㈠ EXCEL数据快速处理
辅助列=COUNTIFS($A$1:A1,$A1,$B$1:B1,B1,$C$1:C1,C1)<=3 下拉填充(或双击右下角小十字)
筛选 true
然后对筛选结果CTRL+A复制到新表-CTRL+C复制两遍,第一遍复制格式,第二遍只有值
另存
㈡ EXCEL带有大量公式的数据如何快速处理
Excel带有大量公式会导致运算速度变慢,想要运算速度变快的方法大致就两种方法:第一种方法是提升电脑配置;第二种方法利用编程来处理,如VBA、Python等。
㈢ excel大量处理数据的技巧。
链接:http://pan..com/s/16kh7EBAfTH8KLlp0hUVM7A
秋叶Excel数据处理学习班。不熬夜不加班的Excel数据管理术,在想要提升处理数据表格能力的学习期80%的人都会被以下问题困扰,很多效果明明就能用软件功能快速实现,比如一键求和、数据分列合并,但是因为不知道,总觉得很困难?本套课程可以帮助你深入了解Excel数据处理方法&更全面系统理解快速解决思路。通过学习本套课程让你告别Excel小白,秒变Excel数据分析大牛。
课程目录:
SUM函数基本用法
COUNTIF函数
Match函数的基本用法
INDEX函数的基本用法
VLOOKUP函数的基本用法
用图标集表示数据升降
.....
㈣ 怎么清除电脑里的所有数据
电脑上删除的文件怎么恢复?如今,电脑已经是我们办公、生活和娱乐中必不可少的设备,更是存储着我们很多重要的文件。但是,有的时候一些使用者可能会不小心删除了自己还需要的重要文件,给生活或工作带来巨大的麻烦。这个时候不用着急,有一个超级简单的方法帮助您恢复您误删除的文件。
首先,我们可以查看电脑的回收站,只要不是永久删除的文件,都会保存在回收站里,右键还原文件就可以。
但如果是永久删除的文件呢?那靠普通使用者在电脑本身的操作就很难找回了,但是我们可以求助一些专业的数据恢复软件,具体操作步骤如下:
第二步:在“场景模式”中选择符合自己情况的恢复模式,即可快速扫描丢失文件。还可以点击下方的“向导模式”进行切换,享受更简便的操作;
第三步:找到自己丢失的文件。一般来说,如果误删之后没有其它操作,短期内立马进行扫描的话,丢失数据找回的概率非常大,这时候勾选找到的文件点击恢复即可。
这就是关于电脑上删除的文件怎么恢复的具体介绍了。嗨格式数据恢复大师软件解决了很多技术层面的问题,用户只需要根据软件的引导,几个简单的点击就可以找回自己误删除丢失的文件,可以说是非常简单方便了。这么简单的方法,你记住了吗?
㈤ 个人大数据乱了怎么快速修复
个人大数据乱了会严重影响个人信贷行为,可以从以下几方面入手养好大数据:
1.最好在半年内不要再申请信用卡、贷款产品,尤其是网贷;
2.已申请到的贷款、信用卡要按时还款,不能出现违约失信行为;
3.通过正规、靠谱的渠道进行网贷黑名单监测,查询自己的网贷借款情况、被拒次数等;
4.往后通过正规渠道申请贷款,尽量不要碰网贷,少查询网贷产品可借款额度。
一、大数据(bigdata)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据有大量(Volume)、高速(Velocity)、多样(Variety)、低价值密度(Value)、真实性(Veracity)五大特点。它并没有统计学的抽样方法,只是观察和追踪发生的事情。大数据的用法倾向于预测分析、用户行为分析或某些其他高级数据分析方法的使用。对于“大数据”(Bigdata)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
二、随着云时代的来临,大数据(Bigdata)也吸引了越来越多的关注。分析师团队认为,大数据(Bigdata)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
三、大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
㈥ 数据处理方式
什么是大数据:大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),网络随便找找都有。
大数据处理流程:
1.是数据采集,搭建数据仓库,数据采集就是把数据通过前端埋点,接口日志调用流数据,数据库抓取,客户自己上传数据,把这些信息基础数据把各种维度保存起来,感觉有些数据没用(刚开始做只想着功能,有些数据没采集, 后来被老大训了一顿)。
2.数据清洗/预处理:就是把收到数据简单处理,比如把ip转换成地址,过滤掉脏数据等。
3.有了数据之后就可以对数据进行加工处理,数据处理的方式很多,总体分为离线处理,实时处理,离线处理就是每天定时处理,常用的有阿里的maxComputer,hive,MapRece,离线处理主要用storm,spark,hadoop,通过一些数据处理框架,可以吧数据计算成各种KPI,在这里需要注意一下,不要只想着功能,主要是把各种数据维度建起来,基本数据做全,还要可复用,后期就可以把各种kpi随意组合展示出来。
