❶ 怎样检测生物组织中的糖类,脂肪和蛋白质
糖类中还原糖(例葡萄糖、果糖、麦芽糖等)可用斐林试剂检测。先准备组织样液,再准备0·1g/ml的氢氧化钠溶液、0.05g/ml硫酸铜溶液。方法步骤:1.(1)取2ml组织样液加入1支洁净的试管。
(2)再另取2支试管,分别加入2mlNaOH与硫酸铜溶液,再把硫酸铜溶液倒入氢氧化钠溶液的试管,振荡混合均匀,即为斐林试剂。
(3)把新配制的斐林试剂与组织样液,等体积混合,振荡摇匀,然后放入50~60度水浴中保温,观察颜色变化。如出现砖红色沉淀,即说明有还原糖。
非还原糖(淀粉用碘液检测即可)碘遇淀粉变蓝。
脂肪用苏丹三或苏丹四检测,材料可用浸泡过"的花生种子,先制成临时装片,再用显微镜观察。或者把试剂滴加到组织样液中,观察颜色变化。
临时装片制作:用刀片先在花子叶切开,然后做徒手切片,放在清水中,然后用毛笔蘸取最薄的一片放在载玻片中央,滴加苏丹三溶液染色3到5分钟,用吸水纸吸取多余染液,再用体积分数为50%酒精洗去浮色,盖上盖玻片。放在显微镜下观察。脂肪粒被苏丹三染成橘黄色、苏丹四染成红色。(上述徒手切片做不好,可在花生子叶上
刮取少量粉末,直接涂在载玻片上来替代。
蛋白质用双缩脲试剂来检测。双缩脲是由A液(0.1g/ml的氢氧化钠)、B液(O.01g/mL的硫酸铜溶液组成。)
使用时取组织样液(用蛋清稀释液或豆浆)一2mL加入洁净试管,然后先滴加1mLA液,振荡试管摇匀,再滴加3~4滴硫酸铜溶液,摇匀。蛋白质遇双缩脲生成紫色。
❷ 生药中氨基酸,肽类及蛋白质类常用检查方法有哪些
①.氨基酸:
a.分光光度法:只有络氨酸和苯丙氨酸对紫外线有吸收,氨基酸与衍生物反 应生成有色物质,常用的衍生物是:茚三酮、乙酰丙酮-甲醛。
b.气象色谱法:将氨基酸衍 生为易气化的物质,利用气态样品中各组成在两相中的分配系数不同进行分析,常用的有硅 烷化、酯化、酰化等方法。
c.液相色谱法。
②.肽链:
a.N-末端降解法。
b.高效液相色谱法。
c.毛细管电泳技术。
d.C-末端酶解法。
③.蛋白质:
a.凯氏定氮法:样品与浓硫酸共热,有机物则分解产生NH 3 ,与H 2 SO 4 作用产生 (NH 4 ) 2 SO 4 。经强碱碱化后,分解释放NH 3 蒸到溶液中,计算其含量。
b.双缩脲法: (NH 4 ) 2 SO 4·Tris 缓冲液,在强碱溶液中,双缩脲与 CuSO 4 形成络合物。
c.Tolin 酚法:与双 缩脲原理相似。
d.考马斯亮蓝反应:蛋白质与染料结合测定吸光值。
❸ 一般采用什么方法检验蛋白质即鉴定
一般用双缩脲试剂鉴定,双缩脲试剂可以和蛋白质发生紫色反应。
❹ 蛋白的常用蛋白鉴定方法
传统的蛋白鉴定方法,如免疫印迹法、内肽的化学测序、已知或未知蛋白comigration分析,或者在一个有机体中有意义的基因的过表达通常耗时、耗力,不适合高流通量的筛选。目前,所选用的技术包括对于蛋白鉴定的图象分析、微量测序、进一步对肽片段进行鉴定的氨基酸组分分析和与质谱相关的技术。 “满天星”式的2-DE图谱分析不能依靠本能的直觉,每一个图象上斑点的上调、下调及出现、消失,都可能在生理和病理状态下产生,必须依靠计算机为基础的数据处理,进行定量分析。在一系列高质量的2-DE凝胶产生(低背景染色,高度的重复性)的前提下,图象分析包括斑点检测、背景消减、斑点配比和数据库构建。
首先,采集图象通常所用的系统是电荷耦合CCD(charge coupled device)照相机;激光密度仪(laser densitometers)和Phospho或Fluoro imagers,对图象进行数字化。并成为以象素(pixels)为基础的空间和网格。
