‘壹’ 小学奥数有哪些知识点
16.约数与倍数
约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:
1、 几个数都除以它们的最大公约数,所得的几个商是互质数。
2、 几个数的最大公约数都是这几个数的约数。
3、 几个数的公约数,都是这几个数的最大公约数的约数。
4、 几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、12;
18的约数有:1、2、3、6、9、18;
那么12和18的公约数有:1、2、3、6;
那么12和18最大的公约数是:6,记作(12,18)=6;
求最大公约数基本方法:
1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48……;
18的倍数有:18、36、54、72……;
那么12和18的公倍数有:36、72、108……;
那么12和18最小的公倍数是36,记作[12,18]=36;
最小公倍数的性质:
1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法
17.数的整除
一、基本概念和符号:
1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”;
二、整除判断方法:
1. 能被2、5整除:末位上的数字能被2、5整除。
2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。
3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。
4. 能被3、9整除:各个数位上数字的和能被3、9整除。
5. 能被7整除:
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6. 能被11整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7. 能被13整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
三、整除的性质:
1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
18.余数及其应用
基本概念:对任意自然数a、b、q、r,如果使得a÷b=q……r,且0< p>
余数的性质:
①余数小于除数。
②若a、b除以c的余数相同,则c|a-b或c|b-a。
③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数。
④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数。
19.余数、同余与周期
一、同余的定义:
①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。
二、同余的性质:
①自身性:a≡a(mod m);
②对称性:若a≡b(mod m),则b≡a(mod m);
③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),则an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);
三、关于乘方的预备知识:
①若A=a×b,则MA=Ma×b=(Ma)b
②若B=c+d则MB=Mc+d=Mc×Md
四、被3、9、11除后的余数特征:
①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);
②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);
五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。
20.分数与百分数的应用
基本概念与性质:
分数:把单位“1”平均分成几份,表示这样的一份或几份的数。
分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
分数单位:把单位“1”平均分成几份,表示这样一份的数。
百分数:表示一个数是另一个数百分之几的数。
常用方法:
①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。
②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。
③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。
④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。
⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。
⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。
⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。
⑧浓度配比法:一般应用于总量和分量都发生变化的状况。
21.分数大小的比较
基本方法:
①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。
②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。
③基准数法:确定一个标准,使所有的分数都和它进行比较。
④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。
⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。(具体运用见同倍率变化规律)
⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。
⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。
⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。
⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。
⑩基准数比较法:确定一个基准数,每一个数与基准数比较。
22.分数拆分
一、 将一个分数单位分解成两个分数之和的公式:
① =+;
②=+(d为自然数);
23.完全平方数
完全平方数特征:
1. 末位数字只能是:0、1、4、5、6、9;反之不成立。
2. 除以3余0或余1;反之不成立。
3. 除以4余0或余1;反之不成立。
4. 约数个数为奇数;反之成立。
5. 奇数的平方的十位数字为偶数;反之不成立。
6. 奇数平方个位数字是奇数;偶数平方个位数字是偶数。
7. 两个相临整数的平方之间不可能再有平方数。
平方差公式:X2-Y2=(X-Y)(X+Y)
完全平方和公式:(X+Y)2=X2+2XY+Y2
完全平方差公式:(X-Y)2=X2-2XY+Y2
24.比和比例
比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。
比值:比的前项除以后项的商,叫做比值。
比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。
比例:表示两个比相等的式子叫做比例。a:b=c:d或
比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。
正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。
反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。
比例尺:图上距离与实际距离的比叫做比例尺。
按比例分配:把几个数按一定比例分成几份,叫按比例分配。
25.综合行程
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定运动过程中的位置和方向。
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追及问题:追及时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速
逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2
水 速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
主要方法:画线段图法
基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。
26.工程问题
基本公式:
①工作总量=工作效率×工作时间
②工作效率=工作总量÷工作时间
③工作时间=工作总量÷工作效率
基本思路:
①假设工作总量为“1”(和总工作量无关);
②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.
