导航:首页 > 研究方法 > 矿物结构分析所采用的主要方法

矿物结构分析所采用的主要方法

发布时间:2022-05-19 11:42:04

A. 鉴定和研究矿物的其他主要方法简介

鉴定和研究矿物的方法,随工作目的和要求的不同而异(表16-1)。不同的方法各有其特点,它们对样品的要求及所能解决的问题也各不相同。下面仅介绍某些重要方法的简要特点。

1.成分分析方法

此类方法所得结果即为物质的化学成分数据。除经典化学分析系化学方法外,其他常用方法均属物理方法,大多可同时分析多种元素,但一般不能区分变价元素的价态。

1)经典化学分析

此法准确度高,但灵敏度不很高,分析周期长,很不经济。样品要求是重量超过500mg的纯度很高的单矿物粉末。

此法只适用于矿物的常量组分的定性和定量分析。主要用于新矿物种或亚种的详细成分的确定和组成可变的矿物成分变化规律的研究。但不适用于稀土元素的分析。

表16-1 鉴定和研究矿物的主要方法一览表

2)光谱分析

此法准确度较差(尤其是对含量大于3%的常量元素),但灵敏度高,且快速、经济。可测元素达70多种。一次测试即能获得全部主要元素及微量元素的信息。样品要求:仅需数十毫克甚至数毫克的粉末样品。

光谱分析通常用于矿物的微量和痕量元素的定性或半定量分析。特别是对于稀有分散元素也能获得良好的效果。常作为化学分析的先导,以初步了解样品中元素的种类和数量,供进一步分析或研究时参考。

3)原子吸收光谱分析

原子吸收光谱(AAS)分析灵敏度高,干扰少,快速、精确且较经济。可测70多种元素,但一次只能分析一种元素,不宜于定性分析。样品用量少,仅需数毫克粉末样。

AAS主要用于10-6数量级微量元素和10-9数量级痕量元素的定量测定。适宜于测定沸点低、易原子化的金属元素及部分半金属元素。也可进行常量分析。但对稀土、Th、Zr、Hf、Nb、Ta、W、U、B等高温元素的测定的灵敏度较低,对卤族元素、P、S、O、N、C、H等尚不能测定或效果不佳。

4)X射线荧光光谱分析

X射线荧光光谱(XRF)分析准确度较高,成本低,速度快,可不破坏样品。可分析元素的范围为9F~92U。XRF要求数克至十克(一般4~5g,最少可至数十毫克)较纯的粉末样。液态样品也可分析。

XRF用于常量元素和微量元素的定性或定量分析。尤其对稀土元素及稀有元素Nb、Ta、Zr、Hf等的定量分析有效。但不能测定变价元素的价态。

5)等离子体发射光谱分析

等离子体发射光谱(ICP)分析比光谱分析更为快速和灵敏,检测下限可达(0.1×10-9)~(10×10-9)。精度较高,可达±3%,可测定除H、O、N和惰性气体以外的所有元素。样品要求:粉末,最少可以数毫克,也可以为液态样品。

ICP适用于常量、微量和痕量元素的定性或定量分析。特别宜于分析包裹体中含量极低的重金属离子。

6)激光显微光谱分析

激光显微光谱(LMES)分析灵敏度高,快速,有效,成本低,且被破坏样品的面积小。可测70多种元素。样品可以是光片、不加盖玻璃的薄片或大小合适的手标本,样品表面应抛光,切忌被污染;重砂、粉末或液体样品要作某些处理。

LMES适于微粒、微量、微区的成分测定。用于研究矿物的化学成分及元素的赋存状态,特别适用于微细疑难矿物的分析和鉴定。但是,目前对O、N、S等许多非金属元素尚无法分析,对碱金属、难熔金属(如Mo、Ta等)的检测灵敏度较低。

7)质谱分析

质谱分析灵敏度和准确度均高,且分析速度快。以纯度≥98%、粒径<0.5mm的单矿物为样品。样量视矿物种不同而异,如硫化物需0.1~0.2g,硫酸盐需2~5g。应避免用化学方法、浮选法等处理分离矿物,以防被污染。

质谱分析系10-6数量级定量分析,常用于准确测定各种岩石、矿物和有机物中元素的同位素组成。从10~30g的陨石标本中提取的稀有气体即足以为分析所用。

8)中子活化分析

中子活化分析(NAA)灵敏度高,大多数元素的灵敏度达10-6~10-13g。准确度高,精度高(一般在±1%~±5%)。可测的元素达80多种。可同时测定多种元素,分析速度快,且不破坏样品。样品要求是纯的单矿物粉末,样量仅需数毫克至数十毫克。

NAA系超痕量、痕量、半微量甚至常量元素的定量分析。可直接测定浓度很低的贵金属元素,对稀土元素的分析特别有效。广泛用于同位素组成、同位素地质年龄的测定。此外,也常用于测定包裹体成分。适用于分析陨石和月岩样品的组成。

9)电子探针分析

电子探针分析(EPMA)灵敏度高,检测下限可达10-16g。精度一般可达1%~2%,但对微量元素的精度则可差于20%。分辨率高(约7nm)。放大倍数为数十倍至数十万倍。分析速度快,直观,且不破坏样品。可测元素的范围大:波谱分析为4Be~92U,能谱分析为11Na~92U。样品可以是光片、不加盖玻璃的薄片或矿物颗粒,且表面必须清洁、平坦而光滑。

EPMA系微米数量级微区的成分分析,宜于常量元素的定量分析。既可定点作定性或定量分析,又能作线扫描和面扫描分析,以研究元素的种类、分布和含量,了解矿物成分分布的均匀程度和元素在矿物中的赋存状态,定量测定矿物内部各环带的成分。最适于微小矿物和包裹体成分的定性或定量分析,以及稀有元素、贵金属元素的赋存状态的研究。此外,还可辅以形貌观察。EP-MA只能分析固态物质,对有机物质的分析有困难;不能分析元素的同位素、各种形式的水(如 H2 O和 OH-等)及其他挥发组分,无法区分 Fe2+和 Fe3+

2.结构分析方法

此类方法一般不破坏样品,其分析结果是各种谱图,用于研究物质的晶体结构、分子结构、原子中电子状态的精细结构。有些还可借以鉴定样品的物相,如宝石学上目前常利用红外吸收光谱、激光拉曼光谱、可见光吸收光谱等技术来鉴别天然宝石和合成宝石。

1)X射线分析

X射线分析是晶体结构研究和物相分析的最常用而有效的方法。其具体方法种类繁多,一般可归为单晶法和粉晶法两类。

(1)单晶法:通常称为X射线结构分析,又有照相法和衍射仪法之分。目前主要采用四圆单晶衍射仪法,其特点是自动化程度高,快速,准确度高。单晶法要求严格挑选无包裹体、无双晶、无连晶和无裂纹的单晶颗粒样品,其大小一般在0.1~0.5mm。因此在应用上受到一定限制。单晶法主要用于确定晶体的空间群,测定晶胞参数、各原子或离子在单位晶胞内的坐标、键长和键角等;也可用于物相鉴定,绘制晶体结构图。

(2)粉晶法:又称粉末法,也有照相法和衍射仪法之分。粉晶法以结晶质粉末为样品,可以是含少数几种物相的混合样品,粒径一般在1~10μm。样品用量少,且不破坏样品。照相法只需样品5~10mg,最少可至1mg左右;衍射仪法用样量一般为200~500mg。粉晶衍射仪法简便,快速,灵敏度高,分辨能力强,准确度高。根据计数器自动记录的衍射图(diffraction diagram),能很快查出面网间距d值和直接得出衍射强度,故目前已广泛用于矿物或混合物之物相的定性或定量分析。粉晶法主要用于鉴别结晶质物质的物相,精确测定晶胞参数,尤其对鉴定粘土矿物及确定同质多象变体、多型、结构的有序—无序等特别有效。

2)红外吸收光谱分析

红外吸收光谱(IR)测谱迅速,数据可靠,特征性强。傅里叶变换红外光谱仪具有很高的分辨率和灵敏度及很快的扫描速度。样品不受物理状态限制,可以是气态、液态、结晶质、非晶质或有机化合物。干燥固体样品一般只需1~2mg,并研磨成2μm左右的样品。

IR已广泛应用于物质的分子结构和成分研究。适用于研究不同原子的极性键,可精确测定分子的键长、键角、偶极矩等参数;推断矿物的结构,鉴定物相;对研究矿物中水的存在形式、络阴离子团、类质同象混入物的细微变化、有序—无序及相变等十分有效。IR广泛用于粘土矿物和沸石族矿物的鉴定,也可对混入物中各组分的含量作定量分析。

