A. 橡胶如何进行硫化
硫化又称交联、熟化。在橡胶中加入硫化剂和促进剂等交联助剂,在一定的温度、压力条件下,使线型大分子转变为三维网状结构的过程。由于最早是采用硫磺实现天然橡胶的交联的,故称硫化。“硫化”因最初的天然橡胶制品用硫磺作交联剂进行交联而得名。
橡胶硫化图
根据硫化历程分析,可分四个阶段,即焦烧阶段、热硫化阶段、平坦硫化阶段和过硫化阶段。
影响硫化过程的主要因素是硫磺用量、硫化温度及硫化时间。①硫磺用量。其用量越大,硫化速度越快,可以达到的硫化程度也越高。硫磺在橡胶中的溶解度是有限的,过量的硫磺会由胶料表面析出,俗称“喷硫”。为了减少喷硫现象,要求在尽可能低的温度下,或者至少在硫磺的熔点以下加硫。根据橡胶制品的使用要求,硫磺在软质橡胶中的用量一般不超过3%,在半硬质胶中用量一般为20%左右,在硬质胶中的用量可高达40%以上。②硫化温度。若温度高10℃,硫化时间约缩短一半。由于橡胶是不良导热体,制品的硫化进程由于其各部位温度的差异而不同。为了保证比较均匀的硫化程度,厚橡胶制品一般采用逐步升温、低温长时间硫化。③硫化时间。这是硫化工艺的重要环节。时间过短,硫化程度不足(亦称欠硫)。时间过长,硫化程度过高(俗称过硫)。只有适宜的硫化程度(俗称正硫化),才能保证最佳的综合性能。
按硫化条件可分为冷硫化、室温硫化和热硫化三类。冷硫化可用于薄膜制品的硫化,制品在含有2%~5%氯化硫的二硫化碳溶液中浸渍,然后洗净、干燥即可。室温硫化时,硫化过程在室温和常压下进行,如使用室温硫化胶浆(混炼胶溶液)进行自行车内胎接头、修补等。热硫化是橡胶制品硫化的主要方法。根据硫化介质及硫化方式的不同,热硫化又可分为直接硫化、间接硫化和混气硫化三种方法。①直接硫化,将制品直接置入热水或蒸汽介质中硫化。②间接硫化,制品置于热空气中硫化,此法一般用于某些外观要求严格的制品,如胶鞋等。③混气硫化,先采用空气硫化,而后再改用直接蒸汽硫化。此法既可以克服蒸汽硫化影响制品外观的缺点,也可以克服由于热空气传热慢,而硫化时间长和易老化的缺点。[1]
上述硫化方法均属于间歇生产,有些长度不限的橡胶制品可以连续硫化,如压出制品的盐浴硫化、沸腾床硫化、微波或高频硫化、胶带及胶板的鼓式硫化机硫化等。除硫磺硫化外,橡胶制品还可采用无硫硫化、高能射线硫化等,但其应用面均有限。
B. 橡胶密封件表面产生“喷霜”的主要原因是什么
喷霜又名喷出,是指未硫化胶或硫化胶内部所含的配合物(固体或液体)迁移表面而析出的现象。喷霜是胶料生产中常见的质量问题。
原因
造成出现喷霜的原因有以下几点。
1、过量配合:各种助剂在橡胶中的溶解度不同,助剂在橡胶中的溶解度越小,越易出现由过量配合(即橡胶中助剂的含量超过其在橡胶中的溶解度)而引起的喷霜。过量配合而喷霜时,往往会带动其它组分一起喷出(这种现象称为被动喷霜),尽管这些被动喷霜物在橡胶中远未达到饱和状态;
2、温度变化:助剂在橡胶中的溶解度随温度变化而变化,一般情况下,温度高时溶解度大,温度降低时溶解度减校由于橡胶制品通常在室温下使用,一旦外界温度低于室温,配方中一些助剂的含量接近其溶解度而析出,产生喷霜。例如夏季生产的胶鞋出厂检验时合格,贮存到冬季却发现喷霜;
3、欠硫:助剂在橡胶中的溶解状况受硫化条件影响。以NR为例,在正硫化条件下,交联密度最大,游离硫减小,喷硫几率降低,其它助剂穿梭于络的机会也降低,因而喷霜几率降低;反之,在欠硫状态下,网络交联密度相对较小,喷霜几率相应增大;
4、老化:老化意味着硫化胶络结构的局部因键断裂而受损,从而消弱了网络结构吸附和固锁配合助剂的能力,助剂向表面迁移导致喷霜;
5、受力不均:橡胶受到外力作用时,往往导致应力集中而使表面破裂,使原来呈过饱和状态的配合助剂微粒加速析出,在裂纹表面形成喷霜,并向周边延扩;
6、混炼不均:混炼不均导致配合剂在橡胶中分散不均,局部会出现配合助剂超过溶解度而产生喷霜。
配合剂从橡胶制品中喷出的现象,是橡胶制品生产中经常碰到的问题。最近有一本书在谈到这个问题的时候,将硫化体系配合剂的喷出、喷蜡、喷油、喷粉、发白等都统称为喷霜,这是非常不科学的,有时还可能将人引入岐途。如硫化配合的喷出、喷粉、氧化发白、以及由喷油或低沸点,物质蒸发引起的发白,从外观上看都是硫化橡胶表面有一层白色的粉未,如将几种发白的现象都误判为硫化配合剂的喷出(即喷霜)。虽反复对硫化体系进行修改,发白的现象却可能得到解决。因为上述四种的发白现象中,表面白色的粉未并不都是硫化配合剂,且其发白的条件和方式亦不相同。
本文主张根据橡胶制品表面状况的变化及产生的原因,喷出物的成份分析,将配合剂从制品中喷出的现象分为:喷霜(专指硫化体系配合剂的喷出,以下同)、喷蜡、喷油、喷粉氧化发白、发兰和虹色喷霜等。详细的分类可以使我们可以从多个角度了解配合剂从橡胶制品中喷出的现象,以便对配合剂的喷出提出对症下药的解决方法。本文的阐述如有不当之处,请同行们予以指正。
一、喷霜
在各种橡胶杂配件和鞋材的生产中,为了提高生产效率,降低生产成本,橡胶配方中往往都加入了较多的硫黄、促进剂,如果各种配合剂配合不当或生产上稍不注意,就会出现喷霜现象。
1、喷霜产生的原因
(1)加入的硫黄、促进剂(某一种或总量的用量过高)。
(2)混炼时加入硫黄、促进剂的胶料温度高,混炼不均匀,造成硫黄、促进剂局部浓度过高。
(3)硫化时间不足或欠硫。
(4)整体配方配合不合理。
(5)因防老剂用量过高(多为对苯二胺类),防老剂的喷出带动残留的硫黄和促进剂喷出。
2、解决喷霜问题的辨证思维
所谓解决喷霜问题的辨证思维,就是先找出胶料和硫化橡胶喷霜的原因,根据不同的原因给出不同的解决方法。
