导航:首页 > 方法技巧 > 有没有快速计算方差的方法

有没有快速计算方差的方法

发布时间:2022-02-08 10:36:07

Ⅰ 有没有可以自动计算标准差的软件

真懒...自动自动,就是自己动手啊

Ⅱ 方差有什么简便算法吗

1.将一组数据减去同一个数,得到一组新数据(比较小,且平方很好算);
2.计算这组新数据的平方和,以及平均数;
3.用公式计算方差:s²=1/n*(x1²+x2²+x3²+……+xn²)-(x拔)²

怎么迅速算方差

在EXCEL里,单击fx选择VARP函数,选择数据就可以了。

Ⅳ 求方差的简便算法有吗

方差的概念与计算公式,例1 两人的5次测验成绩如下:X: 50,100,100,60,50 E(X)=72;Y: 73, 70, 75,72,70 E(Y)=72。平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为D(X):直接计算公式分离散型和连续型,具体为:这里 是一个数。推导另一种计算公式得到:“方差等于平方的均值减去均值的平方”。其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动程度。

Ⅳ 快速求方差的方法

只能根据公式慢慢算了
以前我也是算到半死
也没办法 抑或是提取因式

Ⅵ 方差简化计算公式的具体步骤

一般资料书均有解释,我买的教材完全学案解释的很工整,但是比较繁琐,建议你记住公式,因为高中不予掌握其推导过程
我若要打,术语真多,你会看不懂,最好去网站找找

证明
E(ξ)=p
E(ξ^2)=0^2*q+1^2*p=p
Dξ=(Eξ^2)-[E(ξ)]^2=p-p^2=p(1-p)

第二题
E(ξ)=∑ k*P(ξ=k)=∑ k*q^(k-1)p=p*(1+2q+3q^2+...)
=p*(q+q^2+q^3...)'←求导
=p(q/1-q)'
=p/(1-q)^2
=1/p

E(ξ^2)=∑ k^2*P(ξ=k)=∑ k^2*q^(k-1)p=p*(1+4q+9q^2+...)
=p*(q+2q^2+3q^3...)'
=p*[q(1+2q+3q^2...)]'←这里可以从上面那个式子知道得:
=p*[(1-p)/p^2]'
=1/p^2
所以
Dξ=E(ξ^2)-[E(ξ)]^2=1/p^2-1/p=(1-p)/p^2=q/(p*p)

EX=np 证明如下
EX=∑kb(k;n,p)=∑k*C(k,n)p^kq^(n-k)
=np∑C(k-1,n-1)p^(k-1)q^(n-1-k+1)
=np∑C(k,n-1)p^kq^(n-1-k)
=np∑b(k;n-1,p)
=np

DX=npq 可用公式DX=EX^2-(EX)^2求出
EX^2=∑k^2b(k;n,p)
=∑[k(k-1)+k]b(k;n,p)
=∑k(k-1)b(k;n,p)+∑kb(k;n,p)
=n(n-1)p^2∑b(k;n-2,p)+np
=n(n-1)p^2+np=n^2p^2+npq
=n^2p^2+npq
所以DX=EX^2-(EX)^2=n^2p^2+npq-n^2p^2
=npq

X~b(n,p),其中n≥1,0<p<1.
P{X=k}=C(n,k)*p^k*(1-p)^(n-k),k=0,1,...,n.
EX=np,DX=np(1-p).
最简单的证明方法是:X可以分解成n个相互独立的,都服从以p为参数的(0-1)分布的随机变量之和:
X=X1+X2+...+Xn,Xi~b(1,p),i=1,2,...,n.
P{Xi=0}=1-p,P(Xi=1)=p.
EXi=0*(1-p)+1*p=p,
E(Xi^2)=0^2*(1-p)+1^2*p=p,
DXi=E(Xi^2)-(EXi)^2=p-p^2=p(1-p).
EX=EX1+EX2+...+EXn=np,
DX=DX1+DX2+...+DXn=np(1-p).