关键问题:确定工作量、工作时间、工作效率间的两两对应关系。
经验简评:合久必分,分久必合。
27.逻辑推理
基本方法简介:
①条件分析—假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。
②条件分析—列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。
③条件分析——图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态。例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。
④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。
⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。
28.几何面积
基本思路:
在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。
常用方法:
1. 连辅助线方法
2. 利用等底等高的两个三角形面积相等。
3. 大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。
4. 利用特殊规律
①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积)
②梯形对角线连线后,两腰部分面积相等。
③圆的面积占外接正方形面积的78.5%。
29.立体图形
名称 图形 特征 表面积 体积
长
方
体 8个顶点;6个面;相对的面相等;12条棱;相对的棱相等; S=2(ab+ah+bh) V=abh
=Sh
正
方
体 8个顶点;6个面;所有面相等;12条棱;所有棱相等; S=6a2 V=a3
圆
柱
体 上下两底是平行且相等的圆;侧面展开后是长方形; S=S侧+2S底
S侧=Ch V=Sh
圆
锥
体 下底是圆;只有一个顶点;l:母线,顶点到底圆周上任意一点的距离; S=S侧+S底
S侧=rl V=Sh
球
体 圆心到圆周上任意一点的距离是球的半径。 S=4r2 V=r3
30.时钟问题—快慢表问题
基本思路:
1、 按照行程问题中的思维方法解题;
2、 不同的表当成速度不同的运动物体;
3、 路程的单位是分格(表一周为60分格);
4、 时间是标准表所经过的时间;
合理利用行程问题中的比例关系;
‘贰’ 小学奥数有哪些解题方法
一、课内重视听讲,课后及时复习。 二、适当多做题,养成良好的解题习惯。 三、调整心态,正确对待考试 学好数学的方法其实跟读其他科目没太大差别,流程上可区分为六个步骤: 1. 预习 2. 专心听讲 3. 课后练习 4. 测验 5. 侦错、补强 6. 回想 以上讲的是如何学好数学 学好奥数 1、预习的方法 预习是上课前对即将要上的奥数内容进行阅读,了解其梗概,做到心中有数,以便于掌握听课的主动权。预习是独立学习的尝试,对学习内容是否正确理解,能籂搐焚诽莳赌锋涩福绩否把握其重点、关键,洞察到隐含的思想方法等,都能及时在听课中得到检验、加强或矫正,有利于提高学习能力和养成自学的习惯,所以它是奥数学习中的重要一环。 奥数具有很强的逻辑性和连贯性,新知识往往是建立在旧知识的基础上。因此,预习时就要找出学习新知识所需的知识,并进行回忆或重新温习,一旦发现旧知识掌握得不好,甚至不理解时,就要及时采取措施补上,克服因没有掌握好或遗忘带来的学习障碍,为顺利学习新内容创造条件。 预习的方法,除了回忆或温习学习新内容所需的旧知识外,还应该了解基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里,等等。预习时,一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或弄不懂的地方与问题,最后确定听课时要解决的主要问题或打算,以提高听课的效率。在时间的安排上,预习一般放在复习和作业之后进行,即做完功课后,把下次课要学的内容看一遍,其要求则根据当时具体情况灵活掌握。如果时间允许,可以多思考一些问题,钻研得深入一些,甚至可做做练习题或习题;时间不允许,可以少一些问题,留给听课去解决的问题就多一些,不必强求一律。 检验预习的效果如何从两个方面考虑:(1)、下一讲的基础知识是什么?(2)、下一讲还有哪一些内容有哪些问题,学会带着问题去听课。 2、听课的方法 听课是学习奥数的主要形式。在教师的指导、启发、帮助下学习,就可以少走弯路,减少困难,能在较短的时间内获得大量系统的数学知识,否则事倍功半,难以提高效率。所以听课是学好奥数的关键。 