第一种情况的出现,主要是对各种橡胶(包括硫化橡胶)和各种硫化配合剂的相容性认识不足。首先,应该注意到各种橡胶和硫化配合剂的极性不同,同一种促进剂在不同橡胶中的溶解度不同;不同的促进剂在同一种橡胶中的溶解度也有很大的差异。例如:TMTD、TMTM在BR、IIR、EPDM中的溶解度很小,用量稍大即可能出现喷霜;但在NBR中(特别是高丙烯腈含量的NBR)即使用量大一点,也不会出现喷霜的危险。取代基为乙基的EZ、TETD在BR、IIR、EPDM中的用量可以比TMTD和TMTM大一点。而取代基为二丁基的BZ用量再大一点也不会出现喷霜的危险。其次,还没有引起人们足够注意的是,目前资料给出的硫黄、促进剂在橡胶中的溶解度基本上是指生胶,温度也不是在常温。硫化橡胶的组成和结构以及分子链的活动性与生胶存在很大的差异。表1是摘自邓本诚等编的《橡胶并用与橡塑共混技术——性能、工艺与配方》一书。由表1的数字可以看出,硫化配合剂在生胶中的溶解度与实际硫化橡胶中的硫化配合剂喷出的用量存在极大的差异。因此,硫化配合剂在生胶中的溶解度只是硫化橡胶喷霜的影响因素之一,而不是全部。因为橡胶和橡胶配方的千差万别,尚不能测定所有硫化橡胶中各种硫化配合剂的确切溶解度。只有通过试验确定硫化配合剂的合理用量和配合。再其次是在活性剂和其他配合剂存在下(包括不同促进剂的组合),硫化配合剂和橡胶的反应性,易于与橡胶反应的促进剂则不会喷出。第四点是残留的硫化配合剂在硫化橡胶中的存在形态(下一段会涉及)。
第二种情况并不是硫化体系中某种配合剂浓度过高或总体浓度过高造成的,而是因为局部浓度过高造成的。这种情况下多是混炼胶停放时已发白,连续的生产过程中也会出现硫化橡胶发白。这种情况的解决办法是降低混炼胶的温度后才开始加人硫黄、促进剂,并混炼均匀;或加料时要均匀地加入,不要一次性倒进去。有条件的可在混炼胶停放再进行翻炼。不必对配方进行修改。
在较高的硫黄、促进剂配合的情况下,欠硫时使硫化橡胶中残留的游离硫黄、促进剂以及促进剂的产物较多。某些促进剂的分应产物分子量变小,极性增加,可能成为诱导喷霜的主要原因。充分硫化的硫化橡胶中,硫黄和促进剂与橡胶反应形成交联键和悬挂物,游离极性物质减少,喷霜的危险性大大减少。
整体配方的合理配合解决硫化橡胶喷霜的问题,目前尚未看到详细的研究报告和专题综述。我想这个问题至少可以包括以下几个方面:一是硫化活性剂的作用,如氧化锌、硬脂酸和硬脂酸锌等,可以加快硫黄和促进剂与橡胶的反应,减少游离硫黄和促进剂的量。二是适当的促进剂组合,使其能互相活化,特别注意选择与橡胶反应性强的促进剂为主促进剂。填充补强剂的酸碱性也是影响硫化速度的重要因素,特别是酸性填料要加入适当的活化剂。三是增溶作用,当配方中加入某些增塑剂(如古马隆树脂、酚醛树脂等)或均匀剂(烷烃和芳烃树脂的混合物或芳烃和烷烃的共聚树脂)时,这些树脂分子量较大,不易在橡胶里发生迁移现象,具树脂分子链上带有一些极性和非极性的基团,与橡胶有很好的相容性,也与极性的促进剂或促进剂分解产物有很好的相容性,起到了增溶的作用。四是加入某些表面活性剂或具有络合作用的配合剂,改变了残留促进剂及其分解产物在橡胶里的存在状态,使得这些残留物不易喷出硫化硫化橡胶表面。五是加人的补强填充剂对小分子具有吸附作用,如炭黑、陶土等。某些填充剂对小分子的迁移具有阻隔作用,迟缓了这小分子的迁移速度,使其在相当长的时间内不会喷出硫化橡胶表面。如陶土、滑石粉等片状填料即具有这种阻隔作用。
其他配合剂配合不当引起的喷霜,只要适当减少该种配合剂的量即可。如前面提到的胺类促进剂用量多的配合不当。
二、喷蜡
喷蜡是泛指如硬脂酸、石蜡、聚乙二醇(PEG)等以蜡状方式喷出硫化橡胶表面。硬脂酸、石蜡用量过多往往容易喷出硫化橡胶表面已为大家所熟知,而PEG的喷出仍是困扰不少厂家的大问题。比较多的鞋材厂使用的补强剂主要是白炭黑,根据试验必须加入白炭黑量的10%~12%的PEG作为活化剂,才能获得与填充炭黑的胶料相同的硫化速度。因此,常见以白炭黑为主要填料的鞋材出现喷蜡现象,特别是以BR为主要生胶印透明鞋材更为严重。但如PEG的用量减少又会出现硫化不熟而喷霜的问题。如果将PEG用量降至白炭黑用量的5%~6%,并注意硬脂酸和石蜡的用量,喷蜡的现象便会得到解决。为解决硫化速度的问题,可以加人适量的胺类活化剂或适量的Si-69偶联剂。亦可适当增加氧化锌(或透明氧化锌)的用量,调整促进剂的组合,如加入少量的促进剂D或次磺酰胺类促进剂。
三、喷粉
喷粉亦称作喷白,其主要的喷出物是加入的轻质碳酸钙和偏碱性的沉淀白炭黑(pH值大约为6.5~7,而正常的沉淀白炭黑pH值应为4~5)。这类填料含水量较高,在潮湿的天气时含水量会更大。在较高的硫化温度时,这些填料会随着水份的蒸发而溶出硫化橡胶的表面,或随后会沿着水份蒸发而形成的毛细管通道出表面,水份蒸发以后便留下白色的粉未。要解决喷粉的问题,首先是不要使用偏碱性的沉淀白炭黑,在潮湿的天气要注意填料的防潮。如果是使用密炼机混炼的话,提高混炼胶的排胶温度,可以使大部份的水在混炼时蒸发掉;如果是使用开炼机混炼的话,受潮的填料最好烘干以后再使用。要鉴别硫化橡胶表面究竟是喷霜还是喷粉,第一步是检视配方,看哪种喷出的可能性更大,第二是用火烧,如果表面的粉未会熔化或烧焦便是喷霜;如果火烧后表面的粉未的形态和颜色没有变化,便是喷粉了。
四、发白或露白
填充大量白色填料的合成橡胶硫化橡胶,在臭氧、紫外光或光氧的老化作用下,表面会出现白色并易脱落的粉末,这情况称为发白或露白。这种情况在塑料和涂料行业称为粉化。这是因为覆盖在白色填料表面的橡胶分子因氧化断链,而失去了对粉料的覆盖作用,使粉料显露了出来。为防止这种发白现象的过早发生,可以在胶料中加入适量的防老剂、石蜡和紫外线吸收剂,钛白粉亦可遮挡和吸收光线,迟缓发白现象的产生。但在光氧老化的初期亦可能出现喷霜现象,并且可转化为红色喷霜。
五、油和低沸点挥发物的喷出
