匙”,其实很多问题都可以很快速的求解,比如几何问题、路程问题,如果光靠想是很难想出答案的,画图就一目了然,下面整理小学数学6类画图解答题,快为孩子收藏吧。
平面图
对于题目中条件比较抽象、不易直接根据所学知识写出答案的问题,可以借助画平面图帮助思考解题。
例1:
有两个自然数A和B,如果把A增加12,B不变,积就增加72;如果A不变,B增加12,积就增加120,求原来两数的积。
根据题目的条件比较抽象的特点,不妨借用长方形图,把条件转化为因数与积的关系。先画一个长方形,长表示A,宽表示B,这个长方形的面积就是原来两数的积。如图(1)所示。
根据条件把A增加12,则长延长12,B不变即宽不变,如图(2);同样A不变即长不变,B增加12,则宽延长12,如图(3)。从图中不难找出:
原长方形的长(A)是120÷12=10
原长方形的宽(B)是72÷12=6
则两数的积为10×6=60
借助长方形图,弄清了题中的条件,找到了解题的关键。
例2:
一个梯形下底是上底的1.5倍,上底延长4厘米后,这个梯形就变成一个面积为6O平方厘米的平行四边形。求原来梯形面积是多少平方厘米?
根据题意画平面图:
从图中可以看出:上、下底的差是4厘米,而这4厘米对应的正好是1.5-1=O.5倍。所以上底是4÷(1.5-1)=8(厘米),下底是8×1.5=12(厘米),高是60÷12=5(厘米),则原梯形的面积是(8+12)×5÷2=5O(平方厘米)。
立体图
一些求积题,结合题目的内容画出立体图,这样做,使题目的内容直观、形象,有利于思考解题。
例1:
把一个正方体切成两个长方体,表面积就增加了8平方米。原来正方体的表面积是多少平方米?
如果只凭想象,做起来比较困难。按照题意画图,可以帮助我们思考,找出解决问题的方法来。按题意画立体图:
从图中不难看出,表面积增加了8平方米,实际上是增加 2个正方形的面,每个面的面积是8÷2=4(平方米)。原正方体是6个面,即表面积为4×6=24(平方米)。
例2:
用3个长3厘米、宽2厘米、高1厘米的长方体,拼成一个大长方体。这个大长方体的表面积是多少?
按题意画立体图来表示,三个长方体拼成的大长方体有以下三种
(1)拼成长方体的长是2×3=
㈣ 数学解决问题主要画图方法有哪些
数学解决问题,主要画图的方法主要是在立体几何这一块儿,如果你把立体几何这一块儿的画图方法掌握住,那么数学的问题相对来说就比较容易一些了。
㈤ 常见的解决问题的策略有什么
常见的解决问题的策略有:1、画图的策略。2、推理的策略。3、尝试调整的策略。4、模拟操作的策略。
解决问题的策略还有很多,在解决一个问题时,往往是多种策略的综合运用。在解决问题时,要重视渗透解决问题的策略,进而逐步提升解决问题的能力。
1、画图的策略:由于小学生认知水平的局限,学生对符号、运算性质的推理可能会发生困难,在解决问题时,引导学生自己在纸上涂一涂、画一画,可以拓展解题思路,找到解题关键,领悟解题方法。
2、推理的策略:推理包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比得到某些结果。演绎推理是从定义、公式、法则等出发,进行证明与计算。
3、尝试调整的策略:尝试的策略,简单地说就是不知道从哪儿开始的时候,可以先猜一猜。猜测的结果如果合理但不合乎要求,再把结果放到问题中去考虑,进一步调整、寻找答案。
4、模拟操作的策略:模拟操作是通过探索性的动手操作活动来模拟问题情境,从而获得解决问题的一种策略。通过这种策略的训练,可以培养学生的创造性思维。
㈥ 小学二年级解决问题要怎么画图
小学二年级解决问题画图技巧
1、二年级学生正处在以形象思维为主,向抽象思维过渡的阶段。许多数学问题多以文字形式呈现,语言表述上比较言简,枯燥乏味,至使他们常常读不懂题意。
2、利用小学生喜欢画画,擅长画画的特点,让他们用自己喜爱的方式画图,原生态的图形,生动有趣,再现数量之间的关系,使数学与图形结合完整。
3、以画促思,最终可以化复杂为简单,化抽象为直观,能更好地寻找问题的答案,从而提高学生解决问题的能力。因此,在教学中我们要善于创设体验情境,让学生在思考的过程中产生画图的需要,树立画图意识。
技巧须知
当连续两个数之间没有规律可循的时候,还要考虑间隔数之间是否有规律。 在做这类题目的时候,需要我们对数字要敏感;奇数,偶数互相之间的关系要非常熟悉才行,所以大家掌握好方法后,要多加练习才能更好的举一反三,灵活运用。
通过仔细观察,根据同组数排列的顺序和前后,上下之间的相互关系,才能找出数与数之间的排列规律。下面我就通过一些典型的例题来给大家讲解。
㈦ 数学画图技巧
数学学习,学会画图是最基本的数学技能,也是一种解决问题的策略。数学图形的优点就是:直观形象、化繁为简,通过画图可以将许多抽象的数学概念、算理、数量关系进行形象化、简单化,给人以直觉的启示。下面我们来介绍5种最基本的画图方法:
运用画图策略解决问题,将问题中提到的图形画出来,可以弥补我们想象力的不足,使问题更加清晰、直观、明了、容易理解与解答。有些学生想不到如何运用画图去分析解决问题,除非使在教师的点醒下才会去画图解决问题,说明没有把画图当成一种解决问题的手段,更不用说运用数形结合的思想。如最简单画图就是添加辅助线,将不懂或难以厘清的问题,通过画图来帮助学生理解题意、理清思路。
尺规作图能提高学生的几何语言表达能力,通过画图,培养学生的作图能力及动手能力,同时让学生在数学学习过程中体验数学语言的简洁严谨,体会数学作图语言和图形的统一。
㈧ 用画图可以简便解决的解决问题
用划口口一简便解决的解决问题都换了门,这个气氛带销售都是比较简单的。又没见过问你同有
㈨ 画图的基本步骤是些什么小学数学
例题1.妈妈买回来一些苹果和梨,一共有26个,苹果比梨多8个,问梨有几个?苹果有几个?
