导航:首页 > 方法技巧 > 化简初中不等式的解题方法与技巧

化简初中不等式的解题方法与技巧

发布时间:2022-05-31 16:51:03

A. 解基本不等式 的方法 (窍门)

加油!!
1.不等式的基本性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.
性质5:如果a>b>0,c>d>0,那么ac>bd.
性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.
例1:判断下列命题的真假,并说明理由.
若a>b,c=d,则ac2>bd2;(假)
若,则a>b;(真)
若a>b且ab<0,则;(假)
若a若,则a>b;(真)
若|a|b2;(充要条件)
命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.
a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥)
说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.
例4:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小.
说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想.
练习:
1.若a≠0,比较(a2+1)2与a4+a2+1的大小.(>)
2.若a>0,b>0且a≠b,比较a3+b3与a2b+ab2的大小.(>)
3.判断下列命题的真假,并说明理由.
(1)若a>b,则a2>b2;(假) (2)若a>b,则a3>b3;(真)
(3)若a>b,则ac2>bc2;(假) (4)若,则a>b;(真)
若a>b,c>d,则a-d>b-c.(真).

B. 不等式的解题方法与技巧

不等式的解法:1、找出未知数的项、常数项,该化简的化简。2、未知数的项放不等号左边,常数项移到右边。3、不等号两边进行加减乘除运算。4、不等号两边同除未知数的系数,注意符号的改变。
1.符号:

不等式两边都乘以或除以一个负数,要改变不等号的方向。

2.确定解集:

比两个值都大,就比大的还大;

比两个值都小,就比小的还小;

比大的大,比小的小,无解;

比小的大,比大的小,有解在中间。

三个或三个以上不等式组成的不等式组,可以类推。

3.另外,也可以在数轴上确定解集:

把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个就要几个。带=号的,数轴上的点是实心的,反之,就是空心的。

用符号“>”“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。

通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
一般地,用纯粹的大于号“>”、小于号“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。
其中,两边的解析式的公共定义域称为不等式的定义域。
整式不等式两边都是整式(即未知数不在分母上)。
一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-x>0
同理,二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。
①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
②如果x>y,y>z;那么x>z;(传递性)
③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)
④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;[1] (乘法原则)
⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)
⑥如果x>y>0,m>n>0,那么xm>yn;
⑦如果x>y>0,xn>yn(n为正数),xn<yn(n为负数);
或者说,不等式的基本性质的另一种表达方式有:
①对称性;
②传递性;
③加法单调性,即同向不等式可加性;
④乘法单调性;
⑤同向正值不等式可乘性;
⑥正值不等式可乘方;
⑦正值不等式可开方;
⑧倒数法则。
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。
另,不等式的特殊性质有以下三种:
①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;
②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;
③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。 总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。

C. 不等式的解法 初一

不等式的解法:

1、找出未知数的项、常数项,该化简的化简。

2、未知数的项放不等号左边,常数项移到右边。

3、不等号两边进行加减乘除运算。

4、不等号两边同除未知数的系数,注意符号的改变。

一般地,用纯粹的大于号“>”、小于号“

通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。

其中,两边的解析式的公共定义域称为不等式的定义域。

整式不等式:

整式不等式两边都是整式(即未知数不在分母上)。

一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-X>0

同理:二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。

D. 初中不等式组要点解法。

解一元一次不等式各个步骤的根据、做法、注意事项如下:
(1)去分母:
做法:不等式两边同乘分母的最小公倍数.
注意:①不要漏乘不含分母的项.
②分子是一个代数式时,分数线有括号的作用,去分母后应作为一个整体加上括号.
③不等式两边都乘同一个负数时,不等号方向要改变.
(2)去括号:
做法:先去小括号,再去中括号,最后去大括号.
注意:①一个数乘多项式时,不要漏乘括号里的项.
②不要出现符号的错误.
(3)移项:
做法:把含有未知数的项移到不等式的一边,其他项都移到不等式的另一边.
注意:移项时该项要变号、不要漏项.
(4)合并同类项:
做法:系数相加,字母和字母的指数不变,把不等式化为ax>b或ax<b(a不等于0)的形式.
注意:符号问题.
(5)系数化为1:
做法:①不等式两边都乘未知数项系数(如果它是分数)的倒数.
②不等式两边都除以未知项系数.
注意:①不要把分子、分母搞颠倒.
②不等式两边都乘(或除以)同一个负数时,不等号方向要改变.
本题中不等式中不含有分母,因此只需要使用“移项,合并同类项,将变量的系数化为1”,最终就
可求出不等式的解集.