喷油可由如下三方面原因造成,一是增塑剂与橡胶的相溶性差,用量稍多即会喷出,如DOA、DOS在高丙烯腈含量的丁腈橡胶中。少量的硅油亦会从橡胶中喷出,最近还发现某些供应商的Si-69偶联剂也会喷出。另一个原因是增塑剂(或软化剂)中含有低沸点成份(如白矿油),这部份油在脱模后即会蒸发出来,然后在硫化橡胶表面冷凝;另一种低沸点的成分,可能是高温硫化时所产生的分解物。第三种情况是硫化温度过高或硫化过程中失压而造成,这种情况在开模时即可看到,光面的胶片尤其明显。
油和低沸点物喷出(或蒸发)的结果,可能还会造成喷霜的现象,这是溶于油中的促进剂被一齐带出、或硫黄升华的结果。这时会出现两种情况:如果被刚出模的胶片覆盖的底片是热的话,则未被覆盖的底片边缘发白;如果被覆盖的底片是冷的话,则被覆盖部分发白。这是低沸点蒸发物冷凝造成。
六、虹色喷霜和发兰
橡胶制品经高温和光照后,表面会出现黄色、红色和兰色或黄铜色,这种现象通常称为虹色喷霜。以炭黑补强的硫化橡胶有时也会出现兰色光,被称为发兰。
硫化橡胶表面出现彩色的现象,其色调取决天彩色光源的光谱组成以及物体表面对各种可见光波长的反射比例。表2列出了光的波长范围与光的颜色关系,当波长在两个相邻颜色的过渡区域变动时,可以看到一系列的中间色,例如红、橙两色的中间色有红光橙、橙光红等等。
有机物结构中的>C=C<、>c=o、-N=N-、-NO2基团能被紫外或可见光波长范围内的辐射所激发,从面在可见光范围内产生吸收带,这些原子团被称为发色团。而当一个发色团的共轭体系中含有象-NH2、-OH、-OR、-SH、-Cl、-Br、-I等给电子基团时,这些基团称之为助色团。橡胶和配合剂中的炭黑、促进剂、防老剂、增塑剂等可能含有以上的带些基团,或在受热和光照后生成其中的某些基团。硫化橡胶表面的虹色喷霜,与其表面物质的化学组成和结构有关。
有人曾经对EPDM硫化橡胶的虹色喷霜现象进行了分析研究,未经光照的EPDM样品是黑色的,没有任何喷霜的痕迹,即不发白也不出现彩色的虹色喷霜现象该样品经阳光照射后则有明显的颜色变化,其颜色接近于黄铜色。对两个样品进行了表面清洗——红外光谱分析、热解吸——气相气谱/质谱分析和表面的次级离子质谱分析。研究结果表明:受过阳光照射的样品表面含有更多的未反应的硫化促进剂残留物,该残留物含有硫、氧、氮。虹色喷霜可能是由于橡胶中的增塑剂(或软化剂)载着那些化学物质缓慢地向制品表面迁移(或是自行迁移),在光和热的作用下,发生氧化反应引起的颜色变化。进一步的研究发现,这种虹色喷霜与促进剂的种类及用量有关(光喷霜后变色)。
由表3可知,在三元乙丙橡胶中,不同的促进剂及不同的用量,是喷霜及变色程度不一样,不同的促进剂的颜色变化也不一样。因此,任何防止促进剂、防老剂等极性物质喷出,以及能防止喷出物光氧化作用的措施,都可以避免虹色喷霜现象的发生。如选用合适的促进剂种类和防老剂种类及用量,合理的促进剂和活性剂配合(提高硫化反应的速度和反应程度),加入造量的石蜡(或微晶蜡)以隔绝氧和臭氧的作用,加入紫外光吸收剂、光的屏障剂等,以减弱或消除光对氧化反应的激发作用等等。减少或不用某些可以引起变色的增塑剂,如古马隆树脂、高芳油、松焦油等。加大硫化橡胶的硫化程度,以减少残留的促进剂量。对于三元乙丙橡胶最好选用二烯含量高的牌号,因其硫化速度较快,促进剂消耗量大,使残留物向制品表面迁移减少,为易发生虹色喷雾;高乙烯含量的EPDM会产生结晶,对软化剂的吸收作用有限,过量的软化剂会与促进剂的残留物一起渗出表面。引进虹色喷霜的发生。
黑色的硫化橡胶发兰,有时是由于反射兰光的喷出物引起的,但是在很多情况下是由于炭黑引起的,特别是填充了较大量的导电炭黑和小粒径的炭黑(如N220、N330)时。如果改用粒径较大的炭黑(如N550、N660、N774等),硫化橡胶发兰光的现象就可以消除。如果必须选用导电炭黑和小粒径炭黑的情况下,掺用部分粒径较大的沉淀白炭黑(消光剂)或陶土、钛白粉(遮盖作用)等,亦可使兰光消除或减弱。
C. 橡胶硫化后表面泛白是什么原因
橡胶制品硫化后表面出现白色如霜的物质,这在专业上叫做“喷霜”。喷霜有多种原因造成,有的是因为配合剂或配合剂互相之间反应产物超过其在特定的橡胶中的溶解度而过饱和喷出,例如硫磺、促进剂、防老剂、硬脂酸、硬脂酸锌等的过饱和喷出;有的则是因为制品表面被臭氧所破坏,致使配合剂或配合剂间相互反应之产物与橡胶脱离所导致。解决方法应具体分析,但适当减少硫化剂的用量是最主要的考虑因素。
D. 什么是橡胶硫化工艺是什么
硫化诱导期(焦烧时间)内,交联尚未开始,胶料有很好的流动性。这一阶段决定了 胶料的焦烧性及加工安全性。这一阶段的终点,胶料开始交联并丧失流动性。硫化诱导期的长短除与生胶本身性质有关,主要取决于所用助剂,如用迟延性促进剂可以得到较长的焦烧时间,且有较高的加工安全性。预硫期,硫化诱导期以后便是以一定速度进行交联的预硫化阶段。预硫化期的交联程度低,即使到后期硫化胶的扯断强度,弹性也不能到达预想水平,但撕裂和动态裂口的性能却比相应的正硫化好。到达正硫化阶段后,硫化胶的各项物理性能分别达到或接近最佳点,或达到性能的综全平衡。
正硫化,正硫化阶段(硫化平坦区)之后,即为过硫阶段,有两种情况:天然胶出现“返原”现象(定伸强度下降),大部分合成胶(除丁基胶外)定伸强度继续增加。过硫,对任何橡胶来说,硫化时不只是产生交联,还由于热及其它因素的作用产生产联链和分子链的断裂。这一现象贯穿整个硫化过程。在过硫阶段,如果交联仍占优势,橡胶就发硬,定伸强度继续上升,反之,橡胶发软,即出现返原。硫化工艺主要是用来改善橡胶制品性能橡胶在未硫化之前,分子之间没有产生交联,因此缺乏良好的物理机械性能,实用价值不大。当橡胶加入硫化剂以后,经热处理或其他方式能使橡胶分子之间产生交联,形成三维网状结构,从而使其性能大大改善,尤其是橡胶的定伸应力、弹性、硬度、拉伸强度等一系列物理机械性能都会大大提高。
E. 橡胶底吐雾
橡胶底吐雾,既吐霜所致,技术支持来自橡胶技术李秀权!