听课的方法,除在预习中明确任务,做到有针对性地解决符合自己的问题外,还要集中注意力,把自己思维活动紧紧跟上教师的讲课,开动脑筋,思考教师怎样提出问题,分析问题,解决问题,特别要从中学习奥数思维的方法,如观察、比较、分析、综合、归纳、演绎、一般化、特殊化等,就是如何运用公式、定理,了解其中隐含着的思想方法。 听课,一定要做笔记!做笔记不是把老师的板书原样抄录一遍,而是把老师的讲课的思路记到例题的旁边,同时要记到脑子里。再者,上课的时候一定要积极思考,我们一定要有自己的思路,看看老师的思路和我们的思路有什么不同。最后,一定要看看老师是怎样写解题过程。有时老师让大家做课堂练习,一定要积极的作,并且把它当作考试。这样听课,效果才能保证。有的同学在听课的时候,要么是什么也不记,要么是全部抄录老师的板书,前者老师的重点思路时间长了就会忘记,后者听课的时候没有思考的时间。 3、复习的方法 复习就是把学过的奥数知识再进行学习,以达到深入理解、融会贯通、精炼概括、牢固掌握的目的。复习应与听课紧密衔接、边阅读教材边回忆听课内容或查看课堂笔记,及时解决存在的知识缺陷与疑问。对学习的内容务求弄懂,切实理解掌握。如果有的问题经过较长时间的思索,还得不到解决,则可与同学商讨或请老师解决。 4、作业的方法 奥数学习往往是通过做作业,以达到对知识的巩固、加深理解和学会运用,从而形成技能技巧,以及发展智力与数学能力。由于作业是在复习的基础上独立完成的,能检查出对所学数学知识的掌握程度,能考查出能力的水平,所以它对于发现存在的问题,困难,或做错的题目较多时,往往标志着知识的理解与掌握上存在缺陷或问题,应引起警觉,需及早查明原因,予以解决。
希望采纳
‘叁’ 孩子现在正在学习奥数呢,好多题不太会做,奥数学习技巧有哪些
学好奥数的五大技巧:
1、题目最好做两遍
要想学好奥数,平时的练习必不可少,但这并不意味着要进行题海战术,做练习也要讲究科学性。在选择参考书方面可以听一下老师的意见,一般来说老师会根据自己的教学方式和进度给出一定的建议,数量基本在1―2本左右,不要太多。
在选好参考书以后要认真完整地做,每一本好的参考书都存在着一个知识体系,有些同学这本书做一点,那本书做一点,到最后做了许多本书但都没有做完,无法形成一个完整的知识体系,效果反而不好。做题的时候要多做简单题,并且要定好时间,这样可以提高解题速度。
2、抄笔记别丢了“西瓜”
其实小升初考查的奥数题大部分都是基础题,只要把这些基础题做好,分数便不会低了。要想做好基础题,平时上课时的听课效率便显得格外重要。教奥数的老师一般都经验丰富,他们上课时所用的讲义内容可谓是精华,认真听讲1个小时要比自己在家复习两个小时还要有效。听课时可以适当地做些笔记,但前提是不影响听课的效果。有些同学光顾着抄下题目的步骤解法却忽略了老师解题的思路,这样就是“捡了芝麻丢了西瓜”,反而有些得不偿失。
3、建立“错题本”
建立一个“错题本”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正,这样到中考时你的数学就没有什么“病例”了。我们要在教师的指导下做一定数量的数学习题,积累解题经验、总结解题思路、形成解题思想、催生解题灵感、掌握学习方法。
4、熟记常用公式
准确对经常使用的数学公式要理解来龙去脉,要进一步了解其推理过程,并对推导过程中产生的一些可能变化自行探究。对今后继续学习所必须的知识和技能,对生活实际经常用到的常识,也要进行必要的训练。例如:1-20的平方数;简单的勾股数;正三角形的面积公式以及高和边长的关系;30°、45°直角三角形三边的关系……这样做,一定能更好地掌握公式并胜过做大量习题,而且往往会有意想不到的效果。
5、旧题新解
不定时的翻翻原来做过的试题,但是重点是思考有没有新的解题思路和解题技巧。这样不断地增加思考有利于形成学生思考习惯的形成,也有利于学生发散思维的形成,多角度考察问题的思路,并随时利用新学知识去解决问题。
‘肆’ 如何学好小学奥数的几个小窍门
学好奥数网络网盘免费下载
链接:
学生在学习数学过程中,思维应占有重要地位。而思维又是学生在学习数学知识和掌握方法的基础上形成的,是数学知识与学生主体认识相互作用的结果。思维训练已成为当前数学教学的重要内容。为了使学生获取数学思维能力,就必须以学生已有的数学概念为基础,运用学生已有的数学知识,灵活地处理新的问题,学生通过数学判断和推理等形式认识数学对象,掌握新知识。
‘伍’ 数学奥数题解决方法
一、数形结合的思想方法
数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。
例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。
二、集合的思想方法
把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。
如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。