3)激光拉曼光谱分析

激光拉曼光谱(LRS)系无损分析,其测谱速度快,谱图简单,谱带尖锐,便于解释。几乎在任何物理条件(高压、高温、低温)下对任何材料均可测得其拉曼光谱。样品可以是粉末或单晶(最好是5mm或更大者),不需特别制备,粉末所需量极少,仅0.5μg即可。也可以是液体样品(10-6ml)。

LRS和IR同为研究物质分子结构的重要手段,两者互为补充。LRS适用于研究同原子的非极性键的振动。

4)可见光吸收光谱分析

可见光吸收光谱分析简便、可信,不需挑选单矿物,不破坏样品。以0.03mm标准厚度的薄片为样品,但研究多色性时则需用单晶体。

此法主要用于研究物质中过渡元素离子的电子构型、配位态、晶体场参数和色心等。也常用于颜色的定量研究,探讨透明矿物的呈色机理。可适于研究细小(粒径在1~5mm)的矿物颗粒。

5)穆斯堡尔谱分析

穆斯堡尔谱分析又称核磁伽马共振(NGR)。分析准确、灵敏、快速,解谱较为容易。目前仅可测40多种元素近90种同位素。所研究的元素可以是主成分,也可是含量为万分之几的杂质。样品可以是晶质或者非晶质;既可是单晶,也可是矿物或岩石的粉末。但样品中必须含有一定浓度的与放射源中γ射线的核相同的元素。含铁矿物样品中Fe原子浓度为5mg/cm2为宜,硅酸盐样品量一般为100mg左右,因样品中Fe含量等因素而异。

NGR主要用于研究57Fe和119Sn元素离子的价态、配位态、自旋态、键性、磁性状态、占位情况及物质结构的有序—无序和相变等,也可用于物相鉴定和快速成分分析。对粘土矿物及陨石、月岩、海底沉积物等晶质多相混合物的研究很有效。

6)电子顺磁共振分析

电子顺磁共振(EPR)分析也称电子自旋共振(ESR)分析。灵敏度高。不破坏样品。只适于研究顺磁性离子:室温下能测定的主要有V4+、Cr3+、Mn2+、Fe3+、Ni2+、Cu2+、Eu2+、Gd3+等;而Ti3+、V3+、Fe2+、Co2+及多数稀土元素离子则只能在低温下测定。EPR分析对样品要求不高:固体、液体(0.1~0.01ml)、压缩气体或有机化合物均可;可以是单晶,也可以是粉末多晶混合物,但一般以单晶(粒径在2~9mm)为好。样品中顺磁性离子的浓度不超过1%,以0.1%~0.001%为宜。样品不需任何处理。

EPR主要用于研究过渡金属离子(包括稀土元素离子)的微量杂质的价态、键性、电子结构、赋存状态、配位态、占位情况、类质同象置换及结构的电子—空穴心、结构的有序—无序、相变等。也可作微量元素的定性或定量分析及地质年龄的测定等。在宝石学上,常用于鉴别天然宝石与合成宝石及研究宝石的染色机制。

7)核磁共振分析

核磁共振(NMR)分析目前最常用的高分辨的核磁共振仪广泛应用于某些分子结构的测定,其分辨率高,灵敏度高,测量速度快。但可测元素的种类有限,主要有1H、7Li、9B、11B、13C、19F、23Na、27Al、29Si、31P、40Ca等。样品可以是较浓的溶液(约0.5ml)、固体(一般20~80mg)或气体。

NMR主要用于研究矿物中水的存在形式、质子的结构位置及离子的键性、配位态和有序—无序分布特征等,研究相变和晶格缺陷。

3.其他测试方法

1)透射电子显微镜分析

透射电子显微镜(TEM)分析的功能主要是利用透射电子进行高分辨的图象观察,以研究样品的形貌、晶格缺陷及超显微结构(如超显微双晶和出溶片晶等)等特征,同时用电子衍射花样标定晶体的结构参数和晶体取向等。配有能谱仪(或波谱仪)者尚可进行微区常量元素的成分分析。TEM具有很高的分辨率(达0.1nm左右)和放大倍数(为100倍~200万倍),可以直接观察到原子。样品可以是光片、不加盖玻璃的薄片或粉末样,表面须平坦光滑。

2)扫描电子显微镜分析

扫描电子显微镜(SEM)分析的主要功能是利用二次电子进行高分辨率的表面微形貌观察。通常也辅以微区常量元素的点、线、面扫描定性和定量分析,查明元素的赋存状态等。SEM的分辨率高(达5nm左右),放大倍数为10倍~30万倍。样品可以是光片、不加盖玻璃的薄片、粉末颗粒或手标本。其制样简单,图象清晰,立体感强,特别适合粗糙表面的研究,如矿物的断口、晶面的生长纹和阶梯等观察及显微结构分析等。

3)微分干涉(相衬)显微镜分析

微分干涉(相衬)显微镜(DIC)能够观察矿物表面纳米数量级的分子层厚度。反射型显微镜用于研究晶体表面微形貌,观察晶体表面上的各种层生长纹和螺旋生长纹,从而探讨晶体的生长机制;透射型显微镜用于研究岩石薄片中矿物的结晶状态及内部显微构造,能清晰看到微米数量级的微裂纹,从而有助于研究岩石受应力作用的方向和性质。微分干涉(相衬)显微镜的纵向分辨率高,立体感强。其样品可以是带晶面的晶体颗粒或者薄片。

4)热分析

热分析系根据矿物在加热过程中所发生的热效应或重量变化等特征来鉴定和研究矿物。广泛采用的有差热分析和热重分析。

(1)差热分析(DTA):是测定矿物在连续加热过程中的吸热(脱水、分解、晶格的破坏和类质同象转变等)和放热(氧化、结晶等)效应,以研究矿物的结构和成分变化。用于了解水的存在形式,研究物质的内部结构和结晶度,研究类质同象混入物及其含量,可进行物相的鉴定及其定量分析。尤其对粘土矿物、氢氧化物和其他含水矿物及碳酸盐类等矿物的研究最为有效。DTA只适用于受热后有明显的物理、化学变化的物质,一般仅用于单相物质纯样的研究,样量仅需100~200mg,粒度在0.1~0.25mm。DTA设备简单,用样量少,分析时间较短,但破坏样品,且干扰因素多,混合样品不能分离时会相互干扰。因此,必须与X射线分析、电子显微镜、化学分析等方法配合使用。

(2)热重分析(TG):是测定矿物在加热过程中质量的变化。热重曲线的形式取决于水在矿物中的存在形式和在晶体结构中的存在位置。TG仅限于鉴定和研究含水矿物,并可确定其含水量。TG以纯的矿物粉末为样品,样量一般需2~5g,且破坏样品。TG常与DTA配合使用。目前正向微量(10-5g)分析发展。

B. 矿物学的研究方法

野外研究方法包括矿物的野外地质产状调查和矿物样品的采集。室内研究方法很多。手标本的肉眼观察,包括双目显微镜下观察和简易化学试验,是矿物研究必要的基础。偏光和反光显微镜观察包括矿物基本光学参数的测定广泛用于矿物种的鉴定。矿物晶体形态的研究方法包括用反射测角仪进行晶体测量和用干涉显微镜、扫描电子显微镜对晶体表面微形貌的观察。检测矿物化学成分的方法有光谱分析,常规的化学分析,原子吸收光谱、激光光谱、X射线荧光光谱和极谱分析,电子探针分析,中子活化分析等。在物相分析和矿物晶体结构研究中,最常用的方法是粉晶和单晶的X射线分析,用作物相鉴定,测定晶胞参数、空间群和晶体结构。
此外,还有红外光谱用作结构分析的辅助方法,测定原子基团;以穆斯堡尔谱测定铁等的价态和配位;用可见光吸收谱作矿物颜色和内部电子构型的定量研究;以核磁共振测定分子结构;以顺磁共振测定晶体结构缺陷(如色心);以热分析法研究矿物的脱水、分解、相变等。透射电子显微镜的高分辨性能可用来直接观察超微结构和晶格缺陷等,在矿物学研究中日益得到重视。为了解决某方面专门问题,还有一些专门的研究方法,如包裹体研究法,同位素研究法等。矿物作为材料,还根据需要作某方面的物理化学性能的试验(见地质仪器)。
矿物是结晶物质,具有晶体的各种基本属性。因此,结晶学与化学、物理学一起,都是矿物学的基础。历史上,结晶学就曾是矿物学的一个组成部分。矿物本身是天然产出的单质或化合物,同时又是组成岩石和矿石的基本单元,因此矿物学是岩石学、矿床学的基础,并与地球化学、宇宙化学都密切相关。