1.不同胶种对喷霜的影响;
天然橡胶和丁苯橡胶、顺丁橡胶的分子结构有很大差异,因此它们对硫黄等硫化配合剂的溶解度也有不同,有资料记载:在同等可塑度的天然橡胶胶料和80:20并用比例的天然橡胶和顺丁橡胶的并用胶料,喷霜时间并用胶料为纯天然胶料的l/6,悬殊之大的原因,我们认为是二者对硫黄等配合剂的溶解度不相同,而硫黄等配合剂在并用胶料中溶解的速度快得多,因而迁移也快得多,所以喷霜时问也就短得多。
2.塑炼过程中分子结构的变化对喷霜的影响:
塑料中由于各种因素的作用,使橡胶的分子结构由原来直链大分子结构转为短链分子结构,由于这种链的破坏作用,致使橡胶大分子断链后生成很多自由基,这种自由基与空气中的氧起反应生成过氧化自由基,然后再与橡胶内的氢或其它物质中的氢原子反应生成氢过氧化自由基,这样就会失去活性,当然也能生成橡胶氧桥过氧化物。经过化学反应的历程以后的橡胶弹性会减小,塑性增大,溶解度增大,喷霜现象相对会减少,如果,塑壤到一定程度就不会发生喷霜了。试验证明,可塑度达到0.4左右,喷霜时间约为4~5小时,而可塑度增至0.6以上喷霜时问就会增长到 8小时以上。
3.防老剂品种与喷霜的关系
防老剂品种繁多,特性各异,其抗老化机理不一,这种配合剂有不步品种用量稍大就会出现喷霜现象,如防老剂A、防老剂D、防老剂MB和防老剂4010,如单用则应严格控制用量,否则会致使胶料喷霜,而防老剂sP— C的单用则不易喷霜。r防老剂A与D均属胺类防老剂,以其结掏来看有一个比较活化的氢原子,活性较橡胶分子中氢原子活泼得多,它会从防老剂分子中脱离开来进而与橡胶分子反应,使橡胶分子产生活性的自由基,呈游离状态,这样就致使橡胶分子裂解,因而,这种防老剂用量过大,很容易引起喷霜,而酚类防老剂sP—c就不容易喷霜。甚至连酚类和苯并眯唑娄的并用也由于能发挥各自的优良特性,而且,二者会互补而起到协同防老化作用,使胶料既抗氧老化又不易喷霜。
4.关于硫黄与喷硫:
硫黄是资源丰富、价格低廉的常用硫化剂,在橡胶中具有一定的溶解度,因此,只要用量适当是不会引起喷硫的,但是,往往由于用量超过一定的数值,而又没有采取相应的措施,造成硫化胶中的结台硫黄偏低,游离硫黄量偏高,往往会从胶料里面、慢慢迁移到表面卜来,即产生喷硫。硫黄在正常状态下存在的形态是稳定的冠状S 环结构,使之裂解须高能量,如加热至159℃才可达到裂解的目的,稳定的s。经加热裂解后形成具有双基的活性硫黄,它能继续与S。反应生成长链,具有弹性。很明显S。是不可能和橡胶直接反应生成网结构的,而必须使s。裂解之后才有可能,这样稳定的S 环被破坏产生的活性硫黄能在橡胶大分于的u一次甲基位置上结合,少量的活性硫黄在双键上加成,形成带硫的交联键,在纯硫状态下很难形成交联硫,而有促进剂存在的条件下就不同了,可以降低开环能量开环温度可以从159℃降低至40℃。同时引发橡胶分子的极化,加快交联反应速度,提高交联密度、增加稳定的单硫键、增多结合磺黄,减少游离硫,因而减少了喷硫的可能性,此种情况下形成一个单硫键所需的硫黄原子数由原来40~50个减少到仅需1.6个即可。这就说明配方工作青正常情况下应采用适当的低量的硫黄,同时,选择适当的促进剂及其用量才可以防止喷硫现象的发生,否则由于单硫键形成速度太慢,交联密度过低、游离硫过多,必然会出现喷硫现象。
5.硬脂酸与喷霜的关系:
硬脂酸是硫黄作为硫化剂时常用的活性剂、橡胶用硬脂酸一般酸值为88~28mgKOH/g,PH值为4~7,硬脂酸在硫化中可以起酸性活化作用,与金属氧化物生成可溶性盐,如硬脂酸锌、硬脂酸钙等,增加金属氧化物的活化能力,是胶料中的氢离子和硬脂酸根的来源,参与游离基反应,对硫化促进剂起活化作用,使硫化剂与橡胶的反应得以速进行,当然,也可作增塑剂和软化剂用,但作为活性剂其用量为0.5~2份,不宜过多,但应注意混炼时切忌硬脂酸与氧化锌混在一起加入,否则、由于锌盐形成团块,妨碍分散,容易产生胶料喷霜。
F. 什么是"喷硫现象"及其原因和解决方法
橡胶底吐雾,既吐霜所致技术支持自橡胶技术李秀权
1.同胶种喷霜影响;
橡胶丁苯橡胶、顺丁橡胶结构差异硫黄等硫化配合剂溶解度同资料记载:同等塑度橡胶胶料80:20并用比例橡胶顺丁橡胶并用胶料喷霜间并用胶料纯胶料l/6悬殊原我认二者硫黄等配合剂溶解度相同硫黄等配合剂并用胶料溶解速度快迁移快所喷霜问短
2.塑炼程结构变化喷霜影响:
塑料由于各种素作用使橡胶结构由原直链结构转短链结构由于种链破坏作用致使橡胶断链自由基种自由基与空气氧起反应氧化自由基再与橡胶内氢或其物质氢原反应氢氧化自由基失性能橡胶氧桥氧化物经化反应历程橡胶弹性减塑性增溶解度增喷霜现象相减少塑壤定程度发喷霜试验证明塑度达0.4左右喷霜间约4~5塑度增至0.6喷霜问增 8
3.防剂品种与喷霜关系
防剂品种繁特性各异其抗化机理种配合剂步品种用量稍现喷霜现象防剂A、防剂D、防剂MB防剂4010单用则应严格控制用量否则致使胶料喷霜防剂sP— C单用则易喷霜r防剂A与D均属胺类防剂其结掏看比较化氢原性较橡胶氢原泼防剂脱离进与橡胶反应使橡胶产性自由基呈游离状态致使橡胶裂解种防剂用量容易引起喷霜酚类防剂sP—c容易喷霜甚至连酚类苯并眯唑娄并用由于能发挥各自优良特性且二者互补起协同防化作用使胶料既抗氧化易喷霜
4.关于硫黄与喷硫:
硫黄资源丰富、价格低廉用硫化剂橡胶具定溶解度要用量适引起喷硫往往由于用量超定数值没采取相应措施造硫化胶结台硫黄偏低游离硫黄量偏高往往胶料面、慢慢迁移表面卜即产喷硫硫黄状态存形态稳定冠状S 环结构使裂解须高能量加热至159℃才达裂解目稳定s经加热裂解形具双基性硫黄能继续与S反应链具弹性明显S能橡胶直接反应网结构必须使s裂解才能稳定S 环破坏产性硫黄能橡胶于u甲基位置结合少量性硫黄双键加形带硫交联键纯硫状态难形交联硫促进剂存条件同降低环能量环温度159℃降低至40℃同引发橡胶极化加快交联反应速度提高交联密度、增加稳定单硫键、增结合磺黄减少游离硫减少喷硫能性种情况形单硫键所需硫黄原数由原40~50减少仅需1.6即说明配工作青情况应采用适低量硫黄同选择适促进剂及其用量才防止喷硫现象发否则由于单硫键形速度太慢交联密度低、游离硫必现喷硫现象
5.硬脂酸与喷霜关系:
硬脂酸硫黄作硫化剂用性剂、橡胶用硬脂酸般酸值88~28mgKOH/gPH值4~7硬脂酸硫化起酸性化作用与金属氧化物溶性盐硬脂酸锌、硬脂酸钙等增加金属氧化物化能力胶料氢离硬脂酸根源参与游离基反应硫化促进剂起化作用使硫化剂与橡胶反应速进行作增塑剂软化剂用作性剂其用量0.5~2份宜应注意混炼切忌硬脂酸与氧化锌混起加入否则、由于锌盐形团块妨碍散容易产胶料喷霜
G. 如何避免橡胶制品出现喷流问题
硫磺在橡胶中很溶解,其溶解度还会随着温度的升高而降低,但因此也会带来另一个问题:当温度降低时硫磺在胶料中的溶解度也会降低、多出的硫磺析出表面,造成喷硫。橡胶发生喷硫之后不仅会影响制品外观,还会导致胶料表面黏附力下降、制品耐老化性能变差。那么在实际生产中,如何操作可以避免橡胶制品喷硫、改善橡胶制品使用性能呢HYL9Y8Y1J-SXC?