三、对应的思想方法
对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。
如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。
四、函数的思想方法
恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。
函数思想在人教版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。
五、极限的思想方法
极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。
现行小学教材中有许多处注意了极限思想的渗透。 在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1 ÷ 3 = 0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。
六、化归的思想方法
化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想。我们实施教学时,也是经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。
如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。
七、归纳的思想方法
在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。
如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的思想方法。
八、符号化的思想方法
数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国着名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。
人教版教材从一年级就开始用“□”或“( )”代替变量 x ,让学生在其中填数。例如: 1 + 2 = □ ,6 +( )=8 , 7 = □+□+□+□+□+□+□;再如:学校有7个球,又买来4个。现在有多少个?要学生填出□ ○ □ = □ (个)。
符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此 ,教师在教学中要注意学生的可接受性。
九、统计的思想方法
在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法
小学数学除渗透运用了竞赛数学网介绍的上述各数学思想方法外,还渗透运用了转化的思想方法、假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等(详见《拉分题赏析》)。从教学效果看,在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。总之,在教学中,教师要既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,无疑有助于学生的终身学习和发展。
‘陆’ 如何指导小学生的奥数呢如何培养其思维方式
一、为什么要学习奥数。
要不要学习奥数一直是困绕很多家长和学生的问题,其根本原因是很多家长和学生不知道奥数到底学什么,技能和思维是解决数学问题的两个重要条件,两者相辅相成,只有思维,没有技能解决不了数学问题,只有技能,没有思维也解决不好数学问题,小学教材注重的是学生数学技能的培养,而奥数注重的是学生的思维能力的培养。数学是锻炼思维的体操,思维能力的培养是数学学习中不可缺少的部分,可见,奥数并不只是利益驱使下的产物。
很多家长常常提到这“奥数叫停”现象,目前,很多专家(专家未必是搞教育的)提到,学奥数的成不了数学家,学奥数的学生只会做题,不会创造,回答这个问题其实很简单,学奥数的学生只会做题,不会创造,那么不学奥数的学生就会创造了么?事实上,恰恰相反,很多数学家,都学过奥数,其实这种现象是应试教育下的产物,而不应仅仅归结在奥数的学习上。正是因为传统应试教育的影响,缺乏思维能力是目前学生普遍存在的一个现象,因而,适当的思维能力的训练对目前的学生是很有必要的。
而学习奥数的真正的问题是如何学和何时学的问题。
二、何时学奥数?
思维能力的发展,必须以基本技能作为基础,因而小学生的学习主要目标是培养学生基本的数学技能,过早学习奥数正如空中建楼,是不现实的,而思维能力的培养,是数学技能发挥的必要条件,适当培养小学生的思维能力,也是必要的,因此,何时学习奥数,学什么内容不是决定于学生的年龄大小,而是决定学生数学技能的掌握情况。