其次,在图象灰度水平上过滤和变形,进行图象加工,以进行斑点检测。利用Laplacian,Gaussian,DOG(difference of Gaussians) opreator使有意义的区域与背景分离,精确限定斑点的强度、面积、周长和方向。
图象分析检测的斑点须与肉眼观测的斑点一致。在这一原则下,多数系统以控制斑点的重心或最高峰来分析,边缘检测的软件可精确描述斑点外观,并进行边缘检测和邻近分析,以增加精确度。通过阈值分析、边缘检测、销蚀和扩大斑点检测的基本工具还可恢复共迁移的斑点边界。以PC机为基础的软件Phoretix-2D正挑战古老的Unix为基础的2-D分析软件包。
第三,一旦2-DE图象上的斑点被检测,许多图象需要分析比较、增加、消减或均值化。由于在2-DE中出现100%的重复性是很困难的,由此凝胶间的蛋白质的配比对于图象分析系统是一个挑战。IPG技术的出现已使斑点配比变得容易。因此,较大程度的相似性可通过斑点配比向量算法在长度和平行度观测。用来配比的着名软件系统包括Quest,Lips,Hermes,Gemini等,计算机方法如相似性、聚类分析、等级分类和主要因素分析已被采用,而神经网络、子波变换和实用分析在未来可被采用。配比通常由一个人操作,其手工设定大约50个突出的斑点作为“路标”,进行交叉配比。之后,扩展至整个胶。
例如:精确的PI和MW(分子量)的估计通过参考图上20个或更多的已知蛋白所组成的标准曲线来计算未知蛋白的PI和MW。 在凝胶图象分析系统依据已知蛋白质的pI值产生PI网络,使得凝胶上其它蛋白的PI按此分配。所估计的精确度大大依赖于所建网格的结构及标本的类型。已知的未被修饰的大蛋白应该作为标志,变性的修饰的蛋白的PI估计约在±0。25个单位。 同理,已知蛋白的理论分子量可以从数据库中计算,利用产生的表观分子量的网格来估计蛋白的分子量。 未被修饰的小蛋白的错误率大约30%,而翻译后蛋白的出入更大。 故需联合其他的技术完成鉴定。 蛋白质的微量测序已成为蛋白质分析和鉴定的基石,可以提供足够的信息。尽管氨基酸组分分析和肽质指纹谱(PMF)可鉴定由2-DE分离的蛋白,但最普通的N-末端Edman降解仍然是进行鉴定的主要技术。目前已实现蛋白质微量测序的自动化。 首先使经凝胶分离的蛋白质直接印迹在PVDF膜或玻璃纤维膜上,染色、切割,然后直接置于测序仪中,可用于subpicomole水平的蛋白质的鉴定。 但有几点需注意:Edman降解很缓慢,序列以每40 min 1个氨基酸的速率产生;与质谱相比,Edman降解消耗大;试剂昂贵,每个氨基酸花费3~4$。 这都说明泛化的Edman降解蛋白质不适合分析成百上千的蛋白质。然而,如果在一个凝胶上仅有几个有意义的蛋白质,或者如果其他技术无法测定而克隆其基因是必需的,则需要进行泛化的Edman降解测序。
近来,应用自动化的Edman降解可产生短的N-末端序列标签,这是将质谱的序列标签概念用于Edman降解,业已成为一种强有力的蛋白质鉴定。当对Edman的硬件进行简单改进,以迅速产生N-末端序列标签达10~20个/d,序列检签将适于在较小的蛋白质组中进行鉴定。若联合其他的蛋白质属性,如氨基酸组分分析、肽质质量、表现蛋白质分子量、等电点,可以更加可信地鉴定蛋白质。选择BLAST程序,可与数据库相配比。目前,采用一种Tagldent的检索程序,还可以进行种间比较鉴定,又提高了其在蛋白质组研究中的作用。 质谱已成为连接蛋白质与基因的重要技术,开启了大规模自动化的蛋白质鉴定之门。用来分析蛋白质或多肽的质谱有两个主要的部分,(1)样品入机的离子源,(2)测量被介入离子的分子量的装置。
首先是基质辅助激光解吸附电离飞行时间质谱(MALDI-TOF)为一脉冲式的离子化技术。它从固相标本中产生离子,并在飞行管中测其分子量。
其次是电喷雾质谱(ESI-MS),是一连续离子化的方法,从液相中产生离子,联合四极质谱或在飞行时间检测器中测其分子量。