再生胶与原胶相比硫化平坦性好、焦烧安全性高,加入适量的再生胶还可以与胶料中的硫磺反应、降低整个胶料中硫化体系浓度,从而减少喷硫问题的发生;再生胶价格低但成分比原胶要复杂,本身还含有一定量的硫化剂,因此在橡胶制品中一般以降低橡胶制品成本为主,再适当改进橡胶制品硫化工艺;要想从根本上消除喷硫,最好使用不溶性硫磺。
H. 橡胶喷霜怎么办
配方设计,可以私信联系!
2 橡胶喷霜的形式
橡胶有未硫化橡胶(以下称胶料)和硫化橡胶(以下称制品)之分,橡胶喷霜就包括胶料表面喷霜和制品表面喷霜。喷霜(bloom)是液体或固体配合剂由橡胶内部迁移到橡胶表面的现象 可见橡胶内部配合剂析出,就形成了喷霜。对橡胶喷霜的形式归纳起来,大体分为三种。即喷粉、喷蜡、喷油(也称渗出)。
喷粉是硫化剂、促进剂、活性剂、防老剂、填充剂等粉状配合剂析出在橡胶表面,而形成一层粉状物。喷蜡是石蜡、地蜡等蜡状物析出在橡胶表面,而形成一层蜡膜。喷油是软化剂、增粘剂、润滑剂、增塑剂等液态配合剂析出在橡胶表面,而形成一层油状物。
在实践中,橡胶表面喷霜的形式有时是以一种形式出现,有时却是以两种或三种形式同时出现。
3 橡胶喷霜的原因
橡胶喷霜是由于橡胶内部配合剂达到过饱和状态后,橡胶近表层的配合剂首先析出,再由内层向表层迁移析出,当配合剂在橡胶中降低到其饱和状态时,析出过程才告结束。使配合剂达到过饱和状态,导致橡胶喷霜的主要原因有:胶料配方设计不当,工艺操作不妥,原材料质量波动,贮存条件差,制品欠硫、制品老化等。
3.1 配方设计不当
配方设计不当主要指配合剂在橡胶中的用量超过其最大使用量。在一定条件下(主要是温度,其次是压力)一般配合剂在橡胶中都有一定的溶解度,达到配合剂溶解度的配合量称为配合剂的最大使用量。配方设计时,配合剂用量超过其最大使用量,配合剂就不能完全溶解在橡胶中,使得配合剂在橡胶中达到过饱和状态,由于配合剂在橡胶中最终要达到饱和状态,在趋于饱和状态过程中,超量使用的、不能溶解的配合剂便要析出,而在橡胶表面形成喷霜。,
通常情况下,配方设计不当容易造成喷霜的配合剂有硫化剂:硫黄。促进剂:二硫化二苯并噻唑(DM)、二硫化四甲基秋兰姆(T MTD)、2一硫醇基苯并噻唑(M)、一硫化四甲基秋兰姆(TMTM)、乙撑硫脲(NA 22)等。防老剂:N-苯基-β-萘胺(D)、N, N'一二苯基对苯二胺与苯基分萘胺混合物(H ) . N-环己基-N'一苯基对苯二胺(4010), N, N'二(β-萘基)对苯二胺(DNP)、2一硫醇基苯并咪唑( MB)、石蜡等。增塑剂:机油、酯类油等。活性剂:氧化锌、硬脂酸等。填充剂:轻钙、碳酸镁等。防焦剂:N-环己基硫代邻苯二甲酞亚胺(CTP)等。还有一些其它配合剂。
3.2 工艺操作不当
胶料生产时,首先配合剂称量要准确,以免造成多配,使得配合剂的用量超过其在橡胶中的最大用量,并造成喷霜。其次,要按工艺操作充分压合,以免造成捣胶不均,配合剂分散不匀,使得配合剂在胶料中局部浓度过大,达到过饱和状态,而造成喷霜。再者,加入硫黄时,胶温、辊温不要过高,由于硫黄在橡胶中的溶解度随温度升高而增大,硫黄溶解度增大,其在橡胶中的溶解速度加快,就容易引起分布不均,使得硫黄在胶料中局部含量多,局部含量少。待胶料冷却后,硫黄在胶料中的溶解度下降,胶料中局部含量过多的硫黄,便达到过饱和状态,就造成喷霜,此种喷霜也称喷硫。
3.3 原材料质量波动
橡胶工业原材料包括两大类,即生胶和配合剂。不同的配合剂在同一种生胶中有着不同的溶解度,同一种配合剂在不同的生胶中也有着不同的溶解度,就是在同一类生胶中,由于其共聚组分比不同、门尼粘度不同、产厂污染非污染之分而形成的不同规格中同一配合剂的溶解度也不同,即使产品样本上数据几乎相同的生胶,因生家所采取的工艺不同、合成单体的差异、制造批量的不同,而使同一配合剂的溶解度也不同。
生胶质量发生波动就会引起生胶极性、结晶性、分子结构、分子量分布、门尼粘度,灰分、挥发分、物理性能等发生变化。由于配合剂在生胶中的溶解度主要取决于生胶和配合剂的结构与性能,那么生胶质量发生波动就会影响配合剂的溶解度。如果造成配合剂溶解度下降,便会发生喷霜现象。
橡胶用配合剂大都属于工业品,纯度不高其成分与我们通常所说的化学药品有很大不同。硫化促进剂和防老化剂等化学成分不管怎样说还是比较清楚的,而其它配合剂却是很粗制的。例如,橡胶用硬脂酸是一种混合脂肪酸,不是纯粹的硬脂酸,它只相当于十六烷酸(软脂酸)和油酸的混合物。氧化锌、氧化镁和炭黑等其它物质在制造中混入很多杂质。轻钙、陶土等物质因产地材质不同、制法不同、工艺不同、批量不同而有很大差别。配合剂质量发生波动就会引起其纯度、水分、灰分、pH值、物理性能等发生变化,这些因素影响着其在橡胶中的溶解度。如果溶解度下降,配合剂便会发生喷霜。
3.4 储存条件差
配合剂在橡胶中的溶解度是在一定条件下测定或计算的。配合剂在橡胶中的溶解度除与配合剂和生胶两者的化学结构、极性、结晶性、分子量大小及分布、溶解度或溶解度参数等有关外,还与贮存时的温度、压力、湿度、时间有关。
配合剂在橡胶中的溶解度一般都是随着温度的升降而升降。因此,橡胶在储存和使用时的温度高于标准温度,配合剂的用量就可能达到最大用量;而在低于标准温度时就不能用到最大用量,否则橡胶表面就会出现喷霜。
表1列出了常用配合剂硫黄在100克不同生胶中的溶解量(克)。从中看出:硫黄在不同的生胶中有着不同的溶解度,但都随着温度的升降而升降。
可见,温度对配合剂的溶解度影响很大,直接影响着橡胶表面喷霜。
橡胶储存时所受的压力、周围空气的湿度以及时间对配合剂的溶解度也有影响,一般情况下影响不大。但是,如果压力较大,受压部位橡胶中的配合剂就会形成晶核,析出于橡胶表面,形成喷霜;如果空气的湿度过大,橡胶中极性大的配合剂对生胶(非极性)的作用减弱,配合剂溶解度下降,从而导致喷霜;储存时间越长,橡胶表面喷霜越明显,由于储存环境中空气的温度和湿度随着季节的变化而不同,并且差别较大,极易造成配合剂的溶解度发生变化,从而导致喷霜。
制品的欠硫
配合剂在橡胶中的溶解度随着制品硫化程度的深浅而不同。一般在制品达到正硫化时配合剂则达到最大溶解度。这是因为在硫化交联过程中化学键(C-Sx-C、C-S-C、C-C、C-O-C等)的形成,加强了配合剂与生胶分子之间以及配合剂之间的化学结合或物理结合过程,这有利于配合剂在橡胶中的溶解;其次配合剂参与化学键形成的反应或其它副反应,减少了配合剂的含量,降低了配合剂的浓度。所以,制品欠硫就会导致配合剂的溶解度下降使橡胶表面出现喷霜。