E. 解不等式技巧

(1)解一元一次不等式和解一元一次方程相类似,但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号的方向必须改变。

(2)解不等式组一般先分别求出不等式组中各个不等式的解集,再求出它们的公共部分,就得到不等式组的解集。

列一元一次不等式(组)解决实际问题,掌握解不等式应用题的步骤:

(1)找出实际问题的不等关系,设定未知数,列出不等式(组);

(2)解不等式(组);

(3)从不等式组的解集中求出符合题意的答案。
、一元一次方程的解法及其解的三种情况:


(1)解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和将未知数的系数化为1;

(2)最简一元一次方程ax=b的解有以下三种情况:

①当 a≠0时,方程有且仅有一个解;

②当 a=0,b≠0时,方程无解;

③当 a=0,b=0时,方程有无穷多个解.
其他
数学的解题方法是随着对数学对象的研究的深入而发展起来的。六年级的同学们很快就要小学毕业,中学的大门已经向我们敞开。为了能进一步学好数学,有必要掌握初中数学的特点尤其是解题方法。 下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。同样这些方法也能给你们现在的学习有些帮助。请同学们把它作为资料好好保存,当然,以后全部学会弄懂,保存大脑当中再好不过了。
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

作者: 菁菁9383 2006-5-24 16:39 回复此发言

--------------------------------------------------------------------------------

2 初中数学解题方法
8、面积法

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法

用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

10、客观性题的解题方法

选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。

(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。
希望能对您有所帮助

F. 不等式怎么

不等式的解法:
1、找出未知数的项、常数项,该化简的化简。
2、未知数的项放不等号左边,常数项移到右边。
3、不等号两边进行加减乘除运算。
4、不等号两边同除未知数的系数,注意符号的改变。
简介:
不等式就是把两个式子用大于号、小于号、不大于号或不小于号连接起来所得的式子。如:x2-1≥0, -5<0,

G. 不等式选讲解题技巧

一、基础知识

1.含有绝对值的不等式的解法:

(1)|f(x)|>a(a>0)等价于f(x)>a或f(x)<-a;

(2)|f(x)|<a(a>0)等价于-a<f(x)<a;

(3)形如|x-a|+|x-b|≤c,|x-a|+|x-b|≥c的不等式,一是可以利用零点法进行分段讨论,二是利用绝对值的几何意义求解,此法会更加简单。

2.含有绝对值的不等式的性质:

|a|-|b|≤|a±b|≤|a|+|b|.

在利用这个性质解题时,一定要注意取“=”的条件是:不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.

3.柯西不等式:

设a,b,c,d为实数,则(a^2+b^2)·(c^2+d^2)≥(ac+bd)^2,当且仅当ad=bc时等号成立.

二、2018年高考真题赏析

不等式选讲在高考中的难度不大,但是对于基本概念要掌握牢固,防止计算错误。

H. 不等式的解题步骤是什么

1、找出未知数的项、常数项,该化简的化简。

2、未知数的项放不等号左边,常数项移到右边。

2、不等号两边进行加减乘除运算。

3、不等号两边同除未知数的系数,注意符号的改变。

(8)化简初中不等式的解题方法与技巧扩展阅读

不等式基本性质

①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)

②如果x>y,y>z;那么x>z;(传递性)

③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)

④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)

⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)

⑥如果x>y>0,m>n>0,那么xm>yn;

⑦如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)。

I. 解不等式(详细步骤)

不等式就是用不等式符号把一个式子连接起来的算式;不等式和等式主要的区别就是他们的符号不同,一个是“=”,一个是“>、<、≥、≤”。但解不等式是完全可以用等式的性质来解。下面我就以一道例题来讲一下解不等式的标准步骤。

第一步、如果是应用题就要先理清楚思路,然后列出不等式,最后再解不等式;如果是解不等式的计算题,就直接写“解”,开始写出计算过程。

(9)化简初中不等式的解题方法与技巧扩展阅读:

1、如果x>y,则y<x;如果y<x,则x>y(对称性)

2、如果x>y,y>z;则x>z(传递性)

3、如果x>y,而z为任意实数或整式,则x+z>y+z;(同向不等式可加性)

4、如果x>y,z>0,则xz>yz;如果x>y,z<0,则xz<yz;(乘法原则)

5、如果x>y,m>n,则x+m>y+n;(充分不必要条件)

6、如果x>y>0,m>n>0,则xm>yn;

7、如果x>y>0,则x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)。

8、不等式的基本性质的另一种表达方式有:①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性。

J. 怎样简化求解不等式

其实化简不等式跟化简等式差不多,唯一一点需要注意的是:不等式两边同时乘以或者除以一个大于0的数,不等式两边不改变符号,但如果不等式两边同时乘以或者除以一个小于0的数,不等式的符号要发生改变

阅读全文

与化简初中不等式的解题方法与技巧相关的资料

热点内容
咖啡机的使用方法图解 浏览:976
微生物遗传型的鉴定方法有哪些 浏览:428
怕丢人怎么办最有效的方法 浏览:908
怎么判断浮漂的准确方法 浏览:602
阶段性鼻炎治疗方法 浏览:133
具体研究方法及研究计划 浏览:260
什么方法可以最快消肿 浏览:776
心房颤动有什么非药物治疗方法 浏览:802
拆千纸鹤方法视频 浏览:209
样品预处理有哪些预处理方法优缺点 浏览:895
绑丝方法视频教程 浏览:755
怎样快速解决痛经的方法 浏览:789
七年级列方程的方法与技巧 浏览:898
穿越火线如何玩别人号的方法教学 浏览:738
早起锻炼身体有哪些方法 浏览:776
收纳包手工制作方法视频 浏览:688
面粉食用方法怎么填 浏览:674
怎么才是吃石榴的正确方法 浏览:118
插锁式管道安装方法 浏览:666
腰肌如何锻炼方法图片 浏览:491