在MALDI-TOF中,最重要的进步是离子反射器(ion reflectron)和延迟提取(delayed ion extraction),可达相当精确的分子量。在ESI-MS中,纳米级电雾源(nano-electrospray source)的出现使得微升级的样品在30~40 min内分析成为可能。
将反相液相色谱和串联质谱(tandem MS)联用,可在数十个picomole的水平检测;若利用毛细管色谱与串联质谱联用,则可在低picomole到高femtomole水平检测;当利用毛细管电泳与串联质谱连用时,可在小于femtomole的水平检测。甚至可在attomole水平进行。目前多为酶解、液相色谱分离、串联质谱及计算机算法的联合应用鉴定蛋白质。下面以肽质指纹术和肽片段的测序来说明怎样通过质谱来鉴定蛋白质。
(1)肽质指纹术
由Henzel等人于1993年提出。用酶(最常用的是胰酶)对由2-DE分离的蛋白在胶上或在膜上于精氨酸或赖氨酸的C-末端处进行断裂,断裂所产生的精确的分子量通过质谱来测量(MALDI-TOF-MS,或为ESI-MS),这一技术能够完成的肽质量可精确到0。1个分子量单位。所有的肽质量最后与数据库中理论肽质量相配比(理论肽是由实验所用的酶来“断裂”蛋白所产生的)。配比的结果是按照数据库中肽片段与未知蛋白共有的肽片段数目作一排行榜,“冠军”肽片段可能代表一个未知蛋白。若冠亚军之间的肽片段存在较大差异,且这个蛋白可与实验所示的肽片段覆盖良好,则说明正确鉴定的可能性较大。
(2)肽片段的部分测序
肽质指纹术对其自身而言,不能揭示所衍生的肽片段或蛋白质。为进一步鉴定蛋白质,出现了一系列的质谱方法用来描述肽片段。用酶或化学方法从N-或C-末端按顺序除去氨基酸,形成梯形肽片段(ladder peptide)。
首先以一种可控制的化学模式从N-末端降解,可产生大小不同的一系列的梯形肽片段,所得一定数目的肽质量由MALDI-TOF-MS测量。另一种方法涉及羧基肽酶的应用,从C-末端除去不同数目的氨基酸形成肽片段。化学法和酶法可产生相对较长的序列,其分子量精确至以区别赖氨酸和谷氨酰胺。或者,在质谱仪内应用源后衰变(post-source decay,PSD)和碰撞诱导解离(collision-inced dissociation,CID),目的是产生包含有仅异于一个氨基酸残基质量的一系列肽峰的质谱。因此,允许推断肽片段序列。 肽片段PSD的分析在MALDI反应器上能产生部分序列信息。首先进行肽质指纹鉴定。 之后,一个有意义的肽片段在实验仪器质谱仪被选作“母离子”,在飞行至离子反应器的过程中降解为“子离子”。在反应器中,用逐渐降低的电压可测量至检测器的不同大小的片段。但经常产生不完全的片段。现在用肽片段来测序的方法始于70年代末的CID,可以一个三联四极质谱ESI-MS或MALDI-TOF-MS联合碰撞器内来完成。在ESI-MS中,由电雾源产生的肽离子在质谱仪的第一个四极质谱中测量,有意义的肽片段被送至第二个四极质谱中,惰性气体轰击使其成为碎片,所得产物在第三个四极质谱中测量。与MALDI-PSD相比,CID稳定、强健、普遍,肽离子片段基本沿着酰胺键的主架被轰击产生梯形序列。 连续的片段间差异决定此序列在那一点的氨基酸的质量。由此,序列可被推测。由CID图谱还可获得的几个序列的残基,叫做“肽序列标签”。这样,联合肽片段母离子的分子量和肽片段距N- C端的距离将足以鉴定一个蛋白质。 1977年首次作为鉴定蛋白质的一种工具,是一种独特的“脚印”技术。利用蛋白质异质性的氨基酸组分特征,成为一种独立于序列的属性,不同于肽质量或序列标签。Latter首次表明氨基酸组分的数据能用于从2-DE凝胶上鉴定蛋白质。 