橡胶老化
橡胶老化大都导致硫化胶完整的均衡的网状结构发生破坏,从而也破坏了橡胶体系内各种配合剂与生胶分子以及配合剂之间的化学的或物理的结合,降低了配合剂在橡胶体系内的溶解度。因此,那些局部处于过饱和状态的配合剂便会从橡胶中游离析出,形成喷霜。
橡胶老化引起的喷霜与其它类型的喷霜不同。它不是容易发生在温度低、湿度大的冬天和秋天,而是发生在温度高的夏天和阳光暴晒的环境中。
4 橡胶喷霜的危害
橡胶表面喷霜不仅严重地影响了产品的外观质量,而且在一定程度上也影响着橡胶制品的使用性能及寿命,也影响着胶料的工艺性能及物理机械性能。
喷霜首先使橡胶的外观质量和装饰性能受到影响。喷粉后,橡胶表面会乏白、泛黄、泛灰,有时还会出现亮点。喷油后,橡胶表面会泛黄、泛兰或有荧光或失光。喷蜡后,橡胶表面会失光、泛白。
其次,喷霜会使胶料在压延时降低表面粘性,给下工序的贴合,成型带来困难,容易造成废次品;使胶料在挤出后,影响半成品的外观质量,降低胶料与骨架层的粘着性能,使制品质量下降,寿命缩短。
喷霜还会造成胶料焦烧和制品老化。如果在胶料表面喷霜的成份中主要是硫化剂或促进剂,那么胶料表面的硫化剂或促进剂的含量就非常高,在胶料储存或生产过程中,由于热积累的增大,很容易发生焦烧。若在硫化时就会形成硫化程度不均,表面硫化程度高,而内部则低,使得胶料物理机械性能下降。如果在制品表面喷霜成份主要是硫化齐J_硫黄,则会加速制品老化。因为硫黄在空气的氧化作用下能生成二氧化硫,二氧化硫和空气中的水分作用又会生成亚硫酸和硫酸,腐蚀制品表面胶层,并由表及里。这样就加快了制品老化,缩短了使用寿命。
喷霜对橡胶确有“百害”,但也有“一利”。有些制品表面往往需要喷出石蜡,形成一层蜡状膜,隔离空气的接触,避免制品表层发生氧化,起到防止老化的作用。有些胶料表面要求喷出一定的粉、油、蜡、防止胶片相互粘连,起到隔离剂的作用,减少隔离剂的使用,有利工人操作和身体健康,减少灰尘飞扬,有利环境保护。/
喷霜的防止措施
橡胶表面喷霜,其成分往往是复杂的,很少是单一的。在喷霜的复杂成分中总有主次之分,因为配合剂在橡胶中相互影响,只要一种配合剂喷出,就会破坏整个配合剂在橡胶中的均匀程度,并产生浓度梯度,这样就容易使其它配合剂伴随着前一种配合剂的喷出而喷出。所以为了防止喷霜,必须首先分析喷霜中的主要成分,再根据造成喷霜的原因,最终采取措施,加以防止。
5 .1 调整配方
喷霜主要取决于橡胶的配方设计。配方设计时配合剂用量若超过其在橡胶中的最大用量,就会导致橡胶表面出现喷霜
5.1 .1 限制配合剂用量
配方设计时,配合剂的用量必须限制在橡胶储存和使用时的条件(包括温度、压力、介质、湿度等)所允许的最大用量内。为此,可以参照表2、表3,选用溶解度参数与配方生胶接近的配合剂;或者采用几种配合剂并用。这样既达到了同样的效果,又避免了配合剂的喷霜。
改进生胶种类
同一配合剂在不同的生胶中有着不同的溶解度,不同的生胶其溶解度参数也不同。为此在橡胶性能满足使用要求的情况下,可以通过选用或并用溶解度大的生胶;选用与配合剂溶解度参数相近的生胶;选用或并用所需性能较好的生胶,减少配合剂的用量等措施来避免配合剂的喷霜。
改进工艺
提高配合剂的分散性通过降低炼胶温度,延长炼胶时间,增加薄通次数、开刀次数,或在配方中添加分散剂(均匀剂)来提高配合剂在橡胶中的分散性,使其均匀分散。/
5 .2 .2 提高制品的硫化程度
通过延长硫化时间,提高硫化温度等来提高硫化程度,避免制品欠硫而造成喷霜。
改善储存条件
改善储存条件,避免橡胶喷霜,应该采取以下措施。降低储存温度,严禁阳光照射;降低空气湿度,使储存环境干燥、通风;缩短库存周期,避免长时间存放;避免橡胶相互挤压、碰擦,做到单放或架放。
喷霜的鉴别和处理方法
喷霜是由各种各样原因引起的。对于已经发生喷霜的橡胶,只有分析出引起喷霜的原因,才能有效地加以处理。
制品欠硫造成的喷霜容易鉴别,因为这种喷霜往往是局部的、偶然的。对此只要采取改进硫化工艺或强化配方硫化体系就可以解决。
储存条件不当造成的喷霜也容易鉴别,只要对储存温度、时间、湿度等进行不同的对比试验,就可以鉴别出来。对此,只要采取适当的储存条件就可以避免。
原材料质量波动造成的喷霜也好鉴别,因为这种喷霜通常是偶然的、成批的,对此,只要对原材料的不同批次、不同产地进行对比试验,就可以鉴别出来。这样,只要更调原材料的批次、产地就可以解决。
工艺操作不当造成的喷霜也好鉴别,因为这种喷霜是偶然的、局部的。对此,只要对配合剂准确称量,避免错配、多配、少配、漏配等,操作时严格按工艺进行,避免胶料混炼不均、辊温过高,就可以解决。
3橡胶老化造成的喷霜可以根据其容易发生在气温高的夏天和阳光暴晒的环境中这一特点来鉴别。配合剂超量使用造成的喷霜比较难于鉴别,对此只能采用一一排除法。以上两种喷霜都是大批量的,后果也比较严重,相对地也很难处理。一般采用擦净喷霜物,用溶剂浸泡4到6小时后,取出阴干,包装入袋。但是要从根本上解决就必须改进胶料配方。
结语
橡胶表面喷霜,不但影响制品的外观质量和使用寿命,而且也影响胶料半成品的加工性能和工艺性能,同时给企业也造成一定的经济损失,对企业的声誉带来难以估量的损害。因此,配方设计人员,工艺制订人员在设计配方、制订工艺时要充分考虑生胶特性、配合剂性能和用量,工厂的加工条件、储存环境,制品的存放周期、使用条件等等;生产操作人员一定要按照工艺规程进行操作;采购人员要按照配方设计中所要求的材料产地、标准进行组织,使橡胶各种性能达到或接近配方设计时的水平,以便避免橡胶喷霜等质量问题的发生。
I. 三元乙丙橡胶产品表面喷霜烘完后表面成了一个个白点怎么回事,怎么解决
橡胶喷霜的形式
橡胶有未硫化橡胶(以下称胶料)和硫化橡胶(以下称制品)之分,橡胶喷霜就包括胶料表面喷霜和制品表面喷霜。喷霜(bloom)是液体或固体配合剂由橡胶内部迁移到橡胶表面的现象[1]。可见橡胶内部配合剂析出,就形成了喷霜。对橡胶喷霜的形式归纳起来,大体分为三种。即喷粉、喷蜡、喷油(也称渗出)。
