导航:首页 > 方法技巧 > 如何用配方法求数列

如何用配方法求数列

发布时间:2022-03-12 04:37:40

1. 关于线性代数的求标准型的“配方法”该怎么用啊

直接用求特征值的方法没问题,就怕出题叫你用配方法做,练习题里就有,不懂考试会不会这样出

2. 如何详解配方法

一、配方法
配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。

二、配方法的理论依据

(2)如何用配方法求数列扩展阅读:

配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x+y)2=x2+ 2xy+y2的形式,可推出2xy= (b/a)x,因此y=b/2a。等式两边加上y2= (b/2a)2

3. 如何用配方法求二次函数

首先,明确的是配方法就是将关于两个数(或代数式,但这两一定是平方式),写成(a+b)平方的形式或(a-b)平方的形式:
将(a+b)平方的展开得
(a+b)^2=a^2+2ab+b^2
所以要配成(a+b)平方的形式就必须要有a^2,2ab,b^2
则选定你要配的对象后(就是a^2和b^2,这就是核心,一定要有这两个对象,否则无法使用配方公式),就进行添加和去增,例如:
原式为a^2+
b^2
解:
a^2+
b^2
=
a^2+
b^2
+2ab-2ab
=

a^2+
b^2
+2ab)-2ab
=
(a+b)^2-2ab
再例:
原式为a^2+
2b^2
解:
a^2+2b^2
=
a^2+
b^2
+
b^2
+2ab-2ab
=

a^2+
b^2
+2ab)-2ab+
b^2
=
(a+b)^2-2ab+
b^2
这就是配方法了,
附注:a或b前若有系数,则看成a或b的一部分,
例如:4a^2看成(2a)^2
9b^2看成(a^29b^2)

4. 数列配方法

-2n^2+14n-18
=-2[n^2-7n]-18
=-2[(n-7/2)^2-49/4]-18
=-2(n-7/2)^2+6.5

5. 怎样用配方法求二次型的标准型重点是如何配方

x1^2-4x1x2+4x1x3

=x1^2-4x1(x2-x3)+4(x2-x3)^2-4(x2-x3)^2

=[x1-(x2-x3)]^2-4(x2-x3)^2

配方的方法:

1、若二次型中不含有平方项则先凑出平方项。

方法:令x1=y1+y2,x2=y1-y2, 则 x1x2 = y1^2-y2^2

2、若二次型中含有平方项x1。

方法:则将含x1的所有项放入一个平方项里, 多退少补,将二次型中所有的x1处理好,接着处x2,以此类推。

(5)如何用配方法求数列扩展阅读

配方法的其他运用:

①求最值:

【例】已知实数x,y满足x²+3x+y-3=0,则x+y的最大值为____。

分析:将y用含x的式子来表示,再代入(x+y)求值。

解:x²+3x+y-3=0<=>y=3-3x-x²,

代入(x+y)得x+y=3-2x-x²=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。

由于(x+1)²≥0,故4-(x+1)²≤4.故推测(x+y)的最大值为4,此时x,y有解,故(x+y)的最大值为4。

②证明非负性:

【例】证明:a²+2b+b²-2c+c²-6a+11≥0

解:a²+2b+b²-2c+c²-6a+11=(a-3)²+(b+1)²+(c-1)²,结论显然成立。

6. 用配方法求代数式最大值

7. 求数列的有哪些方法

1.数列求通项的方法 (1)累加 (2)累乘 (3)待定系数法 (4)分解因式法 (5)倒数法
2.求前n项和的方法 (1)公式法 (2)错位相减法 (3)倒序相加法 (4)分组求和法 (5)列项相消法