通过放射标记的氨基酸来测定蛋白质的组分,或者将蛋白质印迹到PVDF膜上,在155℃进行酸性水解1 h,通过这一简单步骤的氨基酸的提取,每一样品的氨基酸在40min内自动衍生并由色谱分离,常规分析为100个蛋白质/周。依据代表两组分间数目差异的分数,对数据库中的蛋白质进行排榜,“冠军”蛋白质具有与未知蛋白质最相近的组分,考虑冠亚军蛋白质分数之间的差异,仅处于冠军的蛋白质的可信度大。Internet上存在多个程序可用于氨基酸组分分析,如AACompIdent,ASA,FINDER,AAC-PI,PROP-SEARCH等,其中,在PROP-SEARCH中,组分、序列和氨基酸的位置被用来检索同源蛋白质。 但仍存在一些缺点,如由于不足的酸性水解或者部分降解会产生氨基酸的变异。故应联合其他的蛋白质属性进行鉴定。
❺ 怎样检测生物组织中的蛋白质
蛋白质的鉴定原理:鉴定生物组织中是否含有蛋白质时,常用双缩脲法,使用的是双缩脲试剂。双缩脲试剂的成分是质量浓度为0.1 g/mL的氢氧化钠溶液和质量浓度为0.01 g/mL的硫酸铜溶液。在碱性溶液(NaOH)中,双缩脲(H2NOC—NH—CONH2)能与Cu2+作用,形成紫色或紫红色的络合物,这个反应叫做双缩脲反应。由于蛋白质分子中含有很多与双缩脲结构相似的肽键,因此,蛋白质可与双缩脲试剂发生颜色反应。
用于鉴定还原糖的实验材料准备植物组织是常用的实验材料,但必须加以选择。在双子叶植物中,光合作用的主要产物葡萄糖形成后,合成为淀粉,暂时储藏在叶子内,因此最好不用双子叶植物的叶子作实验材料。有些单子叶植物,如韭菜、鸢尾,并不将光合作用的初始产物转变为淀粉,因此叶内含有大量的可溶性单糖,但是,由于叶片中叶绿素的颜色较深,对于鉴定时的颜色反应起着掩盖作用,导致实验现象不明显,因此,也不宜用单子叶植物的叶子作实验材料。
本实验最理想的实验材料是还原糖含量较高的植物组织(或器官),而且组织的颜色较浅或近于白色的,如苹果和梨的果实。经试验比较,颜色反应的明显程度依次为苹果、梨、白色甘蓝叶、白萝卜。
❻ 常用来测定蛋白质含量的方法有哪些优缺点是什么
1、凯氏定氮法
凯氏定氮法是测定化合物或混合物中总氮量的一种方法。即在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气蒸馏出来并为过量的硼酸液吸收,再以标准盐酸滴定,就可计算出样品中的氮量。
由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。
优点:可用于所有食品的蛋白质分析中;操作相对比较简单;实验费用较低;结果准确,是一种测定蛋白质的经典方法;用改进方法(微量凯氏定氮法)可测定样品中微量的蛋白质。
缺点:凯氏定氮法只是一个氧化还原反应,把低价氮氧化并转为氨盐来测定,而不能把高价氮还原为氮盐的形式,所以不可以测出物质中所有价态的氮含量。
2、双缩脲法
双缩脲法是一个用于鉴定蛋白质的分析方法。双缩脲试剂是一个碱性的含铜试液,呈蓝色,由1%氢氧化钾、几滴1%硫酸铜和酒石酸钾钠配制。
当底物中含有肽键时(多肽),试液中的铜与多肽配位,配合物呈紫色。可通过比色法分析浓度,在紫外可见光谱中的波长为540nm。鉴定反应的灵敏度为5-160mg/ml。鉴定反应蛋白质单位1-10mg。
优点:测定速度较快,干扰物质少,不同蛋白质产生的颜色深浅相近。
缺点:①灵敏度差; ② 三羟甲基氨基甲烷、一些氨基酸和EDTA等会干扰该反应。
3、酚试剂法
取6支试管分别标号,前5支试管分别加入不同浓度的标准蛋白溶液,最后一支试管加待测蛋白质溶液,不加标准蛋白溶液,在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于650nm波长处测定各管中溶液的吸光度值。
优点:灵敏度高,对水溶性蛋白质含量的测定很有效。