4.数据展现,数据做出来没用,要可视化,做到MVP,就是快速做出来一个效果,不合适及时调整,这点有点类似于Scrum敏捷开发,数据展示的可以用datav,神策等,前端好的可以忽略,自己来画页面。
数据采集:
1.批数据采集,就是每天定时去数据库抓取数据快照,我们用的maxComputer,可以根据需求,设置每天去数据库备份一次快照,如何备份,如何设置数据源,如何设置出错,在maxComputer都有文档介绍,使用maxComputer需要注册阿里云服务
2.实时接口调用数据采集,可以用logHub,dataHub,流数据处理技术,DataHub具有高可用,低延迟,高可扩展,高吞吐的特点。
高吞吐:最高支持单主题(Topic)每日T级别的数据量写入,每个分片(Shard)支持最高每日8000万Record级别的写入量。
实时性:通过DataHub ,您可以实时的收集各种方式生成的数据并进行实时的处理,
设计思路:首先写一个sdk把公司所有后台服务调用接口调用情况记录下来,开辟线程池,把记录下来的数据不停的往dataHub,logHub存储,前提是设置好接收数据的dataHub表结构
3.前台数据埋点,这些就要根据业务需求来设置了,也是通过流数据传输到数据仓库,如上述第二步。
数据处理:
数据采集完成就可以对数据进行加工处理,可分为离线批处理,实时处理。
1.离线批处理maxComputer,这是阿里提供的一项大数据处理服务,是一种快速,完全托管的TB/PB级数据仓库解决方案,编写数据处理脚本,设置任务执行时间,任务执行条件,就可以按照你的要求,每天产生你需要数据
2.实时处理:采用storm/spark,目前接触的只有storm,strom基本概念网上一大把,在这里讲一下大概处理过程,首先设置要读取得数据源,只要启动storm就会不停息的读取数据源。Spout,用来读取数据。Tuple:一次消息传递的基本单元,理解为一组消息就是一个Tuple。stream,用来传输流,Tuple的集合。Bolt:接受数据然后执行处理的组件,用户可以在其中执行自己想要的操作。可以在里边写业务逻辑,storm不会保存结果,需要自己写代码保存,把这些合并起来就是一个拓扑,总体来说就是把拓扑提交到服务器启动后,他会不停读取数据源,然后通过stream把数据流动,通过自己写的Bolt代码进行数据处理,然后保存到任意地方,关于如何安装部署storm,如何设置数据源,网上都有教程,这里不多说。
数据展现:做了上述那么多,终于可以直观的展示了,由于前端技术不行,借用了第三方展示平台datav,datav支持两种数据读取模式,第一种,直接读取数据库,把你计算好的数据,通过sql查出,需要配置数据源,读取数据之后按照给定的格式,进行格式化就可以展现出来
@jiaoready @jiaoready 第二种采用接口的形式,可以直接采用api,在数据区域配置为api,填写接口地址,需要的参数即可,这里就不多说了。
㈦ 常用的数据分析方法有哪些
常见的数据分析方法有哪些?
1.趋势分析
当有大量数据时,我们希望更快,更方便地从数据中查找数据信息,这时我们需要使用图形功能。所谓的图形功能就是用EXCEl或其他绘图工具来绘制图形。
趋势分析通常用于长期跟踪核心指标,例如点击率,GMV和活跃用户数。通常,只制作一个简单的数据趋势图,但并不是分析数据趋势图。它必须像上面一样。数据具有那些趋势变化,无论是周期性的,是否存在拐点以及分析背后的原因,还是内部的或外部的。趋势分析的最佳输出是比率,有环比,同比和固定基数比。例如,2017年4月的GDP比3月增加了多少,这是环比关系,该环比关系反映了近期趋势的变化,但具有季节性影响。为了消除季节性因素的影响,引入了同比数据,例如:2017年4月的GDP与2016年4月相比增长了多少,这是同比数据。更好地理解固定基准比率,即固定某个基准点,例如,以2017年1月的数据为基准点,固定基准比率是2017年5月数据与该数据2017年1月之间的比较。
2.对比分析
水平对比度:水平对比度是与自己进行比较。最常见的数据指标是需要与目标值进行比较,以了解我们是否已完成目标;与上个月相比,要了解我们环比的增长情况。
纵向对比:简单来说,就是与其他对比。我们必须与竞争对手进行比较以了解我们在市场上的份额和地位。
许多人可能会说比较分析听起来很简单。让我举一个例子。有一个电子商务公司的登录页面。昨天的PV是5000。您如何看待此类数据?您不会有任何感觉。如果此签到页面的平均PV为10,000,则意味着昨天有一个主要问题。如果签到页面的平均PV为2000,则昨天有一个跳跃。数据只能通过比较才有意义。
3.象限分析