上述均是网站搜集的

如何快速而又准确的计算方差

先求它们的平均数,再用它们的平均数减去它们各个数的平方和,最后再除以6。

Ⅷ 如何计算方差

方差和标准
注:此公式再某些文献定义中分母为n-1。如,在MATLAB中使用求方差函数var时,
var(x,1)表示除N,而var(x,0)<=>var(x)表示除n-1
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
数学上一般用E{[X-E(X)]^2}来度量随机变量X与其均值E(X)即期望的偏离程度,称为X的方差。
定义
设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差或均方差。
由方差的定义可以得到以下常用计算公式:
D(X)=E(X^2)-[E(X)]^2
S^2=[(x1-x拔)^2+(x2-x拔)^2+(x3-x拔)^2+…+(xn-x拔)^2]/n
方差的几个重要性质(设一下各个方差均存在)。
(1)设c是常数,则D(c)=0。
(2)设X是随机变量,c是常数,则有D(cX)=(c^2)D(X)。
(3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。
(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。
方差是标准差的平方

Ⅸ 关于方差的计算方法

由于数据的类型不同,方差的计算公式也不相同:

  1. 对于连续型随机变量X(∞,-∞),若其概率密度函数为:f(x),那么方差为:

    Var(X) = ∫(∞,-∞) [x-E(X)]² f(x) dx (1)

    其中E(X) 为X的平均值:E(X)= ∫(∞,-∞) x f(x) dx (2)

    注意:f(x) dx 可以理解为:随机变量X落在区间(x,x+dx) 上的概率。

  2. 对于离散型的随机变量W,将其分成m组,组中值为:{w1,w2,...,wm},

    落在第 i 组的概率为:p(wi),i=1,2,...,m。有了这些铺垫之后,比照着

    (1)式把积分变成求和:

    Var(W) = Σ(i=1->m) [wi - E(W)]²p(wi)(3)

    注意:f(x)dx = p(wi)。

    (3)式就是你题中的公式。

    其中: E(W) = Σ(i=1->m) wip(wi)(4)

  3. 可见题中的公式适用于计算离散型随机变量方差的公式。

    这个公式和其它的计算方差的公式都是相通的!只是适用

    的场合不同。

Ⅹ 方差的计算方法

方差 [fāng chā]

科普中国 | 本词条由“科普中国”科学网络词条编写与应用工作项目审核
审阅专家胡启洲
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。

方差是衡量源数据和期望值相差的度量值。

中文名
方差
外文名
variance/deviation Var
类型
D(X) 数学(统计学)
研究者
罗纳德·费雪(Ronald Fisher)
定义
数据与平均数之差平方和的平均数
快速
导航
定义

性质

种类及计算

期望和方差

示例

公式

统计学意义

最近进展
历史
“方差”(variance)这一词语率先由罗纳德·费雪(Ronald Fisher)在其论文《The Correlation Between Relatives on the Supposition of Mendelian Inheritance》[1] 中提出。
定义
方差在统计描述和概率分布中各有不同的定义,并有不同的公式。
在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。总体方差计算公式:

为总体方差,为变量,为总体均值,为总体例数。

阅读全文

与有没有快速计算方差的方法相关的资料

热点内容
如何打开鸡蛋的方法 浏览:444
路由vpn怎么设置方法 浏览:468
吊车头的拉线安装方法 浏览:81
番茄灰霉病治疗土方法 浏览:425
oppo手机耳线的包装方法 浏览:713
如何寻找正确的工作方法 浏览:738
羊布病普遍治疗方法 浏览:896
研究方法论是谁写的 浏览:532
婴儿肚子胀怎么办有哪些方法 浏览:337
苹果手机的感应在哪里设置方法 浏览:616
香碗制作方法视频 浏览:101
北京蛋白质组学分析方法 浏览:793
有哪些方法稀释油漆 浏览:193
可以替代焊锡的sma头连接方法 浏览:476
剪辑视频的方法 浏览:600
如何用化学方法鉴别环己烷和苯胺 浏览:548
浙江菜烹饪方法有哪些 浏览:391
星战模拟器怎么找到自己的家正确方法 浏览:779
2020洪灾原因和解决方法 浏览:834
长期失眠睡不着怎么办最好的方法 浏览:120