缺点:①费时,要精确控制操作时间;②酚法试剂的配制比较繁琐。
4、紫外吸收法
大多数蛋白质在280nm波长处有特征的最大吸收,这是由于蛋白质中有酪氨酸,色氨酸和苯丙氨酸存在,可用于测定0.1~0.5mg/mL含量的蛋白质溶液。
取9支试管分别标号,前8支试管分别加入不同浓度的标准蛋白溶液,1号试管不加标准蛋白溶液,最后一支试管加待测蛋白质溶液,而不加标准蛋白溶液,每支试管液体总量通过加入蒸馏水补足而保持一致,将液体混合均匀,在280nm波长处进行比色,记录吸光度值。
优点:简便、灵敏、快速,不消耗样品,测定后能回收。
缺点:①测定蛋白质含量的准确度较差,专一性差; ②干扰物质多,若样品中含有嘌呤、嘧啶及核酸等能吸收紫外光的物质,会出现较大的干扰。
5、考马斯亮蓝法
考马斯亮蓝显色法的基本原理是根据蛋白质可与考马斯亮蓝G-250 定量结合。当考马斯亮蓝 G-250 与蛋白质结合后,其对可见光的最大吸收峰从 465nm 变为 595nm。
在考马斯亮蓝 G-250 过量且浓度恒定的情况下,当溶液中的蛋白质浓度不同时,就会有不同量的考马斯亮蓝 G-250 从吸收峰为 465nm 的形式转变成吸收峰为 595nm 的形式,而且这种转变有一定的数量关系。
一般情况,当溶液中的蛋白质浓度增加时,显色液在 595nm 处的吸光度基本能保持线性增加,因此可以用考马斯亮蓝 G-250 显色法来测定溶液中蛋白质的含量。
优点:灵敏度高,测定快速、简便,干扰物质少,不受酚类、游离氨基酸和缓冲剂、络合剂的影响,适合大量样品的测定。
缺点:由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此用于不同蛋白质测定时有较大的偏差。
❼ 如何检测生物组织中的糖类,脂肪,和蛋白质
一.实验目的:尝试用化学试剂检测生物组织中糖类、脂肪和蛋白质
二.实验原理:某些化学试剂能使生物组织中的有关有机化合物,产生特定的颜色反应.
1.可溶性还原糖(如葡萄糖、果糖、麦芽糖)与斐林试剂发生作用,可生成砖红色的Cu 2O沉淀.即Cu ( OH ) 2被还原成Cu 2O,葡萄糖被氧化成葡萄糖酸.
2.脂肪可以被苏丹Ⅲ染液染成橘黄色(或被苏丹Ⅳ染液染成红色).
3.蛋白质与双缩脲试剂发生作用,产生紫色反应.(蛋白质分子中含有很多肽键,在碱性NaOH溶液中能与双缩脲试剂中的Cu2+作用,产生紫色反应.)
4.淀粉遇碘变蓝色.
三.实验材料
1.做可溶性还原性糖鉴定实验,应选含糖高,颜色为白色的植物组织,如苹果、梨.(因为组织的颜色较浅,易于观察.)
2.做脂肪的鉴定实验.应选富含脂肪的种子,以花生种子为最好,实验前一般要浸泡3-4小时(也可用蓖麻种子).
3.做蛋白质的鉴定实验,可用富含蛋白质的黄豆或鸡蛋清.
四、实验试剂
斐林试剂(包括甲液:质量浓度为0.1g/ mL NaOH溶液和乙液:质量浓度为0.05g/ mL CuSO4溶液)、苏丹Ⅲ或苏丹Ⅳ染液、双缩脲试剂(包括A液:质量浓度为0.1g/ mL NaOH溶液和B液:质量浓度为0.01g/ mL CuSO4溶液)、体积分数为50%的酒精溶液,碘液、蒸馏水.
五、方法步骤:
(一) 可溶性糖的鉴定
1.制备组织样液.
苹果或梨组织液必须临时制备,因苹果多酚氧化酶含量高,组织液很易被氧化成褐色,将产生的颜色掩盖.
2.注入2mL组织样液.
3.注入1mL新制的斐林试剂,振荡.
(现配现用、先混后加)
应将组成斐林试剂的甲液、乙液分别配制、储存,使用前才将甲、
乙液等量混匀成斐林试剂;切勿将甲液、乙液分别加入苹果组织样液中进行检测.
斐林试剂很不稳定,甲、乙液混合保存时,生成的Cu ( OH ) 2在70-900C下分解成黑色CuO和水;甲、乙液分别加入时可能会与组织样液发生反应,无
Cu ( OH ) 2生成.
