㈠ 数学思想有哪些
常用的数学思想(数学中的四大思想)
函数与方程的思想 用变量和函数来思考问题的方法就是函数思想,函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法。深刻理解函数的图象和性质是应用函数思想解题的基础,运用方程思想解题可归纳为三个步骤:①将所面临的问题转化为方程问题;②解这个方程或讨论这个方程,得出相关的结论;③将所得出的结论再返回到原问题中去。
数形结合思想 在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形”在一定条件下可以相互转化、相互渗透。
分类讨论思想 在数学中,我们常常需要根据研究对象性质的差异。分各种不同情况予以考察,这是一种重要数学思想方法和重要的解题策略,引起分类讨论的因素较多,归纳起来主要有以下几个方面:
(1)由数学概念、性质、定理、公式的限制条件引起的讨论;
(2)由数学变形所需要的限制条件所引起的分类讨论;
(3)由于图形的不确定性引起的讨论;
(4)由于题目含有字母而引起的讨论。分类讨论的解题步骤一般是:(1)确定讨论的对象以及被讨论对象的全体;(2)合理分类,统一标准,做到既无遗漏又无重复;(3)逐步讨论,分级进行;(4)归纳总结作出整个题目的结论。
等价转化思想 等价转化是指同一命题的等价形式.可以通过变量问题的条件和结论,或通过适当的代换转化问题的形式,或利用互为逆否命题的等价关系来实现。常用的转化策略有:已知与未知的转化;正向与反向的转化;数与形的转化;一般于特殊的转化;复杂与简单的转化。
㈡ 数学思想方法有哪几种
1、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
2、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
3、分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
4、整体思想
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。
5、类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
6、配方法
将一个式子设法构成平方式,然后再进行所需要的转化。当在求二次函数最值问题、解决实际问题最省钱、盈利最大化等问题时,经常要用到此方法。
7、待定系数法法
当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待定的字母的值就可以了,为此,需要把已知的条件代入到这个待定的式子中,往往会得到含待定字母的方程或者方程组,然后解这个方程或者方程组就可以使问题得到解决。
㈢ 配方法里面蕴含着非常重要的数学思想,是什么
哥德巴赫猜想
㈣ 配方法的基本思想是
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简.何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方.有时也将其称为“凑配法”.
最常见的配方是进行恒等变形,使数学式子出现完全平方.它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者在三角变换和圆锥问题的简化运算等问题. 配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如:a2 +b2 =(a+b)2 -2ab=(a-b)2 +2ab;a2 +ab+b2 =(a+b)2 -ab= (a-b)2+3ab=(a+ b2)2+(32b)2;a2+b2+c2+ab+bc+ca=1 2 [(a+b)2+(b+c)2+(c+a)2] a2 +b2 +c2 =(a+b+c)2 -2(ab+bc+ca)=(a+b-c)2 -2(ab-bc-ca)=„ 结合其它数学知识和性质,相应有另外的一些配方形式,如:1+sin2α=1+2sinαcosα=(sinα+cosα)2 ;x2 + 12x=(x+1x)2-2=(x-1x )2 +2 ;解析几何中的韦达定理和弦长公式;„„ 等等.
将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一
希望有帮助!
㈤ 数学四大思想八大方法是什么
数学四大思想:数形结合思想,转化思想,分类讨论思想,整体思想。八大数学方法:配方法,因式分解法,待定系数法,换元法,构造法,等积法,反证法,判别式法。
以上是学习中常用的思想方法。这些都是学习数学的过程中,经常运用的。不同学习阶段,数学思想方法的运用也不同,侧重点各有差异。思想方法分类也不尽相同。
分类讨论
分类讨论思想具有较高的逻辑性及很强的综合性,纵观近几年的高考数学真题,不管是文科还是理科,同学们在解决最后的数学综合问题时,基本上都需要分类讨论。
深度剖析了分类讨论思想,并结合典型例题引导同学们树立分类讨论思想,教会同学们如何灵活运用分类讨论思想解决数学问题。
㈥ 数学中的“配方法”怎么配方
在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x+y)2=x2+ 2xy+y2的形式,可推出2xy= (b/a)x,因此y=b/2a。等式两边加上y2= (b/2a)2,可得:
这个表达式称为二次方程的求根公式。
解方程
在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。
【例】解方程:2x²+6x+6=4
分析:原方程可整理为:x²+3x+3=2,通过配方可得(x+1.5)²=1.25通过开方即可求解。
解:2x²+6x+6=4
<=>(x+1.5)²=1.25
x+1.5=1.25的平方根
㈦ 初中数学配方法
配方法是解一元二次方程的一种解法,也即是把一个一元二次方程配成完全平方的形式,再开方即可。对于一个二次项是1的方程,配方的时候先把常数项移到方程右边,然后方程两边加上一次项系数一半的平方,最后把左边写成完全平方,正确解出方程就可以了,如果二次项系数不是1,先把二次项系数化成1,然后和二次项是1的配方是一样的,认真做题就可以了。
㈧ 数学四大思想八大方法是什么
数学四大思想:数形结合思想,转化思想,分类讨论思想,整体思想。八大数学方法:配方法,因式分解法,待定系数法,换元法,构造法,等积法,反证法,判别式法。
以上是学习中常用的思想方法。这些都是学习数学的过程中,经常运用的。不同学习阶段,数学思想方法的运用也不同,侧重点各有差异。思想方法分类也不尽相同。
方法概述
函数的思想,就是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决的数学思想。
方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的数学思想。
㈨ 什么叫配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。