C. 矿物鉴定和研究的专门方法

用肉眼鉴定仍然确定不了的矿物,就需要借助其他专门方法。矿物的鉴定和研究方法很多,应根据研究目的,按照有效、准确和快速的原则进行选择。

鉴定和研究矿物的专门方法包括:

(1)检测矿物化学成分的方法:简易化学试验、光谱分析、原子吸收光谱分析、激光光谱分析,X射线荧光光谱分析、极谱分析、化学分析和电子探针分析;

(2)通过测定矿物某种物性或晶体结构数据从而可定出矿物种属的方法:密度测定、热分析、显微镜观察、电子显微镜观察、X射线分析、红外光谱分析、穆斯堡尔效应;

(3)研究矿物形貌的方法:测角法、电子显微镜观察;

(4)其他专门方法:包裹体研究、稳定同位素研究等。

D. 矿石组织结构分析,是用什么仪器分析

最常规的矿石组织结构分析采用光薄片镜下鉴定,荧光显微鉴定,红外光谱,X光粉晶衍射,差热分析等分析手段。采用不同仪器相互配合,达到鉴定组织结构的目的。

E. 矿物鉴定和研究的化学方法

矿物鉴定和研究的化学方法包括简易化学分析和化学全分析:

(一)简易化学分析法

简易化学分析法,就是以少数几种药品,通过简便的试验操作,能迅速定性地检验出样品(待定矿物)所含的主要化学成分,达到鉴定矿物的目的。常用的有斑点法、显微化学分析法及珠球反应等。

(1)斑点法:这一方法是将少量待定矿物的粉末溶于溶剂(水或酸)中,使矿物中的元素呈离子状态,然后加微量试剂于溶液中,根据反应的颜色来确定元素的种类。这一试验可在白瓷板、玻璃板或滤纸上进行。此法对金属硫化物及氧化物的效果较好。现以试黄铁矿中是否含Ni为例,说明斑点法的具体做法。

将少许矿粉置玻璃板上,加一滴HNO3并加热蒸干,如此反复几次,以便溶解进行完全,稍冷后加一滴氨水使溶液呈碱性,并用滤纸吸取,再在滤纸上加一滴2%的二甲基乙二醛肟酒精溶液(镍试剂),若出现粉红色斑点(二甲基乙二醛镍),表明矿物中确有Ni的存在。因此该矿物应为含镍黄铁矿。

(2)显微化学分析法:该法也是先将矿物制成溶液,从中吸取一滴置载玻片上,然后加适当的试剂,在显微镜下观察反应沉淀物的晶形和颜色等特征,即可鉴定出矿物所含的元素。

这方法用来区别相似矿物是很有效的,例如呈致密块状的白钨矿(Ca[WO4])与重晶石(Ba[SO4])相似,此时只要在前者的溶液中滴一滴1∶3H2SO4,如果出现石膏结晶(无色透明,常有燕尾双晶),表明要鉴定的矿物为白钨矿而不是重晶石。

(3)珠球反应:这是测定变价金属元素的—种灵敏而简易的方法。测定时将固定在玻璃棒上的铂丝之前端弯成一直径约为1mm的小圆圈,然后放入氧化焰中加热。清污后趁热粘上硼砂(或磷盐),再放入氧化焰中煅烧,如此反复几次,直到硼砂熔成无色透明的小球为止。此时即可将灼热的珠球粘上疑为含某种变价元素的矿物粉末(注意!一定要少),然后将珠球先后分别送入氧化焰及还原焰中煅烧,使所含元素发生氧化、还原反应,借反应后得到的高价态和低价态离子的颜色来判定为何种元素。例如在氧化焰中珠球为红紫色,放入还原焰中煅烧一段时间后变为无色时,表明所试样品应为含锰矿物,具体矿物的名称可根据其他特征确定之。

(二)化学全分析

化学全分析包括定性和定量的系统化学分析。进行这一分析时需要较为繁多的设备和标准试剂,需要较纯(98%以上)和较多的样品,需要较高的技术和较长的时间。因此,这一方法是很不经济的,除非在研究矿物新种和亚种的详细成分、组成可变矿物的成分变化规律以及矿床的工业评价时才采用。通常在使用这一方法之前,必须进行光谱分析,得出分析结果以备参考。

F. 矿物物相及结构分析方法

在矿物物相分析和晶体结构研究中,最常用的方法是粉晶和单晶X射线衍射分析,其次为红外和拉曼光谱分析、热分析及阴极发光分析等。

1.X射线分析法

本方法在矿物晶体结构分析、矿物鉴定和研究等方面起着极其重要的作用,已成为不可缺少的常规分析手段。

X射线是一种波长很短(0.01~1nm)的电磁波,在实验室里它是通过一个高度真空的玻璃或陶瓷管(X射线管)产生的。X射线管中有两个金属电极,阴极为钨丝卷成,阳极为某种金属的磨光面(习称“靶”)。用两根导线通入阴极3~4A的电流,在钨丝周围产生大量热电子。在阴极和阳极之间加以高电压(30~50 kV),钨丝周围的热电子即向阳极作加速度移动。当高速运动的电子与阳极相碰时,运动骤然停止,电子的能量大部分变为热能,少部分变成X射线由靶面射出。射入晶体的X射线(称原始X射线S0),引起晶体中原子的电子振动,这些电子因而发出与原始X射线波长相同的次生X射线(如S1、S2)。晶体中各原子所射出的次生X射线在不同方向上具有不同的行程差,当某些方向上的行程差等于波长的整数倍时,X射线便相互叠加(增强)成为衍射线,通过探测器即可收集到衍射数据。

图24-6 面网对X射线的衍射

图24-6中各点代表晶体中相当的原子,面网1,2,3是一组平行的面网,面网间距为d,波长为λ的原始X射线S0沿着与面网成θ角(掠射角)的方向射入,并在S1方向产生“反射”。产生“反射”(即衍射)的条件是相邻面网所“反射”的X射线的行程差等于波长的整数倍,即:nλ=2dsinθ(n=1,2,3,…整数,称为“反射”的级次)。此式经转换可得到

结晶学与矿物学

式中:dhkl为面网(hkl)的面网间距;θhkl为面网(hkl)的掠射角;λ为波长。该公式称为布拉格公式。

X射线衍射分析是通过仪器得到晶体的面网间距d和衍射线的相对强度I/I0两组衍射数据,根据衍射数据进行物象分析。

X射线衍射分析有粉晶(多晶)衍射分析和单晶衍射分析两种方法。粉晶衍射采用粉末状(1~10μm)多晶为样品(50~100 mg),粉晶衍射仪通过转动2θ角,用辐射探测器和计数器测定并记录衍射线的方向和强度,获得衍射图谱(图24-7)。衍射图中每个衍射峰代表一组面网。每组面网的面网间距d直接打印在峰上,它的衍射强度与峰高成正比,用相对强度表示,即以最强峰的强度作为100,将其他各衍射峰与之对比确定相对强度I/I0。获得衍射数据后,与鉴定表(ICDD卡片或其他矿物X射线鉴定表)中标准数据对比,即可作出矿物鉴定,也可采用计算机数据库检索分析软件进行辅助鉴定。

粉晶衍射物相分析快速简便,分辨率高,记录图谱时间短,精度高,用计算机控制操作和进行数据处理,可直接获得衍射数据,对矿物定性、定量都十分有效,目前已得到了广泛的应用。

单晶衍射分析一般采用小于0.2~0.5mm的单个晶体(或单晶碎片)为测试样品。目前较多用四圆测角系统的单晶衍射仪。它是通过一束单色X射线射入单晶样品,用计算机控制4个圆协同作用,调节晶体的取向,使某一面网达到能产生衍射的位置,用计数器或平面探测器记录衍射方向和强度。据此,可测定晶胞参数,确定空间群,求解原子坐标,计算键长、键角,最终得到晶体结构数据。

图24-7 单晶硅粉末衍射图(Mo靶)

2.红外光谱和拉曼光谱分析法

红外光谱(IR)为红外波段电磁波(波长0.75~1000μm;频率13333~10cm-1)与物质相互作用而形成的吸收光谱,是物质分子振动的分子光谱,反映分子振动的能级变化及分子内部的结构信息。