三、如何学习奥数?
小学生的数学学习目标是重点培养基本的数学技能,适当发展学生思维能力,更重要的是培养学生的学习兴趣。
学习兴趣是什么?如何培养学生的学习兴趣?也是家长和学生比较困惑的问题,其实,培养学习兴趣这个提法比较片面,准确说应该是激发学生的学习动机。影响学习动机的因素很多,比如教师,学习任务等外部因素,兴趣,自主性,自我效能感,归因等内部因素,我们说的学习兴趣只是学习动机的一个方面。
首先,如果学生感到能胜任,就会产生兴趣;如果学生感到无能为力,则会对任务兴趣索然。不基于学生基本数学技能的奥数课程,许多学生是无法胜任的,这也是目前“奥数叫停”,“课程任务降低”的一个重要原因,其目的是为降低学习任务的难度,使学生能够胜任,提高学生学习的兴趣。
但注意,并不是学习任务越低,学生的学习兴趣越高。我们将学习任务的难度分为三类:一是,不经过思考就能解决;二是,经过一定的思考后能解决;三是,经过很长时间的思考也不会。第一类任务可能引起学生的枯燥感,第三类任务可能导致学生的挫败感,这都不利于引发学生的成就感,第二类任务更容易带给学生自我效能感,从而激发学习动机。所以,适当的学习难度,是可以激发学生的学习兴趣的,事实上,奥数能学好,即能胜任的学生,也会对数学产生更浓厚的兴趣。小学奥数的学习切忌盲目增加难读。
其次,即使学生起初对某门学科或活动不感兴趣,但如果获得成功,他们也会产生兴趣。如果基于学生的所掌握的基本技能,成绩不好的学生,也可能因为获得成功而对奥数产生兴趣。因此奥数的学习,不只是适合于“怪才”,“偏才”,只要基于学生数学技能情况的学习,都是有益无害的。
引起兴趣和好奇心可以提高个体的唤醒水平。奥数内容中不乏有趣,新奇的内容,都可以引起学生的学习兴趣和好奇心。事实上,很多伟大的科学家,取得成功的最初都是因为对某个问题的好奇心或兴趣。
任务价值也是小学生学习奥数过程中,影响学习动机的一个不可忽视的因素,任务价值可分为以下三类:
1、成就价值,它表明学生在任务中表现良好的重要性。成就价值与个体的需要及取得成功的意义相关,比如,一个人想使自己表现得很聪明,并且相信测验中的高分能表明其聪明,那么测验对其有很高的成就价值。
?这也是很多学生在学习奥数后,成绩不上升反而下降的重要原因之一,很多学生,在学习基础课程时,有很高的成就感,在学习奥数后,由于老师和家长的急切心里,对学生的理解和支持不够,成为了奥数学习中的“笨学生”,使学生学习的成就感丧失,导致成绩下降,因此,好的学习环境也是学好奥数的一个重要条件,奥数题解决不了,不是基本技能出了问题,只是思维方法不够理想,不要因此给学生过分的指责。
2、内在价值或兴趣价值,它是指个体从活动本身获得乐趣,奥数真正培养培养学生思维能力的,是奥数中原理,思维方法,大量重复的练习,可能导致学习任务增加,使学生失去学习的乐趣。因此,奥数的学习应该注重原理和方法的学习。
3、效用价值,即帮助个体达到一个短期或长期目标的价值,如学习外语能和外国朋友交流。对小学生来说,这方面概念较为模糊。
正确的奥数学习是以培养学生的学习兴趣,培养学生的思维能力为目的的,以竞赛和升学为目的的奥数只是应试教育下的产物,一方面不能真正起到培养思维能力的作用,另一方面可能磨灭学生的成就感,导致学生的学习动机的丧失。
四、特色个性化奥数教育
有人问,为什么有的学生学了奥数变得很聪明,而有学生学了奥数成绩反而更不理想呢?根据学生所掌握的数学技能的不同,因材施教,这是奥数学习最基本的前提。只有适当难得的学习任务,才能有效激发学生的学习动机,培养学生的思维能力,奥数的学习,更应该注意因材施教。
我们常常会看到这样一种现象:不少同学整天埋头学习,习题做了好几本,资料看了一大堆,但学习成绩总是提不高,竞赛成绩不理想,这是为什么?
究其原因,就是因为没有吃透教材的基本原理,没有掌握解题的科学方法,吃透原理,是学好各门功课的基本保证;掌握方法,是攻克奥数难题的有力武器。学习奥数的目的是锻炼学生的思维能力,奥数的中数学原理,思维方法,才是培养学生思维能力的根本,只有注重原理和方法的奥数课程,不仅能减轻学生任务,更能有效地培养学生的思维能力。
本中心就是期望为同学们提供最为全面、最为贴身、最为实用、最为有效的奥数个性化学习。以教育心理学为指导,结合学生的认识水平,以“突出思维训练、激发学习动机、培养解题技能,拓展实用知识”为宗旨,根据不同学生不同学习情况,贴身制订不同的课程和学习任务,以培养学生的学习兴趣的目的,着重数学原理,思维方法的讲解,在不增加学生的学习任务的同时,提高学生的思维能力。
本课程由本公司精心选拔的优秀奥赛教师主讲,讲课思路清晰顺畅,原理讲解透彻,注重方法点拨和思维开拓,方法灵活巧妙,启发恰到好处;既有例题分析,又有针对性训练,题型系统全面。
全课程基本包括小学奥数教学大纲全部奥数测试内容,内容如下。
课程安排:(以下课程内容及内容难度将根据学生的不同情况贴身制订)