喷粉是硫化剂、促进剂、活性剂、防老剂、填充剂等粉状配合剂析出在橡胶表面,而形成一层粉状物。喷蜡是石蜡、地蜡等蜡状物析出在橡胶表面,而形成一层蜡膜。喷油是软化剂、增粘剂、润滑剂、增塑剂等液态配合剂析出在橡胶表面,而形成一层油状物。
在实践中,橡胶表面喷霜的形式有时是以一种形式出现,有时却是以两种或三种形式同时出现。
3 橡胶喷霜的原因
橡胶喷霜是由于橡胶内部配合剂达到过饱和状态后,橡胶近表层的配合剂首先析出,再由内层向表层迁移析出,当配合剂在橡胶中降低到其饱和状态时,析出过程才告结束。使配合剂达到过饱和状态,导致橡胶喷霜的主要原因有:胶料配方设计不当,工艺操作不妥,原材料质量波动,贮存条件
差,制品欠硫、制品老化等。
3.1 配方设计不当
配方设计不当主要指配合剂在橡胶中的用量超过其最大使用量。在一定条件下(主要是温度,其次是压力)一般配合剂在橡胶中都有一定的溶解度,达到配合剂溶解度的配合量称为配合剂的最大使用量。配方设计时,配合剂用量超过其最大使用量,配合剂就不能完全溶解在橡胶中,使得配合剂在橡胶中达到过饱和状态,由于配合剂在橡胶中最终要达到饱和状态,在趋于饱和状态过程中,超量使用的、不能溶解的配合剂便要析出,而在橡胶表面形成喷霜。
通常情况下,配方设计不当容易造成喷霜的配合剂有硫化剂:硫黄。促进剂:二硫化二苯并噻唑(DM)、二硫化四甲基秋兰姆(T MTD)、2一硫醇基苯并噻唑(M)、一硫化四甲基秋兰姆(TMTM)、乙撑硫脲(NA 22)等。防老剂:N-苯基-β-萘胺(D)、N, N'一二苯基对苯二胺与苯基分萘胺混合物(H ) . N-环己基-N'一苯基对苯二胺(4010) , N, N'二(β-萘基)对苯二胺(DNP)、2一硫醇基苯并咪唑( MB)、石蜡等。增塑剂:机油、酯类油等。活性剂:氧化锌、硬脂酸等。填充剂:轻钙、碳酸镁
等。防焦剂:N-环己基硫代邻苯二甲酞亚胺(CTP)等。还有一些其它配合剂。
3.2 工艺操作不当
胶料生产时,首先配合剂称量要准确,以免造成多配,使得配合剂的用量超过其在橡胶中的最大用量,并造成喷霜。其次,要按工艺操作充分压合,以免造成捣胶不均,配合剂分散不匀,使得配合剂在胶料中局部浓度过大,达到过饱和状态,而造成喷霜。再者,加入硫黄时,胶温、辊温不要过高,由于硫黄在橡胶中的溶解度随温度升高而增大[2],硫黄溶解度增大,其在橡胶中的溶解速度加快,就容易引起分布不均,使得硫黄在胶料中局部含量多,局部含量少。待胶料冷却后,硫黄在胶料中的溶解度下降,胶料中局部含量过多的硫黄,便达到过饱和状态,就造成喷霜,此种喷霜也称喷硫。
3.3 原材料质量波动
橡胶工业原材料包括两大类,即生胶和配合剂。不同的配合剂在同一种生胶中有着不同的溶解度,同一种配合剂在不同的生胶中也有着不同的溶解度,就是在同一类生胶中,由于其共聚组分比不同、门尼粘度不同、污染非污染之分而形成的不同规格中同一配合剂的溶解度也不同,即使产品样本上数据几乎相同的生胶,因生产厂家所采取的工艺不同、合成单体的差异、制造批量的不同,而使同一配合剂的溶解度也不同。
生胶质量发生波动就会引起生胶极性、结晶性、分子结构、分子量分布、门尼粘度,灰分、挥发分、物理性能等发生变化。由于配合剂在生胶中的溶解度主要取决于生胶和配合剂的结构与性能,那么生胶质量发生波动就会影响配合剂的溶解度。如果造成配合剂溶解度下降,便会发生喷霜现象。
橡胶用配合剂大都属于工业品,纯度不高其成分与我们通常所说的化学药品有很大不同。硫化促进剂和防老化剂等化学成分不管怎样说还是比较清楚的,而其它配合剂却是很粗制的[3]。例如,橡胶用硬脂酸是一种混合脂肪酸,不是纯粹的硬脂酸,它只相当于十六烷酸(软脂酸)和油酸的混合物。氧化锌、氧化镁和炭黑等其它物质在制造中混入很多杂质。轻钙、陶土等物质因产地材质不同、制法不同、工艺不同、批量不同而有很大差别。配合剂质量发生波动就会引起其纯度、水分、灰分、pH值、物理性能等发生变化,这些因素影响着其在橡胶中的溶解度。如果溶解度下降,配合剂便会发生喷霜。
3.4 储存条件差
配合剂在橡胶中的溶解度是在一定条件下测定或计算的。配合剂在橡胶中的溶解度除与配合剂和生胶两者的化学结构、极性、结晶性、分子量大小及分布、溶解度或溶解度参数等有关外,还与贮存时的温度、压力、湿度、时间有关。
配合剂在橡胶中的溶解度一般都是随着温度的升降而升降[4]。因此,橡胶在储存和使用时的温度高于标准温度,配合剂的用量就可能达到最大用量;而在低于标准温度时就不能用到最大用量,否则橡胶表面就会出现喷霜。
表1列出了常用配合剂硫黄在100克不同生胶中的溶解量(克)。从中看出:硫黄在不同的生胶中有着不同的溶解度,但都随着温度的升降而升降。
可见,温度对配合剂的溶解度影响很大,直接影响着橡胶表面喷霜。
橡胶储存时所受的压力、周围空气的湿度以及时间对配合剂的溶解度也有影响,一般情况下影响不大[6]。但是,如果压力较大,受压部位橡胶中的配合剂就会形成晶核,析出于橡胶表面,形成喷霜;如果空气的湿度过大,橡胶中极性大的配合剂对生胶(非极性)的作用减弱,配合剂溶解度下降,从而导致喷霜;储存时间越长,橡胶表面喷霜越明显,由于储存环境中空气的温度和湿度随着季节的
变化而不同,并且差别较大,极易造成配合剂的溶解度发生变化,从而导致喷霜。
3.5 制品的欠硫
配合剂在橡胶中的溶解度随着制品硫化程度的深浅而不同。一般在制品达到正硫化时配合剂则达到最大溶解度。这是因为在硫化交联过程中化学键(C-Sx-C、C-S-C、C-C、C-O-C等)的形成,加强了配合剂与生胶分子之间以及配合剂之间的化学结合或物理结合过程,这有利于配合剂在橡胶中的溶解;其次配合剂参与化学键形成的反应或其它副反应,减少了配合剂的含量,降低了配合剂的浓度。所以,制品欠硫就会导致配合剂的溶解度下降使橡胶表面出现喷霜。
3.6 橡胶老化
橡胶老化大都导致硫化胶完整的均衡的网状结构发生破坏,从而也破坏了橡胶体系内各种配合剂与生胶分子以及配合剂之间的化学的或物理的结合,降低了配合剂在橡胶体系内的溶解度。因此,那些局部处于过饱和状态的配合剂便会从橡胶中游离析出,形成喷霜。
橡胶老化引起的喷霜与其它类型的喷霜不同。它不是容易发生在温度低、湿度大的冬天和秋天,而是发生在温度高的夏天和阳光暴晒的环境中。
4 橡胶喷霜的危害