红外吸收光谱是由矿物中某些基团分子不停地作振动和转动运动而产生的。分子振动的能量与红外射线的光量子能量相当,当分子的振动状态改变时,就可以发射红外光谱,而因红外辐射激发分子振动时便产生红外吸收光谱。分子的振动能量不是连续而是量子化的,但由于分子在振动跃迁过程中也常伴随转动跃迁,使振动光谱呈带状(图24-8)。分子越大,红外谱带也越多。将一束不同波长的红外光照射到矿物上,某些特定波长的红外射线被吸收,就形成了这个矿物的红外吸收光谱。每种矿物都有由其组成和结构决定的独有的红外吸收光谱,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。

红外光谱仪有两类。一类是单通道测量的棱镜和光栅光谱仪,属色散型,它的单色器为棱镜或光栅。另一类为傅里叶变换红外光谱仪,它是非色散型的,有许多优点:可实现多通道测量,提高信噪比;光通量大,提高了仪器的灵敏度;波数值的精确度可达0.01cm-1;增加动镜移动距离,可使分辨本领提高;工作波段可从可见区延伸到毫米区,可以实现远红外光谱的测定。

图24-8 石英的红外光谱图

拉曼光谱(RS)为分子振动能级间的跃迁产生的联合散射光谱。用单色光照射透明样品时,一部分光子与样品分子发生非弹性碰撞,进行能量交换(因分子大多处于基态,故光子通常将损失能量)后成为拉曼散射光。入射光频率(v)与散射光频率(v′)之差等于分子的某一简正振动频率(vi),而物质振动的频率及强度由物质内部分子的结构和组成决定,因此,拉曼散射谱线能够给出物质的组成和分子内部的结构信息。

现代激光拉曼光谱仪除其主要部件激发源(氩离子激光)、样品室、信号检测系统和数据处理系统外,还常加装显微镜,构成显微拉曼探针仪。其空间分辨率为1μm2,检测限为10-9~10-12g,是微粒、微区、微结构中的分子类别及含量鉴定的有力工具。

近几十年来,红外和拉曼光谱技术不断有新的发展,成为矿物学和矿床地球化学研究的重要手段。此外,随着宝玉石业的蓬勃发展,作为非破坏、快速鉴定的方法,红外、拉曼光谱也在宝玉石鉴定中被广泛认可和使用。

3.热分析法

热分析法是根据矿物在不同温度下所发生的热效应来研究矿物的物理和化学性质,目的在于求得矿物的受热(或冷却)曲线,以确定该矿物在温度变化时所产生的吸热或放热效应。此法常用于鉴定肉眼或其他方法难以鉴定的隐晶质或细分散的矿物;特别适于鉴定和研究含水、氢氧根和二氧化碳的化合物,如粘土矿物、铝土矿、某些碳酸盐矿物、含水硼酸盐及硫酸盐矿物、非晶质的铌、钽矿物等;还可以测定矿物中水的类型。

热分析法包括热失重分析和差热分析。

一些矿物在受热后可能发生脱水、分解、排出气体、升华等热效应引起物质质量发生变化,在程序控温下测量物质和温度变化关系的方法称热重分析法,在加热过程中测量得到物质质量和温度的关系曲线称热失重曲线(图24-9)。在含水矿物中测定矿物在不同温度条件下失去所含水分的质量而获得温度-质量曲线,从而查明水在矿物中的赋存状态和水在晶体结构中的作用。不同含水矿物具有不同的脱水曲线。利用这种方法,可以鉴定和研究含水矿物,如粘土矿物等。

操作过程是:从低温起至高温(1000℃左右)止逐渐以各种不同的固定温度加热矿物,至质量不再变化为止,然后称矿物的质量,算出因加热而损耗的质量(脱出的水分质量)。以损失质量的百分数及加热的温度为纵横坐标绘成曲线,即得失重曲线。

图24-9 热失重曲线图

差热分析法是将矿物粉末与中性体(不产生热效应的物质,常用煅烧过的Al2O3)分别同置于一高温炉中,在加热过程中,矿物发生吸热(因相变、脱水或分解作用等引起)或放热(因结晶作用、氧化作用等引起)效应,而中性体则不发生此效应,将两者的热差通过热电偶,借差热电流自动记录出差热曲线,线上明显的峰、谷分别代表矿物在加热过程中的吸热和放热效应。不同的矿物在不同的温度阶段,有着不同的热效应。由此可与已知矿物标准曲线进行对比来鉴定矿物。本方法对粘土矿物、氢氧化物、碳酸盐和其他含水矿物的研究最有效。

目前,矿物的差热分析法有了很大的进展,不仅用来定性地鉴定矿物,有时还可以做定量分析、探讨矿物在加热时结构的变化和研究矿物的类质同象混入物等。差热分析曲线的解释如下:

1)含水矿物的脱水:普通吸附水脱水温度为100~110℃;层间结合水或胶体水脱水温度在400℃内,大多数在200或300℃内;架状结构水脱水温度400℃左右;结晶水脱水温度在500℃内,分阶段脱水;结构水脱水温度在450℃以上。

2)矿物分解放出气体:CO2,SO2等气体的放出,曲线有吸热峰。

3)氧化反应表现为放热峰。

4)非晶态物质的析晶表现为放热峰。

5)晶型转变通常有吸热峰或放热峰。

6)熔化、升华、气化、玻璃化转变显示为吸热峰。

差热分析有一定的局限性,只适用于受热后有明显的物理、化学变化的物质,并有许多干扰因素而影响效果。因此,它必须和其他测试方法结合起来,如和X射线分析、电子显微镜、化学分析等密切配合使用。

4.阴极发光分析法

阴极发光是物质表面在高能电子束轰击下发光的现象。不同矿物或相同种类不同成因的矿物,在电子束的轰击下,会发出不同颜色或不同强度的光,同时能显示与晶体生长环境有关的晶体结构或生长纹,可辅助矿物鉴定。

阴极射线发光分析方法是研究矿物结构和能态的一种重要方法。近年来,这种分析方法的灵敏度和功能等都获得很大改善,特别是在扫描电镜中,将阴极射线发光、二次电子、背散射电子和X射线特征谱等结合起来形成的综合测量方法,成为研究矿物结构和微区性质的有力工具。

G. 任务了解矿物鉴定的常用方法

一、鉴定矿物的化学方法

矿物鉴定的化学方法包括简易化学分析和化学全分析。

(一)简易化学分析法

简易化学分析法,就是以少数几种药品,通过简便的试验操作,能迅速定性地检验出样品 (待定矿物)所含的主要化学成分,达到鉴定矿物的目的。常用的有斑点法、显微化学分析法及珠球反应等。

1.斑点法

这一方法是将少量待定矿物的粉末溶于溶剂 (水或酸)中,使矿物中的元素呈离子状态,然后加微量试剂于溶液中,根据反应的颜色来确定元素的种类。这一试验可在白瓷板、玻璃板或滤纸上进行。此法对金属硫化物及氧化物的效果较好。

现以测试黄铁矿中是否含镍 (Ni)为例,说明斑点法的具体做法。将少许矿粉置玻璃板上,加一滴HNO3并加热蒸干,如此反复几次,以便溶解进行完全,稍冷后加一滴氨水使溶液呈碱性,并用滤纸吸取,再在滤纸上加一滴2%的二甲基乙二醛肟酒精溶液(镍试剂),若出现粉红色斑点 (二甲基乙二醛镍),表明矿物中确有镍的存在。因此该矿物应为含镍黄铁矿。

2.显微化学分析法

该法也是先将矿物制成溶液,从中吸取一滴置载玻片上,然后加适当的试剂,在显微镜下观察反应沉淀物的晶形和颜色等特征,即可鉴定出矿物所含的元素。

这种方法用来区别某些相似矿物是很有效的,例如呈致密块状的白钨矿Ca[WO4]与重晶石Ba[SO4]相似,此时只要在前者的溶液中滴一滴1∶3H2SO4,如果出现石膏结晶(无色透明,常有燕尾双晶),表明要鉴定的矿物为白钨矿而不是重晶石。