根据不同的数据,每个比较对象分为4个象限。如果将IQ和EQ划分,则可以将其划分为两个维度和四个象限,每个人都有自己的象限。一般来说,智商保证一个人的下限,情商提高一个人的上限。
说一个象限分析方法的例子,在实际工作中使用过:通常,p2p产品的注册用户由第三方渠道主导。如果您可以根据流量来源的质量和数量划分四个象限,然后选择一个固定的时间点,比较每个渠道的流量成本效果,则该质量可以用作保留的总金额的维度为标准。对于高质量和高数量的通道,继续增加引入高质量和低数量的通道,低质量和低数量的通过,低质量和高数量的尝试策略和要求,例如象限分析可以让我们比较和分析时间以获得非常直观和快速的结果。
4.交叉分析
比较分析包括水平和垂直比较。如果要同时比较水平和垂直方向,则可以使用交叉分析方法。交叉分析方法是从多个维度交叉显示数据,并从多个角度执行组合分析。
分析应用程序数据时,通常分为iOS和Android。
交叉分析的主要功能是从多个维度细分数据并找到最相关的维度,以探究数据更改的原因。
㈧ 大数据技术常用的数据处理方式有哪些
大数据技术常用的数据处理方式,有传统的ETL工具利用多线程处理文件的方式;有写MapRece,有利用Hive结合其自定义函数,也可以利用Spark进行数据清洗等,每种方式都有各自的使用场景。
在实际的工作中,需要根据不同的特定场景来选择数据处理方式。
1、传统的ETL方式
传统的ETL工具比如Kettle、Talend、Informatica等,可视化操作,上手比较快,但是随着数据量上升容易导致性能出问题,可优化的空间不大。
2、Maprece
写Maprece进行数据处理,需要利用java、python等语言进行开发调试,没有可视化操作界面那么方便,在性能优化方面,常见的有在做小表跟大表关联的时候,可以先把小表放到缓存中(通过调用Maprece的api),另外可以通过重写Combine跟Partition的接口实现,压缩从Map到rece中间数据处理量达到提高数据处理性能。
3、Hive
在没有出现Spark之前,Hive可谓独占鳌头,涉及离线数据的处理基本都是基于Hive来做的,Hive采用sql的方式底层基于Hadoop的Maprece计算框架进行数据处理,在性能优化上也不错。
4、Spark
Spark基于内存计算的准Maprece,在离线数据处理中,一般使用Spark sql进行数据清洗,目标文件一般是放在hdf或者nfs上,在书写sql的时候,尽量少用distinct,group by recebykey 等之类的算子,要防止数据倾斜。
㈨ 0基础如何快速高效搞定数据处理
熟悉办公软件很有必要,无捷径,努力学习。
第一、小白学习大数据开发,心态很重要
对于陌生的知识领域,大家最开始接触的时候都不免有些困惑,会对自己产生怀疑,就像我们打游戏一样。刚开始总是操作不当、找不到该按的按钮、也不懂的团队配合,而当我们玩过几局之后就很快能够和大家一起进行游戏了。所以0基础的小白学习大数据时,心态一定要摆正,要相信自己,刚开始我们要学习大数据开发所需的语言、语法,因为他是计算机语言,我们需要一定的时间适应、摸索,等我们掌握基础之后就会感受到它的乐趣,自然也就不会觉得难了。
第二、课程安排很重要,有计划学习
小白学习大数据开发,最忌讳盲目的没有计划学习,摆脱了系统学习计划,结果必然“一塌糊涂”。所以小白在选择大数据培训时课程设置非常重要,从java开始一步步深入到大数据开发的各个知识点。与学习其他知识一样,有计划性能够快速的直达目的地。大数据课程可参考(大数据培训学习到底学些什么?)
第三、互帮互助,在实训中提升自己
一人为孤,三人为众,独自学习往往让人感到困惑,而如果能够找到一群志同道合的人一起学习,那么学习更有动力,这也就是“氛围”的重要性。学习大数据项目实训尤为重要,项目实训可以让学员在实际操作中提升自己,当然,实训的目的之一是让大家将知识融会贯通,另一个目的却是让大家在实训中体会到团队协作的重要性,这在以后的工作中意义重大。
第四、习惯的保持
无论学习什么,都不能有三分钟热度的心态,不能有“三天打鱼两天晒网”的心理。在终身学习的年代里,如果你不能够真正的养成一个良好的学习习惯,那么最后受伤的还是自己。
小白学习大数据开发的难度其实并不高,关键是看你想不想学,每个人都是从小白过渡而来,别人能做好,相信你也可以。所以,0基础并不是学习大数据的限制,也不是你学不好的理由,只要你能够持坚持学习,那么你一样可以学懂大数据开发,成为一名专业的人才。
㈩ excel怎么快速的将新数据替换旧数据
将所有数据复制粘贴到同一工作表的A、B列内
C2粘贴以下数组公式
=IF(MAX(IF(A2:A10=A2,B2:B10))=B2,"Y","")
以同按CTRL+SHIFT+回车 这三个键作为结束
再下拉填充公式
对C列筛选一下
将筛选结果直接复制粘贴到新工作表
即可