第一部分:思维锻炼(锻炼学生思维能力,培养学习兴趣)
第一讲:逻辑推理
第二讲:算式迷
第三讲:一笔画问题
第四讲:对策斗智问题
第二部分:数学原理(以理解数学原理为主)
第五讲:抽屉原理
第六讲:加法、乘法原理
第七讲:容斥原理
第三部分:解题方法(培养解题技能)
第八讲:巧算和速算
第九讲:推向极端
第十讲:列方程解题
第十一讲:不定方程
第十二讲:数阵迷
第四部分:趣味名题(典型奥数名题,综合培养学生奥数解题能力)
第十三讲:和差倍分问题
第十四讲:植树问题
第十五讲:盈亏问题
第十六讲:还原问题
第十七讲:鸡兔同笼问题
第十八讲:行程问题
第十九讲:工程问题
第二十讲:统筹规划问题
第二十一讲:数字问题
第二十二讲:同余问题
第二十三讲:数列问题
第二十四讲:图形和面积
第五部分:知识拓展(拓展课堂知识)
第二十五讲:新定义运算
第二十六讲:数的整除
第二十七讲:奇数偶数
第二十八讲:质数、合数、分解质因数
第二十九讲:最大公约数和最小公倍数
第三十讲:分数的加减
第三十一讲:分数的乘除
第三十二讲:谁大谁小
第三十三讲:分数应用题
第三十四讲:百分数应用题
第六部分:
第三十五讲:综合检验
‘柒’ 解奥数有什么窍门
解奥数首先要学会思维,训练思维方法是最好的方式,如果没有好的思维方式,是不能学好奥数的。其次,解奥数要应用图形。大量使用图形解答问题是必须的,使用图形可以更直观,使奥数问题在图形上反应。
‘捌’ 小学生奥数知识点总结
《最全小学奥数知识要点.doc》网络网盘资源免费下载
链接:https://pan..com/s/1Psg71xfW5w15QYyWFOK20A
‘玖’ 小学生奥数学习的关键是什么,锻炼思维能力
由难化简,寓教于乐,情景化教学,慢慢引导孩子去解题,毕竟奥数是建议在基础数学之上比较高深复杂的高等数学,如果只是一味地“填鸭式教学”只会让孩子觉得难以理解,无聊,学不进去,老师要把课程变得生动有趣,这样才能激发孩子主动学习的欲望和兴趣,奥数是逻辑性和抽象性比较强的数学,小学生现在理解能力有限,在教学中需要游戏化,情景化的方式来进行,这样会让孩子更加容易理解和接受,更加印象深刻!
像火花思维的课程就是这样来进行的,比较吸粉,小孩子都很喜欢,你可以去了解下,看看能不能从中学习一下!
‘拾’ 如何有效规划小学奥数学习
1、由简单入手
小学生是有余力进行额外学习的,但是如果之前没接触过奥数,那么还是从简单入手比较好。一则让孩子通过简单问题逐渐熟悉奥数,一则培养孩子的奥数兴趣,避免接触难题打消学习积极性。
2、重视基础
奥数是小升初的竞争资本之一。其中大部分重点中学的奥数测试比较重视奥数的基础。而杯赛也基本都是在奥数基础上进行的延伸。所以不论是从小升初的角度还是从提高自身能力的角度考虑,小学生都应该重视奥数基础部分。
3、制定学习计划
所谓系统学习,决不是拿过哪块来就学习哪块,必须要有一个合理的学习计划。通过一段时间简单的学习,家长应注意了解孩子的学习进度,帮助孩子制定一份大体的学习计划。然后严格按照计划进行系统学习。
4、量变到质变
学习到一定阶段之后,也要注重孩子思维方法的培养了,不能总是停留在解题这个阶段。要综合各个题型进行分析学习,通过知识的了解上升到方法的拓展,再到掌握方法举一反三,实现一个质的飞跃!
5、要迅速过渡
学习过程中不必按部就班的学。应该辅助一定的练习对几种类型题和专题进行深入分析了理解,掌握专题的解题思路,做到以点概面,迅速过渡到高年级奥数的学习。
小学奥数学习方法五大窍门
窍门一:
记笔记——这方法其实很普遍也很简单,但恰恰是很多同学不容易做到的,记笔记有很多好处,一是可以把老师的精华记录下来方便复习,二是练习学生的书写能力,三是可以让学生养成边听边写的学习能力,这对于提高学习效率是非常有效的。
窍门二:
错题本——很多孩子都马虎,但有些马虎其实是同学对知识点理解不清晰造成的,这类的题目一定要记录下来。还有的是出题者故意设计的陷阱,这也可以记录下来,定时复习,久了之后很多马虎自然而然地就避免了。
窍门三:
学习小组——定期地和小组成员分享好试题,好方法,好技巧,好经验,即可以增加同学之间的情感,又可以在交朋友的过程学习到新的东西,提高学习效率,培养合作精神,增强协调能力。
窍门四:
题目分类本——和错题本一样,专门记录自己做过的试题,分类指的是将自己做过的试题分为几大类,一类是极其简单,自己一看就会的。一类是有一定难度,需要思考找到突破口的,还有一类就是难度很大,需要综合运用很多知识并进行推理才能解答的,后两类都应该是我们的记录重点。在对试题分类的过程中同学自然地就增强了对试题的进一步理解。
窍门五:
旧题新解——不定时的翻翻原来做过的试题,但是重点是思考有没有新的解题思路和解题技巧。这样不断地增加思考有利于形成学生思考习惯的形成,也有利于学生发散思维的形成,多角度考察问题的思路,并随时利用新学知识去解决问题。