3.珠球反应

这是测定变价金属元素的一种灵敏而简易的方法。测定时将固定在玻璃棒上的铂丝之前端弯成一直径约为1mm的小圆圈,然后放入氧化焰中加热。清污后趁热粘上硼砂 (或磷盐),再放入氧化焰中煅烧,如此反复几次,直到硼砂熔成无色透明的小球为止。此时即可将灼热的珠球粘上疑为含某种变价元素的矿物粉末 (注意!一定要少),然后将珠球先后分别送入氧化焰及还原焰中煅烧,使所含元素发生氧化、还原反应,借反应后得到的高价态和低价态离子的颜色来判定为何种元素。例如在氧比焰中珠球为红紫色,放入还原焰中煅烧一段时间后变为无色时,表明所试样品应为含锰矿物,具体矿物的名称可根据其他特征确定之。

(二)化学全分析

化学全分析包括定性和定量的系统化学分析。进行这一分析时需要较为繁多的设备和标准试剂,需要较纯 (98%以上)和较多的样品,需要较高的技术和较长的时间。因此,这一方法是很不经济的,除非在研究矿物新种和亚种的详细成分、组成可变矿物的成分变化规律以及矿床的工业评价时才采用。通常在使用这一方法之前,必须进行光谱分析,得出分析结果以备参考。

二、鉴定矿物的物理方法

矿物鉴定的物理方法是以物理学原理为基础,借助各种仪器测定矿物的各种物理性质来鉴定矿物。主要方法有:

1.偏光显微镜和反光显微镜鉴定法

偏光显微镜鉴定方法是根据晶体的均一性和异向性,并利用晶体的光学性质而鉴定矿物的方法。应用这种方法时,须将矿物、岩石磨制成薄片,在透射光作用下,观察和测定矿物的晶形、解理和各项光学性质 (颜色、多色性、突起、干涉色、折射率、双折射、消光类型、消光角、延性符合以及轴性、光性符号等)。

反光显微镜 (也称矿相显微镜)主要用以观察和测定不透明矿物 (金属矿物)的光学性质 (矿物的反射率、双反射率、反射色、反射多色性、内反射等),以确定矿石矿物成分、矿石结构、构造及矿床成因方面的问题。

2.电子显微镜研究法

电子显微镜研究法是一种适宜于研究粒度在1μm以下的微粒矿物的方法,尤以研究粒度小于5μm的具有高分散度的黏土矿物最为有效。可分为扫描电子显微镜和透射电子显微镜两种方法。

黏土类矿物由于颗粒极细 (一般2μm左右),常呈分散状态,研究用的样品需用悬浮法进行制备,待干燥后,置于具有超高放大倍数的电子显微镜下,在真空中使通过聚焦系统的电子光束照射样品,可在荧光屏上显出放大数十万倍甚至百万倍的矿物图像,据此以研究各种细分散矿物的晶形轮廓、晶面特征、连晶形态等,用此来区别矿物和研究它们的成因。

此外,超高压电子显微镜发出的强力电子束能透过矿物晶体,这就使得人们长期以来梦寐以求的直接观察晶体结构和晶体缺陷的愿望得到实现。

3.X射线分析法

X射线分析法是基于X射线的波长与结晶矿物内部质点间的距离相近,属于同一个数量级(Å),当X射线进入矿物晶体后可以产生衍射。由于每一种矿物都有自己独特的化学组成和晶体结构,其衍射图样也各有其独有的特征。对这种图样进行分析计算,就可以鉴定结晶矿物的相 (每个矿物种就是一个相),并确定它内部原子 (或离子)间的距离和排列方式。因此,X射线分析已成为研究晶体结构和进行物相分析的最有效方法。

4.光谱分析

光谱分析法的理论基础是,各种化学元素在受到高温光源 (电弧或电火花)激发时,都能发射出它们各自的特征谱线,经棱镜或光栅分光测定后,既可根据样品所出现的特征谱线进行定性分析,也可按谱线的强度进行定量分析。这一方法是目前测定矿物化学成分时普遍采用的一种分析手段。其主要优点是样品用量少 (数毫克),能迅速准确地测定矿物中的金属阳离子,特别是对于稀有元素也能获得良好的结果。缺点是仪器复杂昂贵,并需较好的工作条件。

5.电子探针分析

电子探针分析是一种最适用于测定微小矿物和包体成分的定性、定量以及稀有元素、贵金属元素赋存状态的方法。其测定元素的范围由从原子序数为5的硼直到92的铀。仪器主要由探针、自动记录系统及真空泵等部分组成,探针部分相当于一个X射线管,即由阴极发出来的高达35~50kV的高速电子流经电磁透镜聚焦成极细小 (最小可达0.3μm)的电子束——探针,直接打到作为阳极的样品上,此时,由样品内所含元素发生的初级X射线 (包括连续谱和特征谱),经衍射晶体分光后,由多道记数管同时测定若干元素的特征X射线的强度,并用内标法或外标法算出元素含量。

6.红外吸收光谱

简称红外光谱,是在红外线的照射下引起分子中振动能级 (电偶极矩)的跃迁而产生的一种吸收光谱。由于被吸收的特征频率取决于组成物质的原子量、键力以及分子中原子分布的几何特点,即取决于物质的化学组成及内部结构,因此每一种矿物都有自己的特征吸收谱,包括谱带位置、谱带数目、带宽及吸收强度等。

红外吸收光谱分析样品一般需要1.5mg,最常使用的制样方法是压片法,即把试样与KBr一起研细,压成小圆片,然后放在仪器内测试。

目前红外吸收光谱分析在矿物学研究中已成为一种重要的手段。根据光谱中吸收峰的位置和形状可以推断未知矿物的结构,是X射线衍射分析的重要辅助方法,依照特征峰的吸收强度来测定混入物中各组分的含量。此外,红外光谱分析对考察矿物中水的存在形式、配阴离子团、类质同象混入物的细微变化和矿物相变等方面都是一种有效的手段。

三、鉴定矿物的物理-化学方法

当前用于矿物鉴定最主要的物理-化学方法有热分析、极谱分析及电渗分析等。其中,热分析是一种较为普遍的方法,几乎适用于各类矿物,特别是对黏土矿物,以及碳酸盐、硫酸盐、氢氧化物矿物的鉴定最为有效。

热分析法是根据矿物在不同温度下所发生的脱水、分解、氧化、同质多象转变等热效应特征,来鉴定和研究矿物的一种方法。它包括热重分析和差热分析。

1.热重分析

热重分析是测定矿物在加热过程中的质量变化来研究矿物的一种方法。由于大多数矿物在加热时因脱水而失去一部分质量,故又称失重分析或脱水试验。用热天平来测定矿物在不同温度下所失去的质量而获得热重曲线。曲线的形式决定于水在矿物中的赋存形式和在晶体结构中的存在位置。不同的含水矿物具有不同的脱水曲线。

这一方法只限于鉴定、研究含水矿物。

2.差热分析

矿物在连续地加热过程中,伴随物理—化学变化而产生吸热或放热效应。不同的矿物出现热效应时的温度和热效应的强度是互不相同的,而对同种矿物来说,只要实验条件相同,则总是基本固定的。因此,只要准确地测定了热效应出现时的温度和热效应的强度,并和已知资料进行对比,就能对矿物做出定性和定量的分析。

差热分析法的具体工作过程是,将试样粉末与中性体 (在加热过程中不产生热效应的物质,通常用煅烧过的Al2O3)粉末分别装入样品容器,然后同时送入一高温炉中加热。

由于中性体是不发生任何热效应的物质,所以在加热过程中,当试样发生吸热或放热效应时,其温度将低于或高于中性体。此时,插在它们中间的一对反接的热电偶 (铂-铑-铂热电偶)将把两者之间的温度差转换成温差电动势,并借光电反射检流计或电子电位差计记录成差热曲线。

图1-1中的实线曲线为高岭石的差热曲线,其横坐标表示加热温度 (℃),纵坐标表示发生热效应时样品与中性体的温度差 (ΔT)。高岭石的差热曲线特点是:在580℃时,由于结构水 (OH)-的失去和晶格的破坏而出现一个大的吸热谷,980℃时,因新结晶成γ-Al2O3,而显出一个尖锐的放热峰。

图1-1 高岭石差热曲线(1)和脱水曲线(2)

差热分析的优点是样品用量少 (100~200mg),分析时间短 (90min以下),而且设备简单,可以自行装置。缺点是许多矿物的热效应数据近似,尤其当混合样品不能分离时,就会互相干扰,从而使鉴定工作复杂化。为了排除这种干扰,应与其他方法 (特别是X射线分析)配合使用。

对非专业鉴定人员而言,主要是根据工作的目的、要求和具体条件,正确地选择适当而有效的测试方法 (表1-1),按送样要求进行加工,并正确地使用测试结果。

表1-1 矿物鉴定方法的选择

续表

以上介绍的是目前最常使用的方法,其他方法还很多,如中子活化分析、核磁共振、顺磁共振、穆斯堡尔效应、包裹体研究、稳定同位素研究等,需要时可查阅专门资料。

学习指导

通过学习情境的学习了解矿物鉴定的基本方法,目的是为了我们在今后工作中知道怎样去鉴定矿物,并不要求我们掌握所有的鉴定方法,目前只需要掌握肉眼鉴定和简易化学试验方法即可,但要知道鉴定矿物的一般步骤、正确选择鉴定方法。

练习与思考

1.名词解释

矿物 矿物鉴定 肉眼鉴定 仪器鉴定

2.选择题

(1)确定矿物的外部特征采用哪种方法? ()

A.肉眼鉴定法

B.显微镜

C.化学分析

D.核磁共振

(2)测定矿物的化学成分用哪种方法? ()

A.均一法

B.光谱分析

C.热分析

D.质谱分析

(3)测定矿物某种物性或晶体结构数据采用哪种方法? ()

A.冷冻法

B.简易化学分析法

C.电子显微镜

D.中子活化分析

3.简答题

(1)怎样鉴定矿物? 怎样选择矿物鉴定方法?