橡胶表面喷霜不仅严重地影响了产品的外观质量,而且在一定程度上也影响着橡胶制品的使用性能及寿命,也影响着胶料的工艺性能及物理机械性能。
喷霜首先使橡胶的外观质量和装饰性能受到影响。喷粉后,橡胶表面会乏白、泛黄、泛灰,有时还会出现亮点。喷油后,橡胶表面会泛黄、泛兰或有荧光或失光。喷蜡后,橡胶表面会失光、泛白。
其次,喷霜会使胶料在压延时降低表面粘性,给下工序的贴合,成型带来困难,容易造成废次品;使胶料在挤出后,影响半成品的外观质量,降低胶料与骨架层的粘着性能,使制品质量下降,寿命缩短。
喷霜还会造成胶料焦烧和制品老化。如果在胶料表面喷霜的成份中主要是硫化剂或促进剂,那么胶料表面的硫化剂或促进剂的含量就非常高,在胶料储存或生产过程中,由于热积累的增大,很容易发生焦烧。若在硫化时就会形成硫化程度不均,表面硫化程度高,而内部则低,使得胶料物理机械性能下降。如果在制品表面喷霜成份主要是硫化齐J_硫黄,则会加速制品老化。因为硫黄在空气的氧化作用下能生成二氧化硫,二氧化硫和空气中的水分作用又会生成亚硫酸和硫酸,腐蚀制品表面胶层,并由表及里。这样就加快了制品老化,缩短了使用寿命。
喷霜对橡胶确有“百害”,但也有“一利”。有些制品表面往往需要喷出石蜡,形成一层蜡状膜,隔离空气的接触,避免制品表层发生氧化,起到防止老化的作用。有些胶料表面要求喷出一定的粉、油、蜡、防止胶片相互粘连,起到隔离剂的作用,减少隔离剂的使用,有利工人操作和身体健康,减少灰尘飞扬,有利环境保护。
5 喷霜的防止措施
橡胶表面喷霜,其成分往往是复杂的,很少是单一的。在喷霜的复杂成分中总有主次之分,因为配合剂在橡胶中相互影响,只要一种配合剂喷出,就会破坏整个配合剂在橡胶中的均匀程度,并产生浓度梯度,这样就容易使其它配合剂伴随着前一种配合剂的喷出而喷出。所以为了防止喷霜,必须首先分析喷霜中的主要成分,再根据造成喷霜的原因,最终采取措施,加以防止。
5 .1 调整配方
喷霜主要取决于橡胶的配方设计。配方设计时配合剂用量若超过其在橡胶中的最大用量,就会导致橡胶表面出现喷霜。
5 .1 .1 限制配合剂用量
配方设计时,配合剂的用量必须限制在橡胶储存和使用时的条件(包括温度、压力、介质、湿度等)所允许的最大用量内。为此,可以参照表2、表3,选用溶解度参数与配方生胶接近的配合剂;或者采用几种配合剂并用。这样既达到了同样的效果,又避免了配合剂的喷霜。
5 .1 .2改进生胶种类
同一配合剂在不同的生胶中有着不同的溶解度,不同的生胶其溶解度参数也不同。为此在橡胶性能满足使用要求的情况下,可以通过选用或并用溶解度大的生胶;选用与配合剂溶解度参数相近的生胶;选用或并用所需性能较好的生胶,减少配合剂的用量等措施来避免配合剂的喷霜。
5.2 改进工艺
5 .2 .1 提高配合剂的分散性
通过降低炼胶温度,延长炼胶时间,增加薄通次数、开刀次数,或在配方中添加分散剂(均匀剂)来提高配合剂在橡胶中的分散性,使其均匀分散。
5 .2 .2 提高制品的硫化程度
通过延长硫化时间,提高硫化温度等来提高硫化程度,避免制品欠硫而造成喷霜。
5.3 改善储存条件
改善储存条件,避免橡胶喷霜,应该采取以下措施。降低储存温度,严禁阳光照射;降低空气湿度,使储存环境干燥、通风;缩短库存周期,避免长时间存放;避免橡胶相互挤压、碰擦,做到单放或架放。
6 喷霜的鉴别和处理方法
喷霜是由各种各样原因引起的。对于已经发生喷霜的橡胶,只有分析出引起喷霜的原因,才能有效地加以处理。
制品欠硫造成的喷霜容易鉴别,因为这种喷霜往往是局部的、偶然的。对此只要采取改进硫化工艺或强化配方硫化体系就可以解决。
储存条件不当造成的喷霜也容易鉴别,只要对储存温度、时间、湿度等进行不同的对比试验,就可以鉴别出来。对此,只要采取适当的储存条件就可以避免。
原材料质量波动造成的喷霜也好鉴别,因为这种喷霜通常是偶然的、成批的,对此,只要对原材料的不同批次、不同产地进行对比试验,就可以鉴别出来。这样,只要更调原材料的批次、产地就可以解决。
工艺操作不当造成的喷霜也好鉴别,因为这种喷霜是偶然的、局部的。对此,只要对配合剂准确称量,避免错配、多配、少配、漏配等,操作时严格按工艺进行,避免胶料混炼不均、辊温过高,就可以解决。
橡胶老化造成的喷霜可以根据其容易发生在气温高的夏天和阳光暴晒的环境中这一特点来鉴别。配合剂超量使用造成的喷霜比较难于鉴别,对此只能采用一一排除法。以上两种喷霜都是大批量的,后果也比较严重,相对地也很难处理。一般采用擦净喷霜物,用溶剂浸泡4到6小时后,取出阴干,包装入袋。但是要从根本上解决就必须改进胶料配方。
7 结语
橡胶表面喷霜,不但影响制品的外观质量和使用寿命,而且也影响胶料半成品的加工性能和工艺性能,同时给企业也造成一定的经济损失,对企业的声誉带来难以估量的损害。因此,配方设计人员,工艺制订人员在设计配方、制订工艺时要充分考虑生胶特性、配合剂性能和用量,工厂的加工条件、储存环境,制品的存放周期、使用条件等等;生产操作人员一定要按照工艺规程进行操作;采购人员要按照配方设计中所要求的材料产地、标准进行组织,使橡胶各种性能达到或接近配方设计时的水平,以便避免橡胶喷霜等质量问题的发生。
J. 橡胶 硫化处理后,是什么结构
橡胶硫化过程中发生了硫的交联,这个过程是指把一个或更多的硫原子接在聚合物链上形成桥状结构。反应的结果是生成了弹性体,它的性能在很多方面都有了改变,硫化剂可以是硫或者其它相关物质。
影响硫化过程的主要因素是硫磺用量、硫化温度及硫化时间。
硫磺用量:其用量越大,硫化速度越快,可以达到的硫化程度也越高。硫磺在橡胶中的溶解度是有限的,过量的硫磺会由胶料表面析出,俗称“喷硫”。为了减少喷硫现象,要求在尽可能低的温度下,或者至少在硫磺的熔点以下加硫。根据橡胶制品的使用要求,硫磺在软质橡胶中的用量一般不超过3%,在半硬质胶中用量一般为20%左右,在硬质胶中的用量可高达40%以上。
硫化温度:若温度高10℃,硫化时间约缩短一半。由于橡胶是不良导热体,制品的硫化进程由于其各部位温度的差异而不同。为了保证比较均匀的硫化程度,厚橡胶制品一般采用逐步升温、低温长时间硫化。
硫化时间:这是硫化工艺的重要环节。时间过短,硫化程度不足(亦称欠硫)。时间过长,硫化程度过高(俗称过硫)。只有适宜的硫化程度(俗称正硫化),才能保证最佳的综合性能。