8. 用配方法求代数式最大值 最小值的方法

配方法的应用配方法的地位:判断一个式子的值的正负是比较大小、判断一元二次方程根的情况等很多数学问题常要用到的,基本途径是①因式分解,②配方,特别是配方法在初中数学中涉及二次的问题时应用非常广泛。除了判断正负,配方法还解决了最值、不大于(或不小于)一个常数等等问题。因此学会配方法及有意识地应用配方法将式子变形,从而解决问题在初中阶段非常重要。教学目标:1. 理解用配方法变形成a(x+m)2+n的式子可以求其取值范围、判断其符号进而得到其最值;2. 配方法解决问题的多样性,开拓了学生的视野,打开了一个神奇的数学之窗。教学重点: 解决判断式子符号、求最值等问题。教学难点:1.理解如何判断型如a(x+m)2+n的式子的取值范围; 2.理解可以用判断型如a(x+m)2+n的式子的取值范围来解决不同的问题。 教学过程:一、复习引入:(设计意图:复习配方法,比较解方程时配方和代数式的配方的异同点,学生易犯的错误是代数式的配方中将二次项系数象解方程那样除掉)1. 用配方法解方程:2x2-4x+16=02. 将2x2-4x+16配方得 二、典型例题:(设计意图:使学生理解并掌握配方后判断符号的方法)例1. 不论x取任何实数,证明:代数式x2-4x+13的值恒大于零。学生易想到x2-4x+13=x2-4x+4+9 =(x-2)^2+9 ———学生上手很快,但很多并未意识到这就是在应用配方法强调为什么(x-2)^2+9恒大于零,格式: ∵(x-2)^2≥0 ———非负数的性质 ∴(x-2)^2+9≥9 ———得到取值范围 ∴(x-2)^2+9>0 ———判断正负 即x2-4x+13的值恒大于0归纳总结:配方后,可以判断a(x+m)2+n的值的范围,从而进一步判断值的正负。 例2. 设M=x2-8x+22,N= -x2+6x-3,比较M与N的大小关系。方法一(比差法):M-N=( x2-8x+22)-( -x2+6x-3)=2x2 -14x+25 ———判断正负的途径:因式分解或配方=2(x-7/2)^2+1/4 ———配方同例1一样分析,得M-N>0,———得到取值范围,判断正负从而M>N.方法二:∵M=x2-8x+22=(x-4)2+6 N= -x2+6x-3= -(x-3)2+6 ———配方同例1一样分析,得M,N的取值范围:M≥6,N≤6———判断取值范围但当x=4时M=6;x=3时,N=6,因此,不可能同时M=N ∴M>N例3. 关于x的一元二次方程x2-(k+2)x+2k-1=0,试证明无论k取何值时,方程总有两个不相等的实数根。 三、变式训练:(设计意图:举一反三)1. 求证:方程(m2+1)x2-2mx+(m2+4)=0没有实数根,2. 若t是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式⊿=b2-4ac和完全平方式M=(2at+b)2的关系是( )(A)⊿=M (B)⊿>M (C)⊿ (D)大小关系不确定3.证明:3x2 -2x+4的值不小于11/3。———分析例1中得到的取值范围(x-2)2+9≥9 帮组学生理解此题,并为拓展做准备四、拓展提高:(设计意图:学生还没有学二次函数,因此求最值应该是难点,理解取值范围所表达的意义,也为二次函数的学习做准备)1. 已知x为实数。求y= x2-6x+15的最小值。2. 已知x为实数,x= 时,y= -x2-4x+10有最大值。3. 用24米长的篱笆材料,一边利用墙,墙的最大可利用长度为12米,围成一个中间有隔断(隔断垂直于墙)的矩形仓库,假设矩形垂直于墙的一边为x米,(1) 用含x的代数式表示矩形的面积;(2) 什么时候矩形的面积等于45平方米?(3) 你能用非负数的性质和配方法确定什么时候矩形有最大面积吗?五、课堂总结:用配方法将一个二次三项式写成型如a(x+m)2+n的式子,可以用非负数的性质得到取值范围a(x+m)2+n≥n,a>0(或a(x+m)2+n≤n,a<0),从而可判断符号,解决最值等问题。六、作业: 虽然刚学配方法,但涉及到的数学问题已成系列。牢牢抓住“配方”和用非负数得到的“取值范围”这两个点去分析典型例题,先重点突破判断符号问题,在变式训练中又加入第3题,进一步分析用非负数得到的“取值范围”的意义,再进一步思考拓展最小值与“取值范围”的关系,达到一题多练的效果。

9. 配方法怎么用

首先,明确的是配方法就是将关于两个数(或代数式,但这两一定是平方式),写成(a+b)平方的形式或(a-b)平方的形式: 将(a+b)平方的展开得 (a+b)^2=a^2+2ab+b^2 所以要配成(a+b)平方的形式就必须要有a^2,2ab,b^2 则选定你要配的对象后(就是a^2和b^2,这就是核心,一定要有这两个对象,否则无法使用配方公式),就进行添加和去增,例如: 原式为a^2+ b^2 解: a^2+ b^2 = a^2+ b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab = (a+b)^2-2ab 再例: 原式为a^2+ 2b^2 解: a^2+2b^2 = a^2+ b^2 + b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab+ b^2 = (a+b)^2-2ab+ b^2 这就是配方法了, 附注:a或b前若有系数,则看成a或b的一部分, 例如:4a^2看成(2a)^2 9b^2看成(a^29b^2

阅读全文

与如何用配方法求数列相关的资料

热点内容
如何开始瑜伽练习的7个方法 浏览:66
房性早搏最佳食疗方法 浏览:141
银行鉴定假币最简单方法 浏览:155
青香桔的种植方法 浏览:626
如何用两位数乘两位数的简便方法 浏览:450
口服精油的使用方法 浏览:996
什么方法确认 浏览:959
mac的相机在哪里设置方法 浏览:319
圆中的有关计算方法 浏览:434
迈腾空调使用方法 浏览:511
陈皮膏怎么熬制方法 浏览:392
取名字最简单的方法 浏览:599
小儿哮喘的中医中药治疗方法 浏览:647
表式血压计使用方法 浏览:673
资产保值率的计算方法 浏览:259
小孩子快速瘦身方法大全 浏览:75
盗窃价格计算方法 浏览:368
足球场视野训练方法 浏览:125
华为wifi6红灯闪烁解决方法 浏览:978
衣服上有鱼血用什么方法洗 浏览:767