(2)肉眼鉴定矿物时应注意的问题?

H. 矿物成分分析方法

矿物化学成分的分析方法有常规化学分析,电子探针分析,原子吸收光谱、激光光谱、X射线荧光光谱,等离子光谱和极谱分析,中子活化分析及等离子质谱分析等。

在选择成分分析方法时,应注意检测下限和精密度。

检测下限(又称相对灵敏度)指分析方法在某一确定条件下能够可靠地检测出样品中元素的最低含量。显然,检测下限与不同的分析方法或同一分析方法使用不同的分析程序有关。

精密度(又称再现性或重现性)指某一样品在相同条件下多次观测,各数据彼此接近的程度。通常用两次分析值(C1和C2)的相对误差来衡量分析数值的精密度。即

相对误差RE=

×100%

常量元素(含量大于或等于0.1%)分析中,根据要求达到分析相对误差的大小,对分析数据的精密度作如下划分:

定量分析:RE<±5%近似定量分析:RE<±(5~20)%

半定量分析:RE=(20~50)%

定性分析:RE>±100%

定量分析要求主要是对常量组分测定而言的,微量组分测定要达到小于±5%的相对误差则比较困难。

1.化学分析法

化学分析方法是以化学反应定律为基础,对样品的化学组成进行定性和定量的系统分析。由于化学分析通常是在溶液中进行化学反应的分析方法,故又称“湿法分析”。它包括重量法、容量法和比色法。前两者是经典的分析方法,检测下限较高,只适用于常量组分的测定;比色法由于应用了分离、富集技术及高灵敏显色剂,可用于部分微量元素的测定。

化学分析法的特点是精度高,但周期长,样品用量较大,不适宜大量样品快速分析。

2.电子探针分析法

电子探针X射线显微分析仪,简称电子探针(EMPA)。它是通过聚焦得很细的高能量电子束(1μm左右)轰击样品表面,用X射线分光谱仪测量其产生的特征X射线的波长与强度,或用半导体探测器的能量色散方法,对样品上被测的微小区域所含的元素进行定性和定量分析。样品无论是颗粒,还是薄片、光片,都可以进行非破坏性的分析。

电子探针的主体由电子光学系统、光学显微镜、X射线分光谱仪和图像显示系统4大部分组成。此外,还配有真空系统、自动记录系统及样品台等(图24-3)。其中测定样品成分的可分为X射线波谱仪和X射线能谱仪,过去电子探针只采用前者,因为它分辨率高,精度高,但速度慢。现代新型电子探针一般两者皆用。能谱分析方法可做多元素的快速定性和定量分析,但精度较前者差。

图24-3 电子探针结构示意图

电子探针可测量元素的范围为4Be—92U。灵敏度按统计观点估计达十万分之三,实际上,其相对灵敏度接近万分之一至万分之五。一般分析区内某元素的含量达10-14就可感知。测定直径一般最小为1μm,最大为500μm。它不仅能定点作定性或定量分析,还可以作线扫描和面扫描来研究元素的含量和存在形式。线扫描是电子束沿直线方向扫描,测定几种元素在该直线方向上相对浓度的变化(称浓度分布曲线)。面扫描是电子束在样品表面扫描,即可在荧屏上直接观察并拍摄到该元素的种类、分布和含量(照片中白色亮点的稠密程度表示元素的浓度)。目前,电子探针已卓有成效地应用于矿物的成分分析、鉴定和研究等各个方面。

值得注意的是,电子探针一个点的分析值只能代表该微区的成分,并不是整个矿物颗粒的成分,更不能用来代表某工作区该矿物的总体成分。因为在矿物中元素的分布是不均一的,不能“以点代面”。对微米级不均匀的矿物,只有采用适当的多点测量,以重现率高的点为依据讨论矿物成分的特征和变化,才能得到较可靠的认识。此外,电子探针对查明混入元素在矿物中存在形式的能力是有限的。它能分析已构成足够大小的矿物相的机械混入物,而对以类质同象混入物形式存在的元素,电子探针是无能为力的。要解决这个问题,必须用综合的手段。应当指出,根据在电子探针面扫描图像上,将分布均匀的混入元素视为类质同象混入物的依据是不够充分的,因为混入元素的均匀分布,并不都是因为呈类质同象形式所引起,还可以由固溶体分解而高度离散所致。而现代电子探针的分辨率(约7.0μm),还不能区分它们,需要用高分辨的透射电镜(分辨率达0.5~1nm,相当于2~3个单位晶胞)、红外光谱分析、X射线结构分析等方法相互配合,才能解决混入元素在矿物中存在的形式问题。

电子探针分析法对发现和鉴定新矿物种属起了重要的作用。这是由于电子探针在微区测试方面具有特效,因而对于难以分选的细小矿物进行鉴定和分析提供了有利条件。如对一些细微的铂族元素矿物、细小硫化物、硒化物、碲化物的鉴定都很有成效。

电子探针也有它的局限性。例如,它不能直接测定水(H2O,OH)的含量;对Fe只能测定总含量,不能分别测出Fe2+和Fe3+含量等。

电子探针分析的样品必须是导电体。若试样为不导电物质,则需将样品置于真空喷涂装置上涂上一薄层导电物质(碳膜或金膜),但这样往往会产生难于避免的分析误差,同时也影响正确寻找预定的分析位置。样品表面必需尽量平坦和光滑,未经磨光的样品最多只能取得定性分析资料,因为样品表面不平,会导致电子激发样品产生的X射线被样品凸起部分所阻挡,所得X射线强度会减低,影响分析的精度。

3.光谱类分析法

光谱类分析法是应用各种光谱仪检测样品中元素含量的方法。此类分析方法很多,目前我国以使用发射光谱分析(ES)、原子吸收光谱分析(AA)、X射线荧光光谱分析(XRF)和电感耦合等离子发射光谱(ICP)、原子荧光光谱(AF)、极谱(POL)等较为普遍。它们的特点是灵敏、快速、检测下限低、样品用量少。适于检测样品中的微量元素,对含量大于3%者精度不够高。

光谱分析的基本原理概括起来是:利用某种试剂或能量(热、电、粒子能等)对样品施加作用使之发生反应,如产生颜色、发光、产生电位或电流或发射粒子等,再用光电池、敏感膜、闪烁计数器等敏感元件接收这些反应讯号,经电路放大、运算,显示成肉眼可见的讯号。感光板、表头、数字显示器、荧光屏或打印机等都是显示输出装置。光谱分析的流程见图24-4。

图24-4 光谱分析流程图

4.X射线光电子能谱分析法

X射线光电子能谱仪由激发源、能量分析器和电子检测器(探测器)三部分组成。其工作原理是:当具有一定能量hv的入射光子与样品中的原子相互作用时,单个光子把全部能量交给原子中某壳层上一个受束缚的电子,这个电子因此获得能量hv。如果hv大于该电子的结合能Eb,该电子就将脱离原来的能级。若还有多余能量可以使电子克服功函数ϕ,电子将从原子中发射出去,成为自由电子。由入射光子与原子作用产生光电子的过程称光电效应。只有固体表面产生的光电子能逸出并被探测到。所以光电子能谱所获得的是固体表面的信息(0.5~5nm)。