4.水浴加热:试管放在盛有50-650C温水的大烧杯中,加热约2分钟,观察到溶液颜色:浅蓝色 → 棕色 → 砖红色(沉淀)
最好用试管夹夹住试管上部,使试管底部不触及烧杯底部,试管口不朝向实验者.
也可用酒精灯对试管直接加热.
防止试管内的溶液冲出试管,造成烫伤;
缩短实验时间.
(二)脂肪的鉴定
取材、切片、制片:花生种子浸泡、去皮、切下一些子叶薄片,将薄片放在载玻片的水滴中,用吸水纸吸去装片中的水.
干种子要浸泡3-4小时,新花生的浸泡时间可缩短.
浸泡时间短,不易切片,浸泡时间过长,组织较软,切下的薄片不易成形.切片要尽可能薄些,便于观察.
染色:在子叶薄片上滴2-3滴苏丹Ⅲ(染色3分钟)或苏丹Ⅳ染液(染色1分钟).
染色时间不宜过长.
漂洗:用吸水纸吸去薄片周围染液,用50%酒精洗去浮色,吸去酒精.
酒精用于洗去浮色,不洗去浮色,会影响对橘黄色脂肪滴的观察.同时,酒精是脂溶性溶剂,可将花生细胞中的脂肪颗粒溶解成油滴.
用吸水纸吸去薄片周围酒精,滴上1-2滴蒸馏水,盖上盖玻片.
滴上清水可防止盖盖玻片时产生气泡.
镜检:先低后高(高倍镜用法:移物换器时针反),低倍镜下找到花生子叶薄片的最薄处,可看到细胞中有染成橘黄色或红色圆形小颗粒.
装片不宜久放.
时间一长,油滴会溶解在乙醇中.
三、蛋白质的鉴定
制备组织样液.(浸泡、去皮研磨、过滤.)黄豆浸泡1至2天,容易研磨成浆,也可购新鲜豆浆以节约实验时间.加样液约2ml于试管中,加入双缩脲试剂A,摇匀;再加入双缩脲试剂B液3-4滴,摇匀,溶液变紫色.
A液和B液也要分开配制,储存.鉴定时先加A液后加B液.
CuSO4溶液不能多加.
先加NaOH溶液,为Cu2+与蛋白质反应提
供一个碱性的环境.A、B液混装或同时加入,会导致Cu2+变成Cu ( OH ) 2沉淀,而失效.
否则CuSO4蓝色会遮盖反应的真实颜色.可用蛋清代替豆浆.蛋清要先稀释.
如果稀释不够,在实验中蛋清粘在试管壁,与双缩脲试剂反应后会粘固在试管内壁上,使反应不容易彻底,并且试管也不易洗干净.
附:淀粉的检测和观察用试管取2ml待测组织样液,向试管内滴加2滴碘液,观察颜色变化.碘液不要滴太多,以免影响颜色观察
❽ 常用的蛋白质含量测定方法有哪些
①凯氏定氮法
原理:蛋白质平均含氮量为16%。当样品与浓硫酸共热,蛋白氮转化为铵盐,在强碱性条件下将氨蒸出,用加有指示剂的硼酸吸收,最后用标准酸滴定硼酸,通过标准酸的用量即可求出蛋白质中的含氮量和蛋白质含量。
②双缩脲法
原理:尿素在180℃下脱氨生成双缩脲,在碱性溶液中双缩脲可与Cu2+形成稳定的紫红色络合物。蛋白质中的肽键实际上就是酰胺键,故多肽、蛋白质等都有双缩脲(biuret)反应,产生蓝色或紫色复合物。比色定蛋白质含量。
缺点:灵敏度低,样品必须可溶,在大量糖类共存和含有脯氨酸的肽中显色不好。其 精确度 较差 (数mg),且会受样品中 硫酸铵 及 Tris 的干扰,但 准确度 较高,不受蛋白质的种类影响。
③Folin酚法(Lowry)
Folin酚法是biuret 法的延伸,所用试剂由试剂甲和乙两部分组成。试剂甲相当于双缩脲试剂(碱性铜试剂),试剂乙中含有磷钼酸和磷钨酸。
在碱性条件下,蛋白质中的巯基和酚基等可将Cu2+还原成Cu+, Cu+能定量地与Folin-酚试剂反应生成蓝色物质,600nm比色测定蛋白质含量。
灵敏度较高(约 0.1 mg),但较麻烦,也会受 硫酸铵 及 硫醇化合物 的干扰。 步骤中各项试剂的混合,要特别注意均匀澈底,否则会有大误差。
④紫外法
280nm光吸收法:利用Tyr在280nm在吸收进行测定。
280nm-260nm的吸收差法:若样品液中有少量核酸共存按下式计算:
蛋白质浓度(mg/ml)=1.24E280-0.74E260 (280 260为角标)
⑤色素结合法(Bradford 法)
直接测定法:利用蛋白质与色素分子(Coomassie Brilliant Blue G-250)结合物的光吸收用分光光度法进行测定。
考马斯亮兰(CBG)染色法测定蛋白质含量。CBG 有点像指示剂,会在不同的酸碱度下变色;在酸性下是茶色,在中性下为蓝色。当 CBG接到蛋白质上去的时候,因为蛋白质会提供 CBG一个较为中性的环境,因此会变成蓝色。当样本中的蛋白质越多,吸到蛋白质上的CBG也多,蓝色也会增强。因此,蓝色的呈色强度,是与样本中的蛋白质量成正比。
间接测定法:蛋白质与某些酸性或碱性色素分子结合形成不溶性的盐沉淀。用分光光度计测定未结合的色素,以每克样品结合色素的量来表示蛋白质含量的多少。
⑥BCA法
BCA(Bicinchoninc acid procere,4,4’-二羧-2,2’-二喹啉)法与Lowry法相似,主要差别在碱性溶液中,蛋白质使Cu2+转变Cu+后,进一步以BCA 取代Folin试剂与Cu+结合产生深紫色,在波长562 nm有强的吸收。
它的优点在于碱性溶液中BCA 比Folin试剂稳定,因此BCA与碱性铜离子溶液结合的呈色反应只需一步骤即完成。灵敏度Lowry法相似。
本方法对于阴离子、非离子性及二性离子的清洁剂和尿素较具容忍度,较不受干扰,但会受还原糖 及EDTA的干扰。
⑦胶体金测定法
胶体金(colloidal gold)是氯金酸(chloroauric acid)的水溶胶,呈洋红色,具有高电子密度,并能与多种生物大分子结合。
胶体金是一种带负电荷的疏水胶体遇蛋白质转变为蓝色,颜色的改变与蛋白质有定量关系,可用于蛋白质的定量测定。
⑧其他方法
有些蛋白质含有特殊的 非蛋白质基团,如 过氧化物酶含有 亚铁血红素基团,可测 403 nm 波长的吸光来定量之。 含特殊金属的酶 (如镉),则可追踪该金属。
❾ 如何鉴定蛋白质
鉴定蛋白质可以用双缩脲试剂。
双缩脲(NH2CONHCONH2)由两个分子脲经180℃左右加热,放出一个分子氨后得到的产物,在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,双缩脲反应产生的紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。
优点:双缩脲法测定蛋白质的测定范围是1~10mg蛋白质,操作简单、快捷。既适合手工操作,又适合自动化分析,重复性好、线性关系好, 双缩脲试剂可以长期保存( 若贮存瓶中有黑色沉淀出现,则需要重新配制)。
缺点:灵敏度差,测定范围窄,样品需要量大,不同的蛋白质产生颜色的深浅相近,因此它常用于需要快速,但并不需要十分精确的蛋白质测定。 干扰测定的物质包括有:在性质上是氨基酸或肽的缓冲液,如TrIs缓冲液,因为它们产生阳性呈色反应,铜离子也容易被还原,有时出现红色沉淀。
蛋白质的作用:
人体内的一些生理活性物质如胺类、神经递质、多肽类激素、抗体、酶、核蛋白以及细胞膜上、血液中起“载体”作用的蛋白都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。
在生物学中,蛋白质被解释为是由氨基酸借肽键联接起来形成的多肽,然后由多肽连接起来形成的物质。通俗易懂些说,它就是构成人体组织器官的支架和主要物质。蛋白质缺乏:成年人:肌肉消瘦、肌体免疫力下降、贫血,严重者将产生水肿。
未成年人:生长发育停滞、贫血、智力发育差,视觉差。蛋白质过量:蛋白质在体内不能贮存,多了肌体无法吸收,过量摄入蛋白质,将会因代谢障碍产生蛋白质中毒甚至于死亡。
以上内容参考网络-双缩脲试剂
以上内容参考网络-蛋白质