题目分析:这是一道一、二年级常见的知道和,知道差,去求单一量的问题。许多同学看到此类题目非常茫然,无处下手,部分同学直接列式:26-8=18,但18指的是什么呢?接下来该怎么办呢?下面我们就用画图法去理解一下。
通过观察线段图,可知将360平均分成9份,丙占1份,那么可求得:
丙 360÷(1+2+2×3)=40
乙 40×2=80
甲 80×3=240
有兴趣的同学,可以把练习2做一做。
练习2.爸爸的年龄是小明的5倍,爷爷的年龄比小明多9倍,已知爷爷比爸爸大35岁,求三人年龄各多少岁?
以上题目通过用画线段图的方法去做,会更好理解和计算。画图法是我们平时解决数学问题经常用的一种方法,平时我们要灵活的运用。
㈩ 如何利用画图提高小学生解决数学实际问题的能力
数学新课标指出:要使学生面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。在小学数学中,解决问题的策略有很多,如实际操作、找规律、整理数据、列方程等等,其中画图策略应该是学生解决问题的一种很基本也很重要的策略。它是通过各种图形帮助学生把抽象问题具体化、直观化,从而使学生能从图中理解题意和分析数量关系,搜寻到解决问题的突破口。从这个意义上讲,画图能力的强弱也反映了解题能力的高低。现在的小学生解决数学问题的能力比较薄弱,解决问题的策略相对单一。其实很多数学问题,通过画画图,在画图的基础上找到具体的量或分率和它们所表示的意思,把抽象、模糊转化为直观、具体,题意和数量关系也就一目了然了。因此注重和利用画图策略来培养学生解决数学问题的能力显得尤为重要。
可现实的学习中,学生对于画图策略的运用存在两种情形,越聪明成绩越好的人在碰到难题时会主动地画画图来帮助理解题意,分析数量关系;而很大一部分学生却是懒得画或者不会画,觉得怕麻烦或无从入手。那么如何在教学中培养学生学会并利用画图策略从而提高解决数学问题的能力呢,我觉得从以下三方面入手。
一、创设情境,体验画图策略的价值性
斯蒂恩说:“如果一个特定的问题可以转化为一个图像,那么就整体地把握了问题。”小学生的数学学习,正处在以形象思维为主,向抽象思维过渡的阶段。许多数学问题多以文字叙述出现,纯文字的问题在语言表述上比较简洁,桔燥乏味,以至使他们常常读不懂题意。所以根据其年龄特点,让学生自己在纸上涂一涂、画一画,借助线段图或实物图把抽象的数学问题具体化,还原问题的本来面目,使学生读懂题意、理解题意,拓展学生解决问题的思路,帮助他们找到解决问题的关键,从而提高学生解决问题的能力。所以,在教学中教师要善于创设体验情境,让学生在思考的过程中产生画图的需要,在自己画图的活动中体会方法、感悟策略、发展思维、获得思想。
如六上数学广角“鸡兔同笼”:有8个头,26条腿,鸡、兔各多少只?鸡兔同笼是一个让很多学生学习起来感到头疼的问题,但是运用画图策略却非常容
易理解且把问题解决。如:画图时,先引导学生把8个头全画上两只腿了或四只腿,发现少的或者多的那些腿是兔子或者鸡的,然后依次再添上去,学生有了这一发现后,兴趣浓厚,纷纷动手,了了几笔简笔画并通过添腿或减腿就能非常快速地计算出鸡或兔有多少只。然后依托画图法,再理解假设法中求鸡:(8×4-26)÷(4-2)=3(只),为什么除以(4-2)的差就容易多了。我也曾把这道题用画图法叫我读二年级的儿子来做,他居然也非常容易理解,而且很感兴趣,画得得心应手,并且很快地解答出来。画了几次以后,他居然也能感悟出通过算式来计算了。