光电过程存在如下的能量关系:

hv=Eb+Ek+Er

式中:Er为原子的反冲能;Eb为电子结合能;Ek为发射光电子的动能。Er与X射线源及受激原子的原子序数有关(随原子序数的增大而减小),一般都很小,从而可以忽略不计。Ek可实际测得,hv为X射线的能量,是已知的。因此从上式可算出电子在原子中各能级的结合能(结合能是指一束缚电子从所在能级转移到不受原子核吸引并处于最低能态时所需克服的能量)。光电子能谱就是通过对结合能的计算并研究其变化规律来了解被测样品的元素成分的。

X射线光电子能谱仪可用于测定固、液、气体样品除H以外的全部元素,样品用量少(10-8g),灵敏度高达10-18g,相对精度为1%,特别适于做痕量元素的分析,而且一次实验可以完成全部或大部分元素的测定,还可选择不同的X射线源,求得不同电子轨道上的电子结合能,研究化合物的化学键和电荷分布等,还可测定同一种元素的不同种价态的含量。

5.电感耦合等离子质谱分析法

电感耦合等离子体质谱(Inctively Coupled Plasma Mass Spectrometry,简称ICP-MS)技术是1980年代发展起来的、将等离子体的高温(8000K)电离特性与四极杆质谱计的灵敏快速扫描优点相结合而形成的一种新型的元素和同位素分析技术。

ICP-MS的工作原理及其分析特性:在 ICP-MS 中,等离子体作为质谱的高温离子源(7000K),样品在通道中进行蒸发、解离、原子化、电离等过程。离子通过样品锥接口和离子传输系统进入高真空的四极快速扫描质谱仪,通过高速顺序扫描分离测定所有离子,扫描元素质量数范围从6到260,并通过高速双通道分离后的离子进行检测,直接测定的浓度范围从10-12到10-6。因此,与传统无机分析技术相比,ICP-MS技术提供了最低的检出限、最宽的可测浓度范围,具有干扰最少、分析精密度高、分析速度快、可进行多元素同时测定以及可提供精确的同位素信息等分析特性。

ICP-MS的谱线简单,检测模式灵活多样,主要应用有:①通过谱线的质荷之比进行定性分析;②通过谱线全扫描测定所有元素的大致浓度范围,即半定量分析,不需要标准溶液,多数元素测定误差小于20%;③用标准溶液校正而进行定量分析,这是在日常分析工作中应用最为广泛的功能;④利用ICP-MS测定同位素比值。

在矿物研究方面的应用有:矿物稀土、稀散以及痕量、超痕量元素分析;铂族元素分析;溴、碘等非金属元素的分析;同位素比值分析;激光剥蚀固体微区分析等。

6.穆斯堡尔谱

穆斯堡尔谱为一种核γ射线共振吸收谱。产生这种效应的约有40多种元素、70多种同位素。目前得到广泛应用的是57Fe和119Sn。

图24-5 某透闪石石棉的穆斯堡尔图谱

由于地壳中铁的分布相当广泛,很多矿物都含铁,因此铁的穆斯堡尔谱已成为矿物学研究中一个重要课题。应用这种方法可以测定晶体结构中铁的氧化态、配位以及在不同位置上的分布等。图24-5 为某一透闪石石棉的穆斯堡尔谱,图中显示了 Fe2+离子在两种八面体配位位置M1和M2中的分配情况,AA′双峰表示M1位的Fe2+,CC′双峰表示M2位的Fe2+

穆斯堡尔谱技术可鉴定铁、锡矿物种类;确定矿物中铁、锡的氧化态(如 Fe3+,Fe2+含量及比值)、电子组态(如低自旋、高自旋)、配位状态及化学键;确定铁、锡离子的有序度、类质同象置换及含铁、锡矿物的同质多象变体;进而探讨不同温压下矿物的相转变过程。

穆斯堡尔技术目前还不太成熟,通常要求低温工作条件,可测的元素种类不多,谱线解释理论也不够完善,但却是矿物学研究中一个很有远景的新技术。

I. 矿物微形貌研究方法

矿物形貌研究是借以探索矿物生长机制和生成历史的重要内容,通常用直接观察的方法进行。较大颗粒的宏观矿物形态只需肉眼观察或借助实体显微镜即可,更深入的微观形貌观察必须借助高倍显微镜进行。根据工作原理,可将矿物形貌观察显微镜分为光学和电子两大类。

一、光学显微镜

光学显微技术是在微米尺度上观察矿物形貌及结构的较普遍的方法,有实体、偏光和反光3种类型。

实体显微镜能较为直观地放大物体,放大倍数不高,一般为几倍至100倍,可以观察矿物形态、解理以及表面较明显的微形貌结构。

偏光显微镜能放大数十倍到数百倍,可以观察矿物的双晶、解理、块状或隐晶集合体形态等特征。

图24-1 透射相衬显微镜的光学系统示意图

图24-2 扫描电子显微镜结构示意图

反光显微镜通常用于不透明矿物的集合体形态的观察。

二、相衬显微镜

相衬显微镜能够观察到矿物表面纳米(nm)尺度的分子层厚度,对推动晶体表面微形貌的研究起了极其重要的促进作用。

相衬显微镜的光学系统能将入射光产生的位相差转换为振幅(或强度)差。前者肉眼无法辨认,经转换后就能直接观察位相差所反映的物体表面(反射)或内部(透射)的结构细节。

相衬显微镜的结构与普通偏光显微镜相似,所不同的是在聚光镜下方插入了一个环形空圈板;另有几个安装有位相板的相衬物镜及同轴调整望远镜3个特殊部分。环形空圈板的作用在于提高分辨率;位相板(即位相过滤器)的作用是加大图像的衬比度。相衬显微镜有透射式与反射式两种类型(透射式的光学系统见图24-1),前者用于观察薄片中矿物内部显微构造,后者用于观察晶体表面。借助相衬显微镜,能清晰看到微米(μm)级、具立体感的微观形貌,对探索矿物的结晶状态和生长机制,提供了许多用常规方法不能获得的丰富信息。

三、电子显微镜

电子显微镜包括透射电镜(TEM)和扫描电镜(SEM),是将电子束激发样品微区产生的信号收集、放大并转换成各种图像、图谱或强度数据,从而直接给出亚微观尺度的样品形貌、结构和成分的仪器。

透射电镜的结构主要由电子枪、电磁透镜(聚光系统)、成像系统、真空系统、显像部分、电源部分及各种附件组成。结构上它与普通光学显微镜相似,不同的是,光学显微镜用可见光作光源,在空气介质中工作,聚光系统是玻璃透镜,最高放大倍数为1000 倍左右,有效分辨率为0.2μm;而透射电镜则用电子束作射线源,由于电子波长很短,其分辨本领很高,为减少运动电子能量损失,在真空下工作,并采用双电磁透镜聚焦,以提高电子束强度和物镜成像后的亮度,放大倍数由几百倍到200万倍,分辨率达0.7~1nm,可观察晶格像、位错、晶体缺陷等微细结构的变化。透射电镜的实验技术,要求制备极薄(100~200nm)的透明样品,目前主要通过离子减薄制样技术获得。

扫描电镜是用细聚焦电子束在试样表面扫描时激发产生二次电子(辅有背散射电子、吸收电子和特征X射线),经收集、处理、放大后成二次电子像,从而获得样品表面的三维立体图像(图24-2)。扫描电镜主要功能是进行高分辨的微形貌观察。

目前扫描电镜普遍的分辨率是4~7nm,放大倍数可从10倍到30万倍,中间连续可调,图像清晰,立体感强。扫描电镜制样简单,对具导电性样品,不必经过加工,只要其大小不大于样品座即可;对于非导电性样品,需在表面喷镀5~20nm厚导电膜,通常是用二次电子发射系数高的金或碳喷镀(习惯称镀金或镀碳)。近年发展起来的环境扫描电镜除了不必喷镀外,还可对活体进行观察,适于进行矿物-生物相互作用研究。

除以上矿物形貌研究方法外,还有光学测角仪,主要对晶体的面角进行测量。

四、扫描探针显微镜

探针显微镜(Scanning Probe Microscope,简称SPM)是指那些以隧道效应为理论基础发展起来的各种分析实验方法。它们都是通过一个探针相对于样品进行扫描,通过监测两者之间电、光、力、磁场等随针尖与样品间隙的变化来获取待测样品表面的有关信息。SPM家族中最为重要的两个成员是扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)和原子力显微镜(Atomic Force Microscope,简称 AFM),其他 SPM 技术均是在此两种技术的基础上发展而来的。1988年和1990年,STM和AFM相继被引入矿物学的研究中,给矿物学、矿物材料学研究增添了一个有力工具。

1.扫描隧道显微镜

STM的基本原理是量子的隧道效应。所谓“隧道效应”是指当两个电极间被加上一个偏压并接近到一定程度时,电子从一个电极转移到另一个电极而产生电流的现象,所产生的电流称为隧道电流。根据产生隧道效应的原理,将原子限度的极细针尖和被研究物质表面作为两个电极,当样品与针尖的距离非常小(通常小于1nm)时,在外加电场作用下,电子会穿过两个电极之间的绝缘层由一个电极流向另一个电极,这种现象即前面介绍的隧道效应。隧道电流I是电子波函数重叠的量度,与针尖和样品之间的距离S及平均功函数X有关:

I∝Vbexp(-AX1/2S)

式中:Vb是加在针尖和样品之间的偏置电压;A为常数,在真空条件下约等于1;X为平均功函数

结晶学与矿物学

式中:X1和X2分别为针尖和样品的功函数。

由上式可知,隧道电流强度对针尖与样品间的距离非常敏感。当功函数为几个eV时,S每改变0.1nm,I将改变一个数量级。因此,利用电子反馈线路控制隧道电流的恒定,并用压电陶瓷材料控制针尖在样品表面的扫描,探针在垂直于样品表面方向上的高低变化就能反映出样品表面的起伏。将针尖在样品表面扫描时运动的轨迹直接在荧光屏或记录纸上显示出来,就得到了样品表面费米能级附近状态密度的分布或原子排列的图像。这种扫描方式称为恒流方式。也可控制针尖高度守恒扫描,通过记录隧道电流的变化来得到样品表面费米能级附近状态密度的分布,这种扫描方式称为恒高模式。因此一般的STM都有两种工作方式:恒流模式和恒高模式。恒高模式可以采用较快的扫描速度,因此可以减小噪音和热漂移的影响,较适合于矿物等较为复杂的物质表面的小范围观察。恒流模式则适合于低速扫描,常用于物质表面较大范围的观察。

扫描隧道显微镜的特点是STM实验不需接触样品就可研究物质表面结构。STM具有原子级的分辨率,使它成为目前分辨率最高的表面分析仪器。STM可以在各种环境中进行实验,STM可以直接观察原子间转移的过程。对于表面的吸附和渗透过程、矿物表面与溶液间的反应过程,STM可能描绘出较为详细的机理。

虽然STM具有很多独特的优点,但同时它也存在自己的局限性,如样品表面原子种类不同,或样品表面吸附有原子、分子时,由于不同种类的原子或分子团等具有不同的电子态密度和功函数,此时STM给出的等电子态密度轮廓不再对应于样品表面原子的起伏,而是表面原子起伏与不同原子和各自态密度组合后的综合效果。STM不能区分这两个因素。STM所观察的样品必须具有一定程度的导电性,对于半导体,观测的效果就差于导体。对于绝缘体则根本无法直接观察。针尖形状对图像有严重影响。

2.原子力显微镜

AFM的探头是对微弱力(如范德华力)极敏感的微悬臂。当微悬臂的针尖接触样品时,针尖尖端的原子与样品表面的原子会产生极微弱的排斥力。扫描样品时通过控制这种力使之恒定,针尖与样品间作用力的等位面便能从原子尺度上反映矿物表面的微形貌。

AFM不仅适用于导电样品,也适用于不导电样品。

3.扫描探针显微镜在矿物学研究中的应用

SPM应用于与矿物有关的研究始于1988年。近10年来SPM已被广泛应用于各种与矿物或矿物材料学研究有关的领域。

(1)矿物材料表面形貌研究

表面微形貌即表面的微观几何形态,是指特征尺度一般在微米级、纳米级到原子级的三维微观形貌。

在表面定性观察方面,SPM是目前分辨率最高的分析仪器。扫描电子显微镜虽是用于固体物质形貌观察的主要手段,但其分辨率难以超过6nm。SPM 的横向分辨率可达原子级,因此SPM填补了物质微形貌观察中分辨率从6nm到原子级之间的空白,使微形貌研究可以在前所未有的高分辨率水平上开展。在表面定量研究方面,SPM较其他分析手段更易实现表面二维、三维形貌数据的计算机采集和处理,进行形貌定量分析。因此SPM在表面形貌定量研究方面具有巨大潜力。国外近年来已开发出一些可计算材料表面二维参数的计算机软件。

SPM在矿物和材料表面形貌研究中的应用已有不少实例,用SPM观察到了很多矿物和其他材料表面重要的微形貌现象,如矿物表面的溶蚀现象、矿物和材料表面的生长纹等。

(2)矿物材料表面原子结构研究

SPM是目前唯一能在正空间观察物质表面原子排布的仪器,因此目前这方面的研究最为活跃。已用SPM观察到了若干矿物、有机和无机材料表面的原子排布、原子缺陷、表面重构、各种畴结构等重要的结构现象。如辉钼矿表面钼原子分布的STM图像、单晶硅表面7×7重构现象的STM像、硬石膏解理面的AFM图像,显示了氧和钙原子的排布等。

(3)矿物材料表面吸附和化学反应研究

表面吸附是表面科学研究中的重要课题。表面科学研究常常需要知道原子或分子吸附在表面的什么部位?它们如何与基底联结?用传统的表面分析技术只能了解表面的平均性质,不能对吸附的原子或分子成像,难以确切回答以上问题。而SPM在这一领域有独特的优点。由于SPM可在溶液中进行实验,因此SPM可用于直接观察表面的化学反应过程,如表面溶蚀过程和表面生长过程等。用SPM便获得了金浸泡在KI溶液中,I原子吸附在金表面的现象。

J. 矿物组成分析的基本原理

矿物组成分析的基础是元素化学物相分析,解决了多种元素的物相分析,就可以解决矿物组成分析问题。

矿物是由元素组成的。组成矿石的矿物有哪些?矿物量各是多少?这必然会从矿石的元素分析结果中反映出来。一个具体矿石样里,矿物数量是有限的,比如十几种、几十种。绝大多数的矿物均具有一定的或有规律性的化学组成,一般可以找到它的特征元素。对一个具体分析对象而言,还可以是相对特征的元素。矿物组成分析主要通过准确测定特征(些)元素的量,即可求得其矿物量。但必须认真考虑类质同象置换现象的普遍性,常常某一元素几种矿物共有。这可用化学物相分析的方法将这几种矿物分开,然后分别测定该元素的量,并同时测定其他有关元素的量来计算其矿物量。当共存化学性质相似的矿物时,只要它们的化学组成不同,还可采用选择溶解几种矿物并测定有关元素的量辅以数学计算处理求得。只有对组成波动而选择分离又相当困难的矿物,才最后用差减法近似确定。从特征元素算得的矿物量,必须用其他有关的元素来检验之,如用HCl(8+92)溶解黑云母并测定特征元素钾的量来计算黑云母时,在同一溶液中测定铁、镁、铝等非特征元素的含量,并要求测得的量必须符合以钾算得的黑云母中这些元素应含的量。最后,对组成矿石的全部矿物也同样按矿石的元素分析结果进行检验。一般来说,元素分析结果是容易准确测定的,将全部矿物按其理论或实测组成返算各种元素含量,各种矿物中的同一元素含量相加之和与该元素的单独分析结果基本吻合,则说明该矿石的矿物组成分析基本上是正确的。

阅读全文

与矿物结构分析所采用的主要方法相关的资料

热点内容
讨论式教学方法哪所高校做的好 浏览:880
条码的检验步骤和方法 浏览:848
楼梯踏步踏步计算方法 浏览:89
制剂用什么方法鉴别 浏览:948
长时间看电脑屏幕缓解方法 浏览:122
6p相机设置在哪里设置方法 浏览:153
儿童疖子治疗方法 浏览:724
白鲢鱼去鱼刺的方法视频 浏览:386
成龄果园土壤管理的方法有哪些 浏览:561
汽车连杆维修方法有哪些 浏览:987
非药物治疗高血压的方法 浏览:81
体方法师讲阿含经视频全集 浏览:9
磨牙齿正确方法 浏览:247
个人目标管理方法的分析报告 浏览:754
什么能去斑最好的方法 浏览:754
银子和玻璃焊接最简单的方法 浏览:408
原土地基常用处理方法有哪些 浏览:896
脂溢性湿疹的治疗方法 浏览:288
土方开挖有哪些方法 浏览:370
红酒起